第五讲Matlab求解微分方程-内江师范学院数值仿真与数学实验教学

合集下载

matlab求解微分方程组用matlab对微分方程求解实验报告

matlab求解微分方程组用matlab对微分方程求解实验报告

matlab求解微分方程组用matlab对微分方程求解实验报告导读:就爱阅读网友为您分享以下“用matlab对微分方程求解实验报告”的资讯,希望对您有所帮助,感谢您对的支持!o 《高等数学》上机作业(三)一、上机目的1、学会用Matlab 求简单微分方程的解析解。

2、学会用Matlab 求微分方程的数值解。

二、上机内容1、求简单微分方程的解析解.2、求微分方程的数值解.3、数学建模实例.4、上机作业. 三、上机作业1. 求微分方程:xy ' ? y ? ex?0在初值条件y (1 ) ? 2 e 下的特解,并画出解函数的图形. 命令>> y=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1) ','x') 运行结果:y = 1/x*exp(x)+1/x*exp(1)函数图象:2. 求微分方程的特解.?d2ydy?4?5y?0?2dx ?dx?y(0)?0,y'(1)?10?命令>> y=dsolve('D2y+4*Dy-5*y=0','y(0)=0,Dy(1)= 10','x') 运行结果:y=10/(exp(1)+5*exp(-5))*exp(x)-10/(exp(1)+5*exp(-5))*exp(-5*x)3. 鱼雷追击问题一敌舰在某海域内沿着正北方向航行时,我方战舰恰好位于敌舰的正西方向1 公里处.我舰向敌舰发射制导鱼雷,敌舰速度为0.42 公里/分,鱼雷速度为敌舰速度的2倍。

试问敌舰航行多远时将被击中?M文件x0=0; xf=0.9999999999999;[x,y]=ode15s('eq1',[x0 xf],[0 0]); plot(x,y(:,1),'b.') hold on; y=0:0.1:1;plot(1,y, '*') 运行结果图像:结论:大概在y=0.67处击中敌方舰艇!(选做)一个慢跑者在平面上沿椭圆以恒定的速率v=1跑步,设椭圆方程为: x=10+20cost, y=20+5sint. 突然有一只狗攻击他. 这只狗从原点出发,以恒定速率w跑向慢跑者,狗的运动方向始终指向慢跑者.分别求出w=20,w=5时狗的运动轨迹.W=20M文件代码function dy=eq3(t,y)dy=zeros(2,1);dy(1)=20*(10+20*cos(t)-y(1))/sqrt((10+20*cos(t)-y(1))+(20 +15*sin(t)-y(2)));dy(2)=20*(20+15*sin(t)-y(2))/sqrt((10+20*cos(t)-y(1))+(20+ 15*sin(t)-y(2)));运行命令t0=0;tf=10;[t,y]=ode45('eq3',[t0 tf],[0 0]);T=0:0.1:2*pi;X=10+20*cos(T);Y=20+15*sin(T);plot(X,Y,'-')hold onplot(y(:,1),y(:,2),'r*')运行结果:利用二分法更改tf tf=5时tf=2.5时tf=3.15时:所以在t=3.15时刻恰好追上!W=5M文件代码function dy=eq4(t,y)dy=zeros(2,1);dy(1)=5*(10+20*cos(t)-y(1))/sqrt((10+20*cos(t)-y(1))+(20+15*sin(t)-y(2)));dy(2)=5*(20+15*sin(t)-y(2))/sqrt((10+20*cos(t)-y(1))+(20+1 5*sin(t)-y(2)));命令:t0=0;tf=10;[t,y]=ode45('eq4',[t0 tf],[0 0]);T=0:0.1:2*pi;X=10+20*cos(T);Y=20+15*sin(T);plot(X,Y,'-')hold onplot(y(:,1),y(:,2),'*')运行结果更改tf=20运行结果Tf=40所以永远追不上!四、上机心得体会高等数学是工科学生的主干科目,它应用于生产生活的方方面面,通过建模,计算可以求出实际问题的最优化问题!因此我们需要掌握建模和利用专业软件处理实际问题的能力!百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆。

