小学奥数因数与倍数
因数倍数-小学奥数

因数倍数一、要点提示整数a除以整数b(b≠0),所除得的商正好是整数,而没有余数,我们就说a能够被b整除,或者说b能整除a,而a叫做b的倍数,b叫做a的因数。
几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小的公倍数。
公因数和公倍数,特别是最大公因数和最小公倍数,不同于一般题目的解法,学习并掌握其规律和解法,有助于我们开阔眼界,在思考问题是更机智、灵活。
需要用公因数、公倍数来解答的应用题叫做公因数。
公倍数问题。
解题思路和方法:先确定题目中要用最大公因数或者最小公倍数,再求出答案。
最大公因数和最小公倍数的求法,最常用的是“短除法”。
二、题型点击1、一个四位数的每个数位上的数字都不相同,它既能被9整除又能被7整除,这样的四位数最大是多少?2、在1的内一次填上哪些数,可以使这个数成为能被2,3,5整除的最小四位数?3、有72名学生,共交课间餐费a527b元,每人交了多少元?4、在568后面补上三个数字组成一个六位数,使它分别能被3,4,5整除,且使这个数值尽可能小。
求这个六位数?5、现在有四个自然数,它们的和是1111,如果要求这四个数的最大公因数尽可能大,那么这四个数的最大公因数最大可能是多少?6、在1,2,3,…,1998这1998个数中,既不能被8整除,又不能被12整除的数共有()个。
7、一个六位数,首位数是1,把首位数移到末位,使新的六位数是原数的3倍,则原数是()。
8、一个六位数的各位数字都不相同,最左边一个数字是3,且此六位数是11的倍数,这样的六位数中的最小数是()。
9、把1,2,3,…,10个自然数围成一个圆(如图),使得任意相邻的两个数的和都是小于15的素数。
这个10个数依次是1,2,__,__,__,__,__,__,__,10。
10、倩倩到商店买了6块橡皮,5支铅笔,3本练习本和7支圆珠笔,已知每支铅笔1角8分,每支圆珠笔4角5分,倩倩给售货员10元,售货员找给倩倩5.1元。
小学奥数数论专题--因数与倍数(六年级)竞赛测试.doc

小学奥数数论专题--因数与倍数(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________一、xx 题 (每空xx 分,共xx 分) 【题文】数360的约数有多少个?这些约数的和是多少?【答案】24,1170【解析】360分解质因数;360=2×2×2×3×3×5=23×32×5;360的约数可以且只能是2a×3b×5c,(其中a ,b ,c 均是整数,且a 为0~3,b 为0~2,c 为0~1) . 因为a 、b 、c 的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24. 我们先只改动关于质因数3的约数,可以是1,3,32,它们的和为(1+3+32);所以所有360约数的和为(1+3+32)×2y×5w;我们再来确定关于质因数2的约数,可以是1,2,22,23,它们的和为(1+2+22+23);所以所有360约数的和为(1+3+32)×(1+2+22+23)×5w;最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5);所以所有360的约数的和为(1+3+32)×(1+2+22+23)×(1+5).现在,我们计算出值了:13×15×6=1170.所以,360所有约数的和为1170.评注:我们在本题中分析了约数个数、约数和的求法.下面我们给出一般结论:Ⅰ.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)Ⅱ.约数的和是在严格分解质因数后,将M 的每个质因数最高次幂的所有约数的和相乘所得到的积.如:21000=23×3×53×7,所以21000所有约数的和为(1+2+22+23)×(1+3)×(1+5+52+53)×(1+7)=74880.【题文】一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少?【答案】96【解析】设这个数为A ,有A =25×33×56×7,我们可以一一列出它所有的两位数的约数,有25×3=96为其最大的两位数约数.【题文】写出从360到630的自然数中有奇数个约数的数.【答案】361,400,441,484,529,576,625【解析】一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个,这样它们加1后均是奇数,所得的乘积还能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数?18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.【题文】今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆,每堆中这3种课本的数量分别相等.那么最多可分多少堆?【答案】14【解析】显然堆数是42的约数,是112的约数,是70的约数.即为42,112,70的公约数,有(42,112,70)=14.所以,最多可以分成14堆.