乘除法巧算技巧

合集下载

乘除法的速算与巧算

乘除法的速算与巧算
小 学 奥 数 专 题 讲 座
速算与巧算 (二)
专题简析:
乘、除法的巧算方法主要是利用 乘、除法的运算定律和运算性质以及 积、商的变化规律,通过对算式适当 变形,将其中的数转化成整十、整百、 整千…的数,或者使这道题计算中的 一些数变得易于口算,从而使计算简 便。
一、乘法中的巧算
1.两数的乘积是整十、整百、整千的,要先乘.
如:12×9=120-12=108 12×99=1200-12=1188 12×999=12000-12=11988
习题6 计算(1) 34×9 (2)67×99
例7 一个偶数乘以5,可以除以2添上0。
如:6×5=30 16×5=80 116×5=580。
习题7 计算(1) 34×5 (2)66×5
习题2 计算(1) 16×25 (2) 40×25
3.应用乘法分配律。
例3 计算① 175×34+175×66 ②67×12+67×35+67×52+67 解:①式=175×(34+66) =175×100=17500 ②式=67×(12+35+52+1) = 67×100=6700
(原式中最后一项67可看成 67×1)
解:①13÷9+5÷9=(13+5)÷9=18÷9=2 ②21÷5-6÷5=(21-6)÷5=15÷5=3
③2090÷24-482÷24=(2090-482)÷24=1608÷24=67 ④187÷12-63÷12-52÷12=(187-63-52)÷12 =72÷12=6
习题13① 137÷9+2÷9 ②21÷14-7÷14
② 25×125×8×9×4
2.分解因数,凑整先乘。
例 2计算① 24×25 ② 56×125 ③ 125×5×32×5

乘除法的速算与巧算

乘除法的速算与巧算
பைடு நூலகம்
• 观察发现“发现:三位数 与1001相乘,积是把这个 三位数连续写两遍。
针对训练六:与101的巧算
(1) 136×1001 (2) 258×1001
② 25×125×8×9×4
基础计算1:
1,计算面各题:
(1):328 ×2
(2):328 ×10
(3):501×20
基础计算2:
三位数相乘计算:
(1):328 ×110 (2):206 ×895 (3):531 ×101
例5 一个数×10,数后添0; 一个数×100,数后添00;
以此类推。
一个数×1000,数后添000; 如:15×10=150
针对训练四:×11的巧算
如 2222×11=
2456×11=
巧算两位数与101相乘
• 一:算一算: • (1) 101 ×43
竖式:
(2)101 ×89
101 × 43 303 404 4343
101 × 89 909 808 8989
» 观察发现“4343、8989”, 两位数与101相乘,积是把这 个两位数连续写两遍。
针对训练五:与101的巧算
(1) 36×101 (3) 39×101 (2) 58×101 (4)42×101
巧算两位数与1001相乘
一:算一算:
(1) 1001 ×132 (2)1001 ×436
竖式:
1001 × 132 2002 3003 1001 132132 1001 × 436 6006 3003 4004 436436
速算与巧算 (一 )
专题简析:
乘、除法的巧算方法主要是利用 乘、除法的运算定律和运算性质以及 积、商的变化规律,通过对算式适当 变形,将其中的数转化成整十、整百、 整千…的数,或者使这道题计算中的 一些数变得易于口算,从而使计算简 便。