如何使用MATLAB求解微分方程(组)ppt课件

如何使用MATLAB求解微分方程(组)ppt课件

差,输出参数,事件等,可缺省。 9
使用ODE?时如何编 写微分方程 ?
方式一:带额外参数,使用时需对参数进行赋值
function odefun(t,x,flag,R,L,C) %用flag说明R、L、C为变 量
xdot=zeros(2,1);
%表明其为列向量
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);
2
Where ?
工程控制
ODE
医学生理
航空航天
金融分析
3
Where ?
算法开发 数据分析
数值计算 MAT LAB
数据可视化
4
When ?
当对问题进行建模后,有常微分方程 需要求解时。
在生物建模中,经常需要求解常微分 方程。如药物动力学的房室模型的建模 仿真。
5
方法 ode23
ode45
数 ode113
当无法藉由微积分技巧求 得解析解时,这时便只能利 用数值分析的方式来求得其 数值解了。实际情况下,常 微分方程往往只能求解出其
数值解。
在数学中,刚性方程是指一 个微分方程,其数值分析的解 只有在时间间隔很小时才会稳 定,只要时间间隔略大,其解 就会不稳定。
目前很难去精确地去定义哪 些微分方程是刚性方程,但是 大体的想法是:这个方程的解
y(1)=x(2);
y1
y2
y(2)= -t*x(1)+exp(t)*x(2)+3*sin(2*t);
end
1000
求解程序ห้องสมุดไป่ตู้键步骤
[t,y]=ode45('odefun',[3.9 4.0],[2 8])
y

Matlab软件求解微分方程_170419

Matlab软件求解微分方程_170419

matlab函数定义格式总结matlab中函数定义的一些内容:1, 函数定义格式在matlab中应该做成M文件,文件名要和你文件里的function后面的函数名一致在File新建一个M-file在M-file里编辑函数格式为:function [输出实参表]=函数名(输入实参数)注释部分函数体语句return语句(可以有可以没有)如果是文件中的子函数,则可以任意取名,也可以在同一个文件中定义多个子函数例:function [max,min]=mymainfun(x) %主函数n=length(x);max=mysubfun1(x,n);min=mysubfun2(x);function r=mysubfun1(x,n) %子函数1x1=sort(x);function r=mysubfun2(x) %子函数2x1=sort(x);r=x1(1);Matlab自定义函数的五种方法1、函数文件+调用命令文件:需单独定义一个自定义函数的M文件;2、函数文件+子函数:定义一个具有多个自定义函数的M文件;3、Inline:无需M文件,直接定义;4、Syms+subs:无需M文件,直接定义;5、字符串+subs:无需M文件,直接定义.1、函数文件+调用函数文件:定义多个M文件:%调用函数文件:myfile.mclearclcfor t=1:10y=mylfg(t);fprintf(‘M^(1/3)=%6.4f\n’,t,y);end%自定义函数文件: mylfg.mfunction y=mylfg(x) %注意:函数名(mylfg)必须与文件名(mylfg.m)一致Y=x^(1/3);注:这种方法要求自定义函数必须单独写一个M文件,不能与调用的命令文件写在同一个M文件中。

2、函数文件+子函数:定义一个具有多个子函数的M文件%命令文件:funtry2.mfunction []=funtry2()y=lfg2(t)fprintf(‘M^(1/3)=%6.4f\n’);Endfunction y=lfg2(x)Y= x^(1/3);%注:自定义函数文件funtry2.m中可以定义多个子函数function。