【题文】加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?【答案】10【解析】为了使生产均衡,则每道工序每小时产生的零件个数应相等,设第一、二、三道工序上分别有A、B、C个工人,有6A=10B=15C=k,那么k的最小值为6,10,15的最小公倍数,即[6,10,15]=30.所以A=5,B=3,C=2,则三道工序最少共需要5+3+2=10名工人.【题文】有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚?【答案】30【解析】设在x分钟后3人再次相聚,有甲走了120x米,乙走了100x米,丙走了70x米,有他们3人之间的路程差均是跑道长度的整数倍.即120x-100x,120x-70x,100x-70x均是300的倍数,那么300就是20x,50x,30x的公约数.有(20x,50x,30x)=300,而(20x,50x,30x)=x(20,50,30)=10x,所以x=30.即在30分钟后,3人又可以相聚.【题文】 3条圆形跑道,圆心都在操场中的旗杆处,甲、乙、丙3人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3人都在旗杆的正东方向,里圈跑道长千米,中圈跑道长千米,外圈跑道长千米.甲每小时跑千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次同时回到出发点?【答案】6【解析】甲跑完一圈需÷=小时,乙跑一圈需÷4=小时,丙跑一圈需÷5=.则他们同时回到出发点时都跑了整数圈,所以经历的时间为,,的倍数,即它们的公倍数.而===6.所以,6小时后,3人第一次同时回到出发点.评注:求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.【题文】甲数和乙数的最大公约数是6,最小公倍数是90.如果甲数是18,那么乙数是多少?【答案】30【解析】有两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积.有它们的最大公约数与最小公倍数的乘积为6×90=540,则乙数为540÷18=30.【题文】 A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有l0个约数,那么A,B两数的和等于多少?【答案】2550【解析】由题意知A可以写成3×52×a,B可以写成3×52×b,其中a、b为整数且只含质因子3、5.即A=31+x×52+y,B=31+m×52+n,其中x、y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[(2+y)+1]=(2+x)×(3+y)=12,所以,或.对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+1]=(2+m)×(3+n)=10,所以.对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=2550.解法二:易知A、B中有一个数质因数中出现了两次5,多于一次3,那么,先假设它出现了N次3,则约数有:(2+1)×(N+1)=3·(N+1)个12与10其中只有12是3的倍数,所以3(N+1)=12,易知N=3,这个数是A,即A=33×52=675.那么B的质数中出现了一次3,多于两次5,则出现了M次5,则有:(1+1)×(M+1)=2(M+1)=10,M=4.B =3×54=1875.那么A,B两数的和为675+1875=2550.【题文】有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少?【答案】33【解析】设这两数为a,b,记a=(a,b)q1,b=(a,b)q2.它们的和为:a+b=(a,b)q1+(a,b)q2 =(a,b)(q1+q2)=297.…………………①它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=693,且(q1,q2)=1.………②综合①、②知(a,b)是297,693的公约数,而(297,693)=99,所以(a,b)可以是99,33,11,9,3,1.第一种情况:(a,b)=99,则(q1+q2)=3,(q1q2+1)=7,即q1q2=6=2×3,无满足条件的q1,q2;第二种情况:(a,b)=33,则(q1+q2)=9,(q1q2+1)=21,即q1q2=20=22×5,则q1=5,q2=4时满足,a=(a,b)q1=33×5=165,b=(a,b)q2=33×4=132,则a-b=165-132=33;第三种情况:(a,b)=11,则(q1+q2)=27,(q1q2+1)=63,即q1q2=62=2×31,无满足条件的q1,q2;一一验证第四种情况,第五种情况,第六种情况没有满足条件的的q1,q2.所以,这个两个自然数的差为33.【题文】两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组?【答案】10【解析】设这两数为a,b,记a=(a,b)q1,b=(a,b)q2.