乘除巧算

乘除巧算

例一:
234×50×2 12×25×4
125×8×9
32×125×8Βιβλιοθήκη 例二: 48×25125×5×32×5
1247×99
678×101
3,乘法的分配律:两个数的和与一个数相乘, 以把这两个数分别与这个相乘,再把所得9的积 加,即(a+b) ×c=a×c+b×c 例: (4+8)×5=8×5+4×5
• 例 :11 ÷3+4÷3 399÷5-99÷5
• (1000+100)÷25
• 9898×9999÷101÷1111
• 123×456÷789÷456×789÷123
• 3,两个数的积除以第三个数,等于用其中的一个 数除以第三个数,再与另一个数相乘。即 • a×b÷c=a÷c×b • 例:3972×69÷1986 9000×34÷45
• 4,两个数的和或差除以一个数,等于这两个数分 别除以这个数,商再相加(相减)。 (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c
速算与巧算(二)乘除法
一,运用乘法运算定律巧算
1,乘法的交换律:两个数相乘交换因数的位置,积不变。即: a×b=b×a 相乘 例:2×5=5×2
2,乘法结合律:三个数,可以把前两个数相乘再乘第三个数, 也可以把后两个数相乘再与第一个数相乘,积不变。即: a×b×c=a×(b×c) 例: 9×5×4=9×(5×4)
例三: 184×17+184×63
496×837-496×637
234×12+234×88
9999×2222+3333×3
• 二,运用四则运算规则巧算: • 1,某数连续除以两个数,等于某数除以这两个数 的积,也等于某数除以第三个数的商,再除以第 二个数。即a÷b÷c=a÷(b×c)=a÷c÷b。 • 反过来也成立

小学奥数-乘除法中的巧算(含答案)

小学奥数-乘除法中的巧算(含答案)

乘除法中的巧算同学们好!我们学习了加、减、连加、连减的混合运算律,可利用加法的运算定律或连减及加减的混合运算的性质进行简便运算。

而乘、除法更有着一些巧妙的简便算法,下面共同学习。

(一)学习指导首先认识乘法交换律:乘法结合律:如:或利用这些定律,可以使式题简便,同时可以推广到多个数相乘,我们可以选择两个因数相乘,得出较简单的(整十、整百、整千……)积,再将这个积与其它因数相乘,有时也可以把某个因数再分解成两个因数,使其中一个因数与其它的乘数的积成为较简单的数,然后再与其它的因数相乘,这样就可以进行巧算。

例1. 用简便方法计算。

(1)(3)(2)(4)分析:(1)可以将4和25结合起来先乘。

这样:原式(2)可以将125和8相结合起来乘,这样:原式(3)可以把28变成4×7,再将125和4结合起来先乘:原式(4)我们先把32变为4×8,再把25和4,125和8结合起来乘:原式利用乘法分配律,可以使一些题简便:,这个定律可以推广,一般的有,如,当两个数相乘时,有时可以把一个因数变为两个数的和与另一个因数相乘,也可以把一个因数变为两个数的差与另一个因数相乘,这样计算简便。

例2. 用简便方法计算下面各题。

(1)(3)(2)(4)分析:(1)、(2)题可以直接用乘法分配律去计算。

(1)(2)(3)题可以先把4004变为(),然后再用分配律计算。

(4)小题可以先把798变为(),再运用分配律计算。

例3. 巧算一个数乘以10,100,1000……分析:一个数乘以10,就是在这个数后添0,如:4301043=⨯当一个数乘以100时,就是在这个数后添00,如:52000100520=⨯当一个数乘以1000时,就是在这个数后添000,如:……例4. 巧算一个数与99相乘。

分析:先填空,再观察一个数与99相乘的规律。

观察发现:“一个数与99相乘,先在这个数后添00,再减去此数”即可。

如果是一个数与999相乘,是否也具有这样的规律呢?请你先填空,再总结规律。

(完整word版)乘除法巧算技巧

(完整word版)乘除法巧算技巧

乘除法巧算技巧1、两位数(三位数)×11方法:两头一拉,中间相加.注意在相加时,哪一位满10要向前一位进一。

例:23×11=253 78×11=858 358×11=39382、两位数×99方法:将与99相乘的两位数减1写在前边,后边写上这个乘数的补数.例:63×99=62373、二十以内的两位数乘法。

方法:尾乘尾(有进位的要向前一位进);所得的的数写在个位。

尾加尾(在计算中个位有进上来的数要一并加上,本位有进位再向前一位进)所得的的数写在十位头乘头(有前一位进上来的数要加上)所得的数写在百位例: 16×14=2244、个位都是1的两位数乘法。