MATLAB求解微分方程(实验6)微分方程求解-文档资料

MATLAB求解微分方程(实验6)微分方程求解-文档资料
实验
Experiments in Mathematics 微分方程求解
1
实验目的 实验内容
1、学会用Matlab求简单微分方程的解析解. 2、学会用Matlab求微分方程的数值解.
1、求简单微分方程的解析解. 2、求微分方程的数值解.
实验软件 MATLAB
2
微分方程的解析解
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
(ltest.m)
23
1、 lorenz.m function xdot=lorenz(t,x) xdot=[-8/3,0,x(2);0,-10,10;-x(2),28,-1]*x; 2、ltest.m x0=[0 0 0.1]'; [t,x]=ode45('lorenz',[0,10],x0); plot(t,x(:,1),'-',t,x(:,2),'*',t,x(:,3),'+') pause plot3(x(:,1),x(:,2),x(:,3)),grid on
选择一组状态变量
x1 y, x2 y, , xn y(n1)
x1 x2 , x2 x3,
xn f (t, x1, x2 , , xn )
15
注意
x1 x2 , x2 x3,
xn f (t, x1, x2 , , xn )
1、建立M文件函数
function xdot = fun(t,x,y) xdot = [x2(t);x3(t);…;f(t, x1(t), x2(t),…xn(t))];
x=simple(x) % 将x简化 y=simple(y) z=simple(z)

matlab求解微分方程

matlab求解微分方程

matlab求解微分方程Matlab作为一款多功能的计算机科学软件,具有强大的功能,能够有效地解决复杂数学问题。

其中,Matlab特别擅长求解微分方程。

微分方程是一类重要的数学方程,能够解释物体随时间变化的现象,广泛应用于科学领域,如力学、热力学等领域。

下面,将介绍如何使用Matlab来求解微分方程。

对于微分方程,Matlab提供了一系列的函数来支持求解。

常用的函数包括ODE45、ODE23、ODE113,用于解决传递微分方程,以及dsolve用于解决非传递微分方程。

首先,对于传递微分方程,我们可以使用ODE45、ODE23或ODE113函数求解。

其中,ODE45函数是Matlab中一种常用的函数,它可以求解线性和非线性微分方程,而ODE23和ODE113则只能求解线性方程。

要使用这些函数,首先需要准备解决微分方程的参数,包括:要求解的函数、初始条件和积分区间等,可以使用如下Matlab代码实现:%求解的函数f = @(t,y) y+t^2-1;%始条件t0 = 0;y0 = 1;%分区间tspan = [t0,2];%用函数求解[t,y] = ode45(f,tspan,y0);接着,我们就可以调用ODE45、ODE23或ODE113函数求解传递微分方程,代码如下:%用函数求解[t,y] = ode45(f,tspan,y0);%于求解非线性方程[t,y] = ode23(f,tspan,y0);%于求解精确的线性方程[t,y] = ode113(f,tspan,y0);另外,Matlab也提供了一个dsolve函数,用于求解非传递微分方程。

它可以解决一元微分方程、偏微分方程以及系统微分方程等问题。

要使用dsolve函数,可以这样写:%求解的函数f =D2y+4*Dy+3*y = 0’;%解方程y = dsolve(f);以上,就是Matlab中求解微分方程的基本步骤。

可以看到,Matlab提供了一系列函数来支持求解微分方程,让我们不再受到繁琐的数学推导的束缚,使用起来方便快捷。

微分方程的matlab求解数学建模PPT学习教案

微分方程的matlab求解数学建模PPT学习教案

第12页/共44页
返回
使用改进欧拉公式的例
步长 h= 0.1 的数值解比较
x
精表确解 向前欧拉 向后欧拉 改进欧拉
0
1
1
1
1
0.1
1.0048
1
1.0091
1.005
0.2
1.0187
1.01
1.0264
1.019
0.3
1.0408 1.029 1.0513 1.0412
0.4
1.0703 1.0561 1.0830 1.0708
y = 3/4*exp(-x)+1/4*exp(3*x)
第23页/共44页
例③ 非常系数的二阶微分方程
x ''( t ) ( 1 x 2 ( t ) x '( ) t ) x ( t ) 0 , x ( 0 ) 3 , x '( 0 ) 0
x=dsolve('D2x-(1-x^2)*Dx+x=0', ' x(0)=3,Dx(0)=0')
第22页/共44页
例② 常系数的二阶微分方程
输入
y '' 2 y ' 3 y 0 , y ( 0 ) 1 ,y '( 0 ) 0
:y=dsolve('D2y-2*Dy-3*y=0','x')
y=dsolve('D2y-2*Dy3*y=0','y(0)=1,Dy(0)=0','x')
结果:
y = C1*exp(-x)+C2*exp(3*x)
第4页/共44页
1、欧拉方法
2) 向后欧拉公式