它们的和为:a+b=(a,b)q1+(a,b)q2 =(a,b)(q1+q2)=60.…………………①它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=60,且(q1,q2)=1.………②联立①、②有(q1+q2)= (q1q2+1),即q1+q2-q1q2=1,(q1-1)(1-q2)=0,所以q1=1或q2=1.即说明一个数是另一个数的倍数,不妨记a=kb(k为非零整数),有,即(k+1)b=60,b确定,则k确定,则kb即a确定.60的约数有2,3,4,5,6,10,12,15,20,30,60这11个,b可以等于2,3,4,5,6,10,12,15,20,30这10个数,除了60,因为如果b=60,则(k+1)=1,而k为非零整数.对应的a、b有10组可能的值,即这样的自然数有10组.进一步,列出有(a,b)为(58,2),(57,3),(56,4),(55,5),(54,6),(50,10),(48,12),(45,15),(40,20),(30,30) .评注:如果两个自然数的和等于这两个数最大公约数与最小公倍数的和,那么这两个数存在倍数关系.【题文】3个连续的自然数的最小公倍数是9828,那么这3个自然数的和等于多少?【答案】81【解析】当三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;当三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.则当a,a+1,a+2中有2个偶数时,a(a+1)(a+2)=9828×2,当a,a+1,a+2中有1个偶数时,a(a+1)(a+2)=9828.对9828分解质因数:9828=2×2×3×3×3×7×13,我们注意,13是其最大的质因数,验证不存在3个连续的自然数的积为9828.则这三个自然数的积只能是9828×2,此时这三个数中存在两个偶数,有9828×2=2×2×2×3×3×3×7×13.13×2=26,有26,27,28三个数的积为9828×2,所以这三个连续的自然数数为26,27,28,其中有两个偶数,满足题意.所以,这三个数的和为26+27+28=81.评注:我们知道两个连续的自然数互质,而两个互质的数的公倍数等于它们的积,即[a,b]=a×b.记这3个连续的自然数为a,a+1,a+2.有[a,a+1,a+2]=[a,a+1,a+1,a+2]=[[a,a+1],[a+1,a+2]]=[a×(a+1),(a+1)×(a+2)]=(a+1)×[a,a+2] .因为a,a+2同奇同偶,当a,a+2均是偶数时,a,a+2的最大公约数为2,则它们的最小公倍数为;当a,a+2均是奇数时,a,a+2互质,则它们的最小公倍数为a×(a+2) .所以(a+1)×[a,a+2]=.即[a,a+1,a+2]为a(a+1)(a+2)或.当三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;当三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.【题文】甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?【答案】18【解析】对90分解质因数:90=2×3×3×5.因为5126,所以5甲,即甲中不含因数5,于是乙必含因数5.因为2105,所以2乙,即乙中不含因数2,于是甲必含因数2×2.因为9105,所以9乙,即乙最多含有一个因数3.第一种情况:当乙只含一个因数3时,乙=3×5=15,由[甲,乙]=90=2×32×5,则甲=2×32=18;第二种情况:当乙不含因数3时,乙=5,由[甲,乙]=90=2×32×5,则甲=2×32=18.综上所需,甲为18.评注:两个数的最小公倍数含有两数的所有质因子,并且这些质因数的个数为两数中此质因数的最大值.如a=2×33×52×7,b=23×32×5×7×11,则A、B的最小公倍数含有质因子2,3,5,7,11,并且它们的个数为a、b中含有此质因子较多的那个数的个数.即依次含有3个,3个,2个,1个,1个,即[a,b]=23×33×52×7×11.【题文】 a>b>c是3个整数.a,b,c的最大公约数是15;a,b的最大公约数是75;a,b的最小公倍数是450;b,c的最小公倍数是1050.那么c是多少?【答案】105【解析】由(a,b)=75=3×52,[a,b]=450=32×2×52=75×3×2,又a>b,所以或.[b,c]=1050=2×3×52×7.当时有,因为两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积,所以(75,c)×[75,c]=75×c=15×1050,得c=210,但是c>b,不满足;当时有,则c=105,c<b,满足,即为满足条件的唯一解.那么c是105.【题文】有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少?【答案】101【解析】设这4个不同的自然数为A、B、C、D,有A+B+C+D=1111.