方法:尾乘尾,所得的的数写在个位头加头(有进位的要向前一位进)所得的的数写在十位头乘头(有前一位进上来的数要加上)所得的数写在百位例:71×81=57515、任意两位数×101,三位数×1001方法:将这个两位数(三位数)直接排两遍写在结果上.例:26×101=2626 368×1001=3683686、个位数互为补数,十位数相同的两位数乘法。

方法:个位乘个位,所得的数写在结果的后边(不足两位的在十位上补“0”)十位其中一个数加1后十位乘十位,结果写在前边例:62×68=42167、个位数相同十位数互为补数的两位数乘法。

方法:个位乘个位,所得的数写在结果的后边(不足两位的在十位上补“0”)十位数相乘的积再加上一个个位数,结果写在前边。

例:26×86=22368、两位数乘两位数,其中一组数为相同数,另一组数互为补数。

方法:同6.例:66×37=2442。

四年级乘法除法速算巧算

四年级乘法除法速算巧算

四年级乘法除法速算巧算TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第2讲:乘除法巧算速算本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。

这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。

对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。

实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B)×C=A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。

例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。

例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。

解:原式=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764随堂小练:计算下面各题:(1)132×37×27 (2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。

乘除法巧算 — 定稿

乘除法巧算 — 定稿

乘除法巧算(一)一、运算性质1. 带符号搬家2. 添去括号二、巧算方法:1. 拆积凑整(好朋友数):5×2、25×4、125×82. 找钱法:出现了末尾是9的乘法,就会变的比较简单!3. 乘法分配律:56×11=56×(10+1)=56×10+56×1=616提取公因数:23×48+23×52=23×(48+52)=23×100=2300补充:除法的性质:23÷5+52÷5=(23+52)÷5=75÷5=15,正确但是,注意:18÷3+18÷6≠18÷(3+6)4. 头同尾和十:头×(头+1);尾× 尾,例如:84×86=7224,995×995=990025尾同头和十:头×头+尾;尾× 尾,例如:83×23=19095. 特殊数字巧算:(1)叠数:abc×1001001=abcabcabcabababab=ab×1010101, abcdabcd=abcd×10001(2)11、111、111、111…111的巧算:错位叠加!11×11=121,111×111=12321,11111×11111=123454321……(3)1001=7×11×13、111=37×3、999=27×37等.6. 多位数的巧算,其实就是上述方法的综合运用!!!题型一:利用带符号搬家和添去括号解题1. 1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)2. (1÷2)÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷(6÷7)÷(7÷8)3.121×32÷872×27×88÷(9×11×12)题型二:拆积凑整(好朋友数)1. 25×83×32×1252. 75×16×125×6题型三:末尾是9的巧算1. 723×99938×99992. 11×11×3×61111×1111×6×6附加题:333×333 666×666题型四:乘法分配律和提取公因数1. 56×21450×9982. 56×22+56×7845×22+45×33+45×443. 999×222+333×334附加题:999999×999999+999999题型五:特殊数字的巧算1.(11,111…11的巧算)23×1145657×11234×111112. (叠数)23×10101456×100100123452×100013. (叠数的拓展)23×1001001456×1000100010001附加题:20152015×2016−20162016×20154.3×5×7×9×11×1339×49×55附加题:2×7×9×11×135×7×22×39×491. (2÷4)÷(4÷6)÷(6÷8)(1÷3)÷(3÷5)÷(5÷7)÷(7÷9)2. 130÷(13÷3×15)478×9÷478×94. 32×25 12×75×1255. 45000÷(25×90)125×16−111×96. 23×999933333×427. 17×101010101347×1000100011.(26÷25)×(27÷17)×(25÷9)×(17÷39)2.999×888÷13323.99999×99999+2999994.22222×33333+88889×666665.555×445−556×4446.9999999×10000001结果中有几个9 ?7.12345654321×368.777777×333333结果的数字之和是多少?9.6×4444×2222+3333×5555的得数中有几个数字是奇数?。