用MATLAB函数编写并求解微分方程

用MATLAB函数编写并求解微分方程

0.4 0.3 0.2 0.1
0 -0.1 -0.2 -0.3
-2
1
iL(t)
0
2
4
6
time sec
8
10
0.5 0
uC(t)
-0.5
-2
0
2
4
6
8
time sec
3.全响应 保持 funcforex123.m 不变(in= (t..0)*1),将系统状态改为[0,1]
0.4 0.3 0.2 0.1
实验八:用 MATLAB 函数编写并求解微分方程
一、实验原理
为了对连续系统进行方针,首先需要建立其数学模型,然后利用计算机求这些数学模型,
从而得出数学模型的数值解。由于连续系统是通过微分方程老建模的,因此对此的计算
机方针本质上解释微分方程的数值求解问题。
二、实验步骤
1. 建立数学模型,利用电路的拓扑元件的属性,列出网孔方程或节点方程,并简化为
iL(t)
0
2
4
6
time sec
1.求解程序:零状态响应 %filename ex123.m L=1;c=0.1;for R=[1.5 3 5] [t,x]=ode 45(‘funcforex123’,[-1,10],[0;0],[],R,L,C); Figure(1);plot(t,x(:,1));hold onl xlibel(‘time sec’); Text(0.9,0.17,’\leftarrow i_L(t)’);grid; Figure(2);plot(t,x(:,2));hold on; xlabel(‘time sec’); Text(0.5,0.3,’\leftarrow u_C(t)’);grid;

matlab求解微分方程组的定长数值解

matlab求解微分方程组的定长数值解

matlab求解微分方程组的定长数值解使用Matlab求解微分方程组的定长数值解概述:微分方程是描述自然界中各种变化规律的重要数学工具。

在实际问题中,经常会遇到多个变量之间相互依赖的情况,这时就需要求解微分方程组。

Matlab是一种功能强大的数值计算软件,它提供了丰富的工具箱和函数,可以方便地求解微分方程组的定长数值解。

本文将介绍使用Matlab求解微分方程组的基本步骤和注意事项。

步骤:1. 定义微分方程组:首先需要定义微分方程组的方程形式。

例如,假设有一个二阶微分方程组:dx1/dt = f1(x1, x2, t)dx2/dt = f2(x1, x2, t)其中x1、x2为未知函数,t为自变量,f1、f2为已知函数。

在Matlab中,可以使用函数句柄的形式表示f1、f2,例如:f1 = @(x1, x2, t) x1 + x2 - t;f2 = @(x1, x2, t) x1 - x2 + 2*t;2. 设置初值条件:求解微分方程组需要给定初始条件。

例如,假设初始条件为x1(0) = 1,x2(0) = 2,可以使用以下代码设置:x0 = [1; 2];3. 定义求解区间:需要给定求解微分方程组的时间区间。

例如,假设求解区间为t = [0, 10],可以使用以下代码定义:tspan = [0, 10];4. 求解微分方程组:使用Matlab提供的ode45函数求解微分方程组的定长数值解。