将1111分解质因数:1111=11×101,显然A、B、C、D的最大公约数最大可能为101,记此时A=101a,B =101b,C=101c,D=101d,有a+b+c+d=11,当a+b+c+d=1+2+3+5时满足,即这4个数的公约数可以取到101.综上所述,这4个不同的自然数,它们的最大公约数最大能是101.【题文】把一张长1米3分米5厘米、宽1米5厘米的纸裁成同样大小的正方形纸块,而没有剩余,问:能裁成最大的正方形纸块的边长是多少?共可裁成几块?【答案】63【解析】要把一张长方形的纸裁成同样大小的正方形纸块,还不能有剩余,这个正方形纸块的边长应该是长方形的长和宽的公约数.由于题目要求的是最大的正方形纸块,所以正方形纸块的边长是长方形的长和宽的最大公约数.1米3分米5厘米=135厘米,1米5厘米=105厘米,,长方形纸块的面积为 (平方厘米),正方形纸块的面积为 (平方厘米),共可裁成正方形纸块 (张).【题文】一个房间长450厘米,宽330厘米.现计划用方砖铺地,问需要用边长最大为多少厘米的方砖多少块(整块),才能正好把房间地面铺满?【答案】165【解析】要使方砖正好铺满地面,房间的长和宽都应是方砖边长的倍数,也就是方砖边长厘米数必须是房间长、宽厘米数的公约数.由于题中要求方砖边长尽可能大,所以方砖边长应为房间长与宽的最大公约数.450和330的最大公约数是30.,,共需 (块).【题文】有336个苹果,252个桔子,210个梨,用这些水果最多可以分成多少份同样的礼物?在每份礼物中,三样水果各多少?【答案】苹果8 个,桔子6个,梨5个.【解析】此题本质上也是要求出这三种水果的最大公约数,有, 即可以分42份,每份中有苹果8 个,桔子6个,梨5个.【题文】把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?【答案】9【解析】此题相当于梨的总数是人数的整数倍还多2个,苹果数是人数的整数倍还缺2个,所以减掉2个梨,补充2个苹果后,18个梨和27个苹果就都是人数的整数倍了,即人数是18和27的公约数,要求最多的人数,即是18和27的最大公约数9了.【题文】教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工,问用这些果品,最多可以分成多少份同样的礼物(同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等)?在每份礼物中,苹果、桔子、鸭梨各多少个?【答案】8,6,5【解析】因为,,,,所以最多可分40份,每份中有8个苹果6个桔子,5个鸭梨.【题文】现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?【答案】101【解析】只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数.只能从唯一的条件“它们的和是1111”入手分析.三个数的和是1111,它们的公约数一定是1111的约数.因为,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909.所以所求数是101.【题文】用这九个数码可以组成362880个没有重复数字的九位数,求这些数的最大公约数.【答案】9【解析】,是9的倍数,因而9是这些数的公约数.又123456789和123456798这两个数只差9,这两个数的最大公约数是它们的差的约数,即是9的约数,所以9是这两个数的最大公约数.从而9是这362880个数的最大公约数.【题文】用2、3、4、5、6、7这六个数码组成两个三位数A和B,那么A、B、540这三个数的最大公约数最大可能是___________.【答案】108【解析】,A、B、540这三个数的最大公约数是540的约数,而540的约数从大到小排列依次为:540、270、180、135、108、90……由于A和B都不能被10整除,所以540、270、180都不是A和B 的约数.由于A和B不能同时被5整除,所以135也不是A和B的公约数.540的约数除去这些数后最大的为108,考虑108的三位数倍数,有108、216、324、432、540、648、756、864、972,其中由2、3、4、5、6、7这六个数码组成的有324、432和756,易知当A和B一个为756、另一个为324或432时,A、B、540这三个数的最大公约数为108,所以A、B、540这三个数的最大公约数最大可能是108.【题文】两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.【答案】40或20【解析】设这两个自然数为:,其中与互质,,,经检验,容易得到两组符合条件的数:9与1或者7与3.于是,所要求的两个自然数也有两组:45与5,35与15.它们的差分别是:45-5=40,35-15=20.所以,所求这两个数的差是40或者20.【题文】一个两位数有6个约数,且这个数最小的3个约数之和为10,那么此数为几?【答案】98【解析】最小的三个约数中必然包括约数1,除去1以外另外两个约数之和为9,由于9是奇数,所以这两个约数的奇偶性一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数。
因数与倍数,奥数

因数和倍数因数一整数被另一整数整除,后两者即是前者的因数。
例:6÷2=3 2和3就是6的因数。