乘除法中的速算与巧算

乘除法中的速算与巧算

乘除法中旳速算与巧算知识储藏整数乘除法旳速算与巧算,一条最基本旳原则就是“凑整”。

要达到“凑整”旳目旳,就要将某些数分解、变形,再运用乘法旳互换律、结合律、分派律以及四则运算中旳某些规则,把某些数组合到一起,使复杂旳计算过程简便化。

1、乘法旳运算定律乘法互换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分派律:(a+b)×c=ac+bc2、除法旳运算性质(1)a÷b=(a×c)÷(b×c)ﻩ(c≠0)(2)a÷b=(a÷c)÷(b÷c)(c≠0)(3)a÷b÷c=a÷(b×c)(4)a÷(b÷c)=a÷b×c3、乘除分派性质(1)(a+b)×c=a×c+b×c(2)(a-b)×c=a×c-b×c(3)(a+b)÷c=a÷c+b÷c(4)(a-b)÷c=a÷c-b÷c注意:除数不能为零。

4、两数之和乘以这两数之差旳积等于这两个数旳平方差。

(a+b)×(a-b)=a2-b25、乘法凑整法:这是运用特殊数旳乘积特性进行速算,如5×2=10,25×4=100,125×8=1000,625×8=5000,625×16=10000等等。

大伙要记住这些成果。

思维引导例1、计算:ﻩ(1)999+999×999 (2)1111×9999(3)125×25×32ﻩ(4)576×422+576+577×576跟踪练习:计算:(1)9999+9999×9999ﻩ(2)140×299(3)808×125ﻩﻩ (4)461+5×4610+461×49例2、计算:34×172-17×71×2-34跟踪练习:计算:42×68+61×2×34-3×68例3、用简便措施计算:8700÷25÷4跟踪练习:9600÷25÷4例4、用简便措施计算:625÷25跟踪练习:42800÷25例5、简算:29×31跟踪练习:简算:68×72例6、计算:11111×11111跟踪练习:计算:22222×22222例7、计算:63×275÷7÷11跟踪练习:计算:123×456÷789÷456×789÷123例8、计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)跟踪练习:计算:15÷(9÷11)÷(11÷34)÷(34÷63)例9、计算:99999×22222+33333×33334跟踪练习:计算:9999×7778+3333×6666例10、计算:98989898×99999999÷10101010÷11111111跟踪练习:计算:×22÷18÷例11、计算:19981999×19991998-19981998×19991999跟踪练习:计算:1997×1999-1996×例12、 末尾有几种零?跟踪练习:计算:能力对接1、 将相应旳序号填入括号中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘除法巧算技巧
1、两位数(三位数)×11
方法:两头一拉,中间相加。

注意在相加时,哪一位满10要向前一位进一。

例:23×11=253 78×11=858 358×11=3938
2、两位数×99
方法:将与99相乘的两位数减1写在前边,后边写上这个乘数的补数。

例:63×99=6237
3、二十以内的两位数乘法。

方法:尾乘尾(有进位的要向前一位进);所得的的数写在个位。

尾加尾(在计算中个位有进上来的数要一并加上,本位有进
位再向前一位进)所得的的数写在十位
头乘头(有前一位进上来的数要加上)所得的数写在百位例:16×14=224
4、个位都是1的两位数乘法。

方法:尾乘尾,所得的的数写在个位
头加头(有进位的要向前一位进)所得的的数写在十位
头乘头(有前一位进上来的数要加上)所得的数写在百位例:71×81=5751
5、任意两位数×101,三位数×1001
方法:将这个两位数(三位数)直接排两遍写在结果上。

例:26×101=2626 368×1001=368368
6、个位数互为补数,十位数相同的两位数乘法。

方法:个位乘个位,所得的数写在结果的后边(不足两位的在十位上补“0”)
十位其中一个数加1后十位乘十位,结果写在前边
例:62×68=4216
7、个位数相同十位数互为补数的两位数乘法。

方法:个位乘个位,所得的数写在结果的后边(不足两位的在十位上补“0”)
十位数相乘的积再加上一个个位数,结果写在前边。

例:26×86=2236
8、两位数乘两位数,其中一组数为相同数,另一组数互为补数。

方法:同6.
例:66×37=2442。

相关文档
最新文档