ode45函数是一种常用的求解常微分方程初值问题的数值方法,可以自动选择合适的步长进行求解。

例如,可以使用以下代码求解微分方程组:[t, x] = ode45(@(t, x) [f1(x(1), x(2), t); f2(x(1), x(2), t)], tspan, x0);其中,@(t, x) [f1(x(1), x(2), t); f2(x(1), x(2), t)]表示微分方程组的右端项,t为自变量,x为未知函数的向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲 Matlab求解微分方程教学目的:学会用MATLAB求简单微分方程的解析解、数值解,加深对微分方程概念和应用的理解;针对一些具体的问题,如追击问题,掌握利用软件求解微分方程的过程;了解微分方程模型解决问题思维方法及技巧;体会微分方程建摸的艺术性.教学重点:利用机理分析建模微分方程模型,掌握追击问题的建模方法,掌握利用MATLAB求解数值解.教学难点:利用机理分析建模微分方程模型,通过举例,结合图形以及与恰当的假设突破教学难点.1微分方程相关函数(命令)及简介因为没有一种算法可以有效地解决所有的ODE 问题,为此,Matlab 提供了多种求解器Solver,对于不同的ODE 问题,采用不同的Solver.阶常微分方程(组)的初值问题的解的 Matlab 的常用程序,其中:ode23 采用龙格-库塔2 阶算法,用3 阶公式作误差估计来调节步长,具有低等的精度.ode45 则采用龙格-库塔4 阶算法,用5 阶公式作误差估计来调节步长,具有中等的精度.2 求解微分方程的一些例子2.1 几个可以直接用 Matlab 求微分方程精确解的例子:例1:求解微分方程22x xe xy dxdy-=+,并加以验证. 求解本问题的Matlab 程序为:syms x y %line1 y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2 diff(y,x)+2 *x*y-x*exp(-x^2) %line3 simplify(diff(y,x)+2*x*y-x*exp(-x^2)) %line4说明:(1) 行line1是用命令定义x,y 为符号变量.这里可以不写,但为确保正确性,建议写上;(2) 行line2是用命令求出的微分方程的解:1/2*exp(-x^2)*x^2+exp(-x^2)*C1(3) 行line3使用所求得的解.这里是将解代入原微分方程,结果应该为0,但这里给出:-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)(4) 行line4 用 simplify() 函数对上式进行化简,结果为 0, 表明)(x y y =的确是微分方程的解.例2:求微分方程0'=-+x e y xy 在初始条件e y 2)1(=下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x yy=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x') ezplot(y)微分方程的特解为:y=1/x*exp(x)+1/x* exp (1) (Matlab 格式),即xe e y x+=,此函数的图形如图 1:图1 y 关于x 的函数图象2.2 用ode23、ode45等求解非刚性的标准形式的一阶常微分方程(组)的初值问题的数值解(近似解).例3:求解微分方程初值问题⎪⎩⎪⎨⎧=++-=1)0(2222y xx y dx dy 的数值解,求解范围为区间[0, 0.5].fun=inline('-2*y+2*x^2+2*x','x','y'); [x,y]=ode23(fun,[0,0.5],1); x'; y'; plot(x,y,'o-') >> x' ans =0.0000 0.0400 0.0900 0.1400 0.1900 0.2400 0.2900 0.3400 0.3900 0.4400 0.4900 0.5000>> y' ans =1.0000 0.9247 0.8434 0.7754 0.7199 0.6764 0.6440 0.6222 0.6105 0.6084 0.6154 0.6179 图形结果为图 2.图2 y 关于x 的函数图像3 常微分在实际中的应用 3.1 导弹追踪问题1、符号说明,w ,乙舰的速率恒为v 0;设时刻t 乙舰的坐标为((),())X t Y t ,导弹的坐标为((),())x t y t ;当零时刻,((0),(0))(1,0)X Y =,((0),(0))(0,0)x y =.建立微分方程模型.202,01(0)0,'(0)0v d yk x dx w y y ⎧⎪⎪= =<<⎨⎪⎪==⎩由微分方程模型解得11(1)(1)11(),12(1)2(1)2(1)2(1)k k x x y x k k k k k +-+--=-+-≠+-+-++代入题设的数据1/5k =,得到导弹的运行轨迹为4655555(1)(1)81224y x x =--+-+当1=x 时245=y ,即当乙舰航行到点)245,1(处时被导弹击中. 