倍数①一个整数能够把另一整数整除,这个整数就是另一整数的倍数。
如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。
如a÷b=c,就是说a是b的c倍,a是b的倍数。
一个因数能让它的积整除,那么,这个数就是因数,它的积就是倍数。
③一个数的倍数(0除外)有无数个,也就是说一个数的倍数的集合为无限集.因数和倍数的关系当除数可以整除被除数(意即被除数=除数×商),则除数叫做被除数的因数,被除数叫做除数的倍数。
成倍数关系的是:36和9 36和4 9、4分别是36的因数,36是9和4的倍数(而且是最小公倍数)因数和倍数是相对的倍数一般比自己大,因数一般比自己小比如12÷4=3 12是4的倍数,12也是3的倍数4是12的因数,3也是12的因数不能说12是倍数,3是因数练习找因数:1、18的因数有哪几个?用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)2、用这样的方法,请你再找一找36的因数有那些?例(1,2,3,4,6,6,9,12,18,36)(重复的因数只要写一个就可以了,所以不需要写两个6)仔细看看,36的因数中,最小的是几,最大的是几?看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
小学奥数因数与倍数复习课程

第一讲:因数与倍数知识点拨1、因数和倍数:如果a×b=c(a,b,c都是不为零的整数),那么a,b就是c的因数,c就是a,b的倍数。
例如6×2=12,所以6和2是12的因数,12是6和2的倍数。
如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
例如10能被5整除,那么10就是5的倍数,5就是10的因数。
2、一个数的因数的求法:(1)列乘法算式找(2)列除法算式找一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
例如:15的因数有哪些?方法一:1×15=15,3×5=15(一般从自然数1开始,一对一对的找)方法二:15÷1=15,15÷3=5(计算时从除数1开始找,直到重复为止)所以15的因数就是1, 3, 5, 15。
最大的因数就是15,也就是它本身!最小的是1。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法是依次乘以自然数。
例如:3的倍数 3 6 9 12 15 ....... 3是3最小的倍数,也就是它本身倍数特征:最小的倍数是本身,没有最大的倍数4、2、5、3的倍数的特征:①个位上是0、2、4、6、8的数,都是2的倍数。
②个位上是0或5的数,是5的倍数。
③一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。
5、在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和是偶数性质4:奇数个奇数的和是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数例题精讲一、倍数与因数的认识【例1】请问:图中有哪些数?(1)根据图中数据:①买5千克梨需要多少钱?可以说:20是4的倍数;20是5的倍数;4是20的因数;5是20的因数。
六年级奥数试题-因数与倍数(学生版)

第十八讲因数与倍数因数与倍数1.公因数与最大公因数2.公倍数与最小公倍数3.互质的概念4.辗转相除法求最大公因数5.最大公因数与最小公倍数性质1.会求几个数的最大公因数与最小公倍数。
2.能用最大公因数与最小公倍数的性质解题。
例1:用一个数去除30、60、75,都能整除,这个数最大是多少?例2:一个数用3、4、5除都能整除,这个数最小是多少?例3:有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?例4:加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?例5:一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?例6:一张长方形纸,长2703厘米,宽1113厘米.要把它截成若干个同样大小的正方形,纸张不能有剩余且正方形的边长要尽可能大.问:这样的正方形的边长是多少厘米?例7:用辗转相除法求4811和1981的最大公约数。
例8:求1008、1260、882和1134四个数的最大公约数是多少?例9:两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一个数是多少?例10:求21672和11352的最小公倍数。
A1.两个自然数的最大公约数是6,最小公倍数是72。
已知其中一个自然数是18,求另一个自然数。
2.两个自然数的最大公约数是7,最小公倍数是210。
这两个自然数的和是77,求这两个自然数。
3.已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。
4.已知两个自然数的和是50,它们的最大公约数是5,求这两个自然数。
5.已知两个自然数的积为240,最小公倍数为60,求这两个数。
(完整)小学奥数因数与倍数

第一讲:因数与倍数知识点拨1、因数和倍数:如果a×b=c(a,b,c 都是不为零的整数),那么a,b 就是c 的因数,c 就是a,b 的倍数。
例如6×2=12,所以6和2是12的因数,12是6和2的倍数。
如果整数a 能被b 整除,那么a 就是b 的倍数,b 就是a 的因数。
例如10能被5整除,那么10就是5的倍数,5就是10的因数。
2、一个数的因数的求法:(1)列乘法算式找 (2)列除法算式找一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
例如: 15的因数有哪些?方法一:1×15=15,3×5=15(一般从自然数1开始,一对一对的找) 方法二:15÷1=15,15÷3=5(计算时从除数1开始找,直到重复为止)所以15的因数就是1, 3, 5, 15。
最大的因数就是15,也就是它本身!最小的是1。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法是依次乘以自然数。
例如:3的倍数 3 6 9 12 15 ....... 3是3最小的倍数,也就是它本身 倍数特征:最小的倍数是本身,没有最大的倍数4、2、5、3的倍数的特征:①个位上是0、2、4、6、8的数,都是2的倍数。
②个位上是0或5的数,是5的倍数。
③一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。
5、在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数 性质2:偶数±奇数=奇数性质3:偶数个奇数的和是偶数性质4:奇数个奇数的和是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数例题精讲一、倍数与因数的认识【例1】请问:图中有哪些数?(1)根据图中数据:①买5千克梨需要多少钱?可以说:20是4的倍数;20是5的倍数;4是20的因数;5是20的因数。
五年级奥数因数与倍数(B级)

五年级奥数因数与倍数(B级)因数和倍数的关系一天,因数和倍数相遇了。
倍数傲慢地问因数:“你见到我怎么不下拜呢?”因数气愤地回答:“你算老几呀?我为什么要拜你?”倍数自信地说:“我是老大,因为一个数的因数只有几个,而一个数的倍数有无数个。
我的家庭庞大,你的家庭成员少得可怜。
你应该拜我。
”因数反驳:“是的,你的家庭庞大,但你知道自己是老几吗?我们的家庭成员虽少,但我们都知道自己的位置。
离开我们这些因数,你们这些倍数还能成立吗?”倍数想了想,承认自己说错了,因数和倍数握手言和,成为密不可分的好伙伴。
因数的概念与最大公因数因数是能够整除一个数的数,倍数是某个数的整数倍。
最大公因数是两个或多个数的公共因数中最大的一个。
求最大公因数的方法有三种:分解质因数法、短除法和辗转相除法。
分解质因数法先将数分解质因数,然后将相同的因数连乘;短除法找出所有共有的因数,然后相乘;辗转相除法每次用除数和余数相除,直到余数为止,最后一个除数就是最大公因数。
最大公因数有以下性质:1)两个数的最大公因数等于它们的公因数中最大的一个;2)最大公因数和最小公倍数的乘积等于两个数的乘积;3)若两个数互质,则它们的最大公因数为1.因数和倍数是密不可分的好伙伴,它们共同存在于自然数中。
没有因数,就没有倍数;没有倍数,就没有因数。
因数和倍数应该紧密团结在一起,共同发挥作用。
性质(3)指的是“几个数最小公倍数一定不会比他们的乘积大”。
虽然不是常见考点,但对于理解最小公倍数与数字乘积之间的大小关系有帮助。
求一个整数的因数个数,需要对其严格分解质因数,然后将每个质因数的指数加1后相乘。
例如,对于整数1400,它的因数个数为(3+1)×(2+1)×(1+1)=24个,包括1和1400本身。
这个公式的推导过程建立在数字“唯一分解定理”的基础上,结合乘法原理推导而来,需要掌握。
求一个整数的所有因数的和,需要对其严格分解质因数,然后将每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些和相乘。
小学五年级下因数与倍数奥数辅导讲义

因数和倍数奥数辅导讲义教学内容因数和倍数1.知识回顾(1)因数和倍数的概念2x6=122和6是12的因数。
12是2的倍数,也是6的倍数。
3x4=123和4也是12的因数。
12是3和4的倍数。
整数A乘以整数B得到整数C,整数A与整数B就称做整数C的因数,反之整数C就为整数A与整数B的倍数。
(2)奇数和偶数自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
2.规律、性质。
(1)因数和倍数:列举法;根据问题的要求,寻找因数的个数。
(2)奇数和偶数常用的性质:1.奇数≠偶数,连续自然数中的奇数和偶数是相间排列的;2.偶数个奇数相加的和是偶数,奇数个奇数相加的和是奇数,任意个偶数相加的和是偶数;3.奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数,偶数±奇数=奇数;4.奇数×偶数=偶数,奇数×奇数=奇数,偶数×偶数=偶数3. 典型例题一、因数和倍数例1.一个数是5个2,,3个3,2个5,1个7的连乘积,这个数当然有许多因数是两位数,这些两位数中,最大的是几?拓展一:甲数的2倍等于乙数,乙数的3倍等于丙数,丙数的4倍等于甲数,求甲数。