被击中时间为:00245v v y t ==. 若v 0=1, 则在t =0.21处被击中. 利用MALAB 作图如图3.clear, x=0:0.01:1; y=-5*(1-x).^(4/5)/8+5*(1-x).^(6/5)/12+5/24; plot(x,y,'*')图3导弹运行轨迹(解析法) 图4两种方法对比的导弹运行轨迹2、数值方法求解.设导弹速率恒为w ,则得到参数方程为⎪⎪⎩⎪⎪⎨⎧--+-=--+-=)()()()()()(2222y Y y Y x X wdt dy x X y Y x X w dt dx因乙舰以速度0v 沿直线1x =运动,设01v =,5,1,w X Y t ===,因此导弹运动轨迹的参数方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧==--+-=--+-=0)0(,0)0()()()1(5)1()()1(52222y x y t y t x dtdyx y t x dt dxMATLAB 求解数值解程序如下,结果见图4 t0=0,tf=0.21;[t,y]=ode45('eq2',[t0 tf],[0 0]); X=1;Y=0:0.001:0.21;plot(X,Y,'-') plot(y(:,1),y(:,2),'*'),hold onx=0:0.01:1; y=-5*(1-x).^(4/5)/8+5*(1-x).^(6/5)/12+5/24; plot(x,y,'r')很明显数值计算的方法比较简单而且适用. 3.2 蚂蚁追击问题(1)建立平面直角坐标系.以正多边形的中心为原点, 设正多边形的一个顶点为起始点, 连接此点和原点作x 轴. 根据x 轴作出相应的y 轴; 选取足够小的t ∆进行采样.(2)在每一时刻t ,计算每只蚂蚁在下一时刻t t +∆时的坐标.不妨设甲追逐对象是乙,在时间t 时,甲的坐标为A 11(,)x y ,乙的坐标为B 22(,)x y .甲在t t +∆时在'A 点(如图1), 其坐标为11(cos ,sin )x v t y v t θθ+∆+∆,其中2121cos ,sin ,x x y yd d dθθ--===. 同理,依次计算下一只蚂蚁在t t +∆时的坐标.通过间隔t ∆进行采样,得到新一轮各个蚂蚁在一个新的正多边形位置坐标.(4)重复2)步,直到d 充分小为止.(5)连接每只蚂蚁在各时刻的位置,就得到所求的轨迹.用MALAB 求解并作图,函数zhuJi(x,y)在附录一定义,如图6 t=[1:8]; s=7*exp(t.*2*pi/length(t)*i); x=real(s); y=imag(s);zhuJi(x,y)图6当蚂蚁为7只时的图形习题1. 求微分方程0sin 2')1(2=-+-x xy y x 的通解.2. 求微分方程x e y y y x sin 5'2''=+-的通解.3. 求微分方程组11,(,)A x y 22,(,)B x y 图1 在采样时间内,相连蚂蚁追击⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dtdx在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形.4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异.4 参考文献:[1] Mastering Matlab 6, D. Hanselman, B. Littlefield, 清华大学出版,2002[2] 赵静等编.数学建模与数学实验(第3版).北京:高等教育出版社.2008. [3] 姜启源编. 数学模型(第二版).北京:高等教育出版社.1993.[4] 石勇国. 蚂蚁追击问题与等角螺线. 宜宾学院学报. 2008,(6): 23-25. [5] 张伟年,杜正东,徐冰.常微分方程.北京:高等教育出版社.2006.5 附录附录一:zhuji(x,y)的M 文件 function zhuji(x,y) clf v=1; dt=0.05;x(length(x)+1)=x(1);y(length(y)+1)=y(1); plot(x,y,'*') holdfor it=1:1000for i=1:length(x)-1d=sqrt((x(i)-x(i+1))^2+(y(i)-y(i+1))^2); x(i)=x(i)+v*dt*(x(i+1)-x(i))/d; y(i)=y(i)+v*dt*(y(i+1)-y(i))/d; endplot(x,y,'.') hold onx(length(x))=x(1); y(length(y))=y(1); end。

相关文档
最新文档