拓展二:把316表示成两个数的和,使其中一个是13的倍数,另一个是11的倍数,求这两个数。
拓展三:和子去鱼店买了以下几种鱼:青花鱼,每条130日元;竹荚鱼,每条170日元;沙丁鱼,每条78元;秋刀鱼,每条104元。
每种鱼都多于1条,正好花了3600日元。
请问:和子买了几条竹荚鱼?例2.一只盒内共有96个棋子,如果不一次拿出,也不一个一个地拿出,但每次拿出的个数要相等,最后一次正好拿完,那么,共有多少种不同拿法?拓展一:小明用48元钱按零售价买了若干本练习本,如果按批发价购买,每本便宜2元,恰好多买4本,问:零售价每本多少元?例3.三个连续奇数的和是15元,它们的积是多少?拓展一:五个连续奇数的和是35元,这5个奇数中最大的一个是多少?拓展二:有三个不同自然数组成的一个等式:□+ △+ ○= □×△—○这三个数中最多有多少个奇数?二、奇数和偶数例题4:1+2+3+4+……+2011+2012的和是奇数还是偶数?拓展一:1+2+3+4+5+……+2000+2001的和是奇数还是偶数?拓展二:101+102+103+……+2007+2008的和是奇数还是偶数?例5.有12张卡片,其中3张卡片上面写着1,3张卡片上面写着3,3张卡片上写着5,3张卡片上面写着7,能否从中选择5张卡片,使它们上面的数字之和等于20?为什么?拓展一:在五角星上的圆圈内共填10个数,如图所示,选出5个数,要使它们的和等于10,你能做到吗?为什么?拓展二:在黑板上写出三个非零自然数,然后擦去一个数换成其他两个数的和,这样继续操作下去,最后得到44,66,100,那么原来写的三个数能否为1,3,5?拓展三:在黑板上写出三个非零自然数,然后擦去一个数换成其他两个数的和减1,这样继续操作下去,最后得到17,1967,1983,那么原来写的三个数能否为2,2,2?例6:9只杯子全部杯口朝上放着,每次“翻动”其中4只杯子,能否经过若干次的“翻动”,使9只杯子的杯口全部朝下?拓展一:8只杯口朝下的杯子,每次翻动6只杯子,能否经过若干次翻动,使杯口全部朝上?拓展二:桌子上放着7枚正面朝上的硬币,每次翻动其中的3枚硬币。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数因数与倍数Revised on November 25, 2020
第一讲:因数与倍数
知识点拨
1、因数和倍数:
如果a×b=c(a,b,c都是不为零的整数),那么a,b就是c的因数,c就是a,b的倍数。
例如6×2=12,所以6和2是12的因数,12是6和2的倍数。
如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
例如10能被5整除,那么10就是5的倍数,5就是10的因数。
2、一个数的因数的求法:(1)列乘法算式找(2)列除法算式找
一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
例如: 15的因数有哪些
方法一:1×15=15,3×5=15(一般从自然数1开始,一对一对的找)
方法二:15÷1=15,15÷3=5(计算时从除数1开始找,直到重复为止)
所以15的因数就是1, 3, 5, 15。
最大的因数就是15,也就是它本身!最小的是1。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没
有最大的,方法是依次乘以自然数。
例如:3的倍数 3 6 9 12 15 ....... 3是3最小的倍数,也就是它本身
倍数特征:最小的倍数是本身,没有最大的倍数
4、2、
5、3的倍数的特征:
①个位上是0、2、4、6、8的数,都是2的倍数。
②个位上是0或5的数,是5的倍数。
③一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。
5、在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
奇数与偶数的运算性质
性质1:偶数±偶数=偶数,奇数±奇数=偶数
性质2:偶数±奇数=奇数
性质3:偶数个奇数的和是偶数
性质4:奇数个奇数的和是奇数
性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数
例题精讲
一、倍数与因数的认识
【例1】请问:图中有哪些数
(1)根据图中数据:
①买5千克梨需要多少钱
可以说:20是4的倍数;20是5的倍数;
4是20的因数;5是20的因数。
你通过自己的理解,给老师说说什么是倍数,什么是因数
注意,这
②买3千克苹果需要多少钱你能根据算式说一说谁是谁的倍数,谁是谁的因数吗
③买2千克葡萄需要多少钱
【例2】根据算式说说哪个数是哪个数的倍数,哪个数是哪个数的因数:
18×2=36 22×7=154 25×4=100 6×8=48
【例3】口算下面个题:
15÷3= 7÷1= 10÷4= 36÷= 6÷6=
问:你认为哪些算式具有倍数和因数的关系为什么
【例5】变式训练:10÷4= 36÷=60
你认为哪些算式具有倍数和因数的关系为什么
【例4】找出下列能整除的算式,说一说谁是谁的倍数,谁是谁的因数60÷5 8÷1 15÷2 8÷8 1÷8 200÷10
【例5】找出18的因数和倍数。
(用乘法和除法两种方法找)
【例6】五一班有学生42人,把他们平均分成几个学习小组,每组多于2人且少于8人,可以分成几个小组呢
【巩固】用36个大小相同的正方形拼成一个长方形,有多少种不同的拼法【例7】12是6的倍数,24是6的倍数,12和24的和是6的倍数吗差、积呢【巩固】21是7的倍数,49也是7的倍数,49和21的差是7的倍数吗
【巩固】63是9的倍数,18也是9的倍数,63与18的和是9的倍数吗
总结:如果两个数都是一个数的倍数,那么这两个数的和、差、积也是这个数的倍数。
巩固练习:
(1)写出100以内8的倍数。
(2)写出48的因数。
(3)计算并说一说谁是谁的倍数,谁是谁的因数
24÷6= 72÷8= 9÷9= 100÷25=
25×3= 14×6= 20×9=
(4)下面各组数中,有因数和倍数关系的有哪些
16和2 140和20 45和15
33和6 4和24 和8
二、2和5的倍数的特征
【例8】我们已经掌握了因数、倍数的意义,下面这几个数,谁是2的倍数谁是5的倍数
8267 694872 3410
18634 56205 5558
【例9】观察5的倍数有什么特征在右表中找出5的倍数,并做上记号:
你能总结出5的倍数的特征吗
【例10】(1)写出20以内(包括20)2的倍数
(2)你发现了什么
(3)结论:
注意:检验一下是不是个位上是0、2、4、6、8的数都是2的倍数。
【例11】判断:下面哪些数是2的倍数哪些是5的倍数
60、75、106、130、521、 89、 98
①、哪些数既是2的倍数又是 5的倍数呢说说是怎样判断的
②、既是2的倍数又是 5的倍数的数有什么特征。
【例12】写出30后面的3个连续偶数;写出33前面的3个连续奇数。
【例13】5个连续奇数的和是135,这5个连续奇数分别是多少
【例14】5个连续偶数的和是130,这5个连续偶数分别是多少
【例15】计算下面算式,你有什么发现
26+12 73+21 25+22 11×13 12×10 26-12 73-21 25-22 11×12
总结:两个偶数相加减, ;两个奇数相加减, ;奇数与偶数的和(差)是 ;两个奇数相乘, ;两个偶数相乘, ;奇数和偶数相乘, ;。
【例16】①能被2整除的最小的三位数是( )最大的三位数是( )。
②能被5整除的最小两位数是( )最大的两位数是( )。
【例17】桌子上有5个开口向上的杯子,现在允许每次同时翻动其中的4个,问能否经过若干次翻动,使得5个杯子的开口全都向下
【巩固】 桌子上有6只开口向上的杯子,每次同时翻动其中的4只杯子,问能否
经过若干次翻动,使得全部杯子的开口全都向下
【例18】不计算,判断48×625×32×435的积末尾有几个连续的0
【巩固】不计算,判断72×56×125×15末尾有几个连续的0
三、3的倍数的特征【例19】三个数字卡片 。
(1)由123,是3的倍数吗( );
(2)由 (2) 这些数都是3的倍数吗
【例20
(1)由
235,是3的倍数吗()。
(2)由
(3)这些数都是3的倍数吗
(4)这6个数都不是3的倍数,说明什么
【例21】从0~9中任取2个或3个数字,组成两位数或三位数,试一试这些数是不是3的倍数。
讨论:把是3的倍数的数挑出来,看看它们有哪些特征
巩固练习:
(1)下面那些数是3的倍数
18、35、315、291、192、1200、6030、8400、7065、1234、70002、57、1336、215803。
(2)在3的倍数。
(3)从0、3、5、6中选出两个数字组成一个两位数,满足下面的条件:
a:是3的倍数; b:同时是2和3的倍数;
c:同时是3和5的倍数; d:同时是2、3和5的倍数。
四、常见数字的整除判定方法:
(1)2:个位是偶数的自然数
(2)5:个位是0或5的自然数
注:若一个数同时是2和5的倍数,则此数的个位一定为0
(3)4、25:末两位能被4、25整除
(4)8、125:末三位能被8、125整除
(5)3、9:各个数位上的数之和能被3、9整除
(6)7、11、13通用性质:①一个数如果是1001的倍数,即能被7、11、13整
除.如201201=201×1001,则其必能被7、11、13
整除
②从末三位开始,三位一段,奇数段之和与偶数段
之和的差如果是7、11、13的倍数,则其为7、
11、13的倍数
③末三位一段,前后均为一段,用较大的减去较小
的,如果差为7、11、13的倍数,则其为7、
11、13的倍数
(7)11:奇数位数字之和与偶数位数字之和的差能被11整除
(8)99:两位一段(从右往左),各段的和能被99整除
(9)999:三位一段(从右往左),各段的和能被999整除
【例22】在□内填上适当的数字,使五位数23□6□既能被3整除又能被5整除.
【例23】既能被3整除,又能被7整除的最小三位数是 .
【例24】一个五位数中各个数位上的数字和是42,则其中能被4整除的五位数是哪几个【例25】在1~1000之间的自然数,能同时被2、3、5整除的数共有个.
【例26】一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有个.。