磁性纳米材料的化学合成_功能化及其生物医学应用

合集下载

磁性纳米材料在生物医学领域的应用研究

磁性纳米材料在生物医学领域的应用研究

磁性纳米材料在生物医学领域的应用研究磁性纳米材料是一种具有特殊磁性性质和微小尺寸的纳米粒子,其应用领域广泛,尤其在生物医学领域中具备巨大的潜力。

本文将重点探讨磁性纳米材料在生物医学领域中的应用研究进展,涉及其在诊断、治疗和生物分析等方面的应用。

一、磁性纳米材料在医学诊断中的应用1. 磁共振成像(MRI)磁性纳米材料具有优异的磁性性能,可作为MRI对比剂,提高诊断的准确性和敏感性。

通过将磁性纳米材料注射到患者体内,可以更清晰地展现组织和器官的结构,检测疾病的早期变化。

2. 磁性粒子法磁性纳米粒子可以与药物或抗体等生物标志物结合,通过外加磁场作用,将其靶向输送至病变部位,实现对疾病的定位和治疗。

这种磁性粒子法已广泛应用于肿瘤治疗、心脑血管疾病诊断与治疗以及传统药物的改良。

二、磁性纳米材料在医学治疗中的应用1. 靶向治疗利用磁性纳米材料的磁性效应,将其与药物结合,可以实现药物的靶向输送,减少对正常细胞的损害,提高治疗效果。

例如,通过将磁性纳米材料修饰在药物分子上,可以实现对肿瘤细胞的选择性杀伤。

2. 热疗磁性纳米材料在外加磁场的作用下产生剧烈的磁性加热效应,可用于局部热疗。

将磁性纳米材料注射到肿瘤组织中,通过对磁场加热,使肿瘤组织局部升温,达到杀灭肿瘤的目的。

这种热疗方法具有非侵入性、无辐射的特点,被广泛应用于肿瘤治疗领域。

三、磁性纳米材料在生物分析中的应用1. 生物标记磁性纳米材料可以作为生物标记物,通过与生物分子(如蛋白质、抗体等)结合,实现对生物分子的检测和定量分析。

磁性纳米材料的磁性效应可通过磁性检测方法进行分析,具备高灵敏度和快速反应的特点。

2. 磁性免疫分析磁性纳米材料结合传统的免疫分析方法,可以实现对生物样品中微量成分的快速检测。

通过对磁性纳米材料的修饰和功能化,可以提高检测的灵敏度和选择性,并且实现高通量、自动化的分析过程。

总结:磁性纳米材料在生物医学领域中的应用研究已取得了许多令人瞩目的进展。

生物功能化纳米颗粒的制备及应用

生物功能化纳米颗粒的制备及应用

生物功能化纳米颗粒的制备及应用随着纳米技术的迅速发展,生物功能化纳米颗粒在生物医学、环境科学等领域的应用越来越受到关注。

生物功能化纳米颗粒的制备及应用是一个复杂的过程,需要涉及到化学、生物学、物理学等多个学科。

本文将从生物功能化纳米颗粒的概念、制备方法、应用等方面进行探讨。

一、生物功能化纳米颗粒概述生物功能化纳米颗粒是指利用纳米技术制备的,具有生物学功能的颗粒。

通常是通过对材料进行表面修饰使其具有生物相容性、生物活性以及生物识别特性。

生物功能化纳米颗粒能够被生物体内的生物分子所识别,从而实现针对性地治疗或诊断疾病。

常用的材料有金属纳米粒子、磁性纳米颗粒、脂质体、纳米药物等。

二、生物功能化纳米颗粒的制备方法生物功能化纳米颗粒的制备方法种类多样,下面介绍几种常用的方法。

(一)溶剂沉积溶剂沉积法利用有机溶剂作为载体将纳米粒子物理吸附在功能化材料表面,使其形成具有生物识别特性的生物功能化纳米颗粒。

该方法适用于制备无机纳米颗粒、碳纳米管等材料。

(二)疏水相互作用疏水相互作用法是一种利用疏水分子与功能化材料表面进行相互作用的方法,可以制备出具有生物相容性和生物识别特性的生物功能化纳米颗粒。

该方法适用于制备纳米药物、脂质体等材料。

(三)化学共价结合化学共价结合法是一种将功能化材料直接连接到纳米粒子表面的方法,可以制备出结构稳定、具有高度生物活性和生物相容性的生物功能化纳米颗粒。

该方法适用于制备纳米金粒子、纳米氧化铁等材料。

三、生物功能化纳米颗粒的应用生物功能化纳米颗粒在生物医学、环境科学等领域具有广泛的应用价值。

(一)生物医学领域生物功能化纳米颗粒在生物医学领域的应用主要包括纳米药物、纳米探针等方面。

纳米药物可以实现针对性地治疗肿瘤等疾病,从而提高治疗效果和降低副作用。

纳米探针可以用于生物分子的检测和生命体征的监测。

此外,生物功能化纳米颗粒还可以用于生物成像、生物分离、基因治疗等方面。

(二)环境科学领域生物功能化纳米颗粒在环境科学领域主要应用于污染物的检测和污染物的去除。

生物医学中的纳米材料及其应用

生物医学中的纳米材料及其应用

生物医学中的纳米材料及其应用随着纳米技术的不断发展,纳米材料已经成为了生物医学中的重要角色。

纳米材料可以通过特别的物理、化学、光学和磁性等性质对生物系统产生特殊的影响,因此在治疗和诊断疾病方面具有广阔的应用前景。

本文将介绍一些典型的生物医学纳米材料及其应用。

纳米药物纳米材料在药物传递方面具有明显的优势。

如纳米颗粒可以通过纳米通道进入细胞内部,通过改变其大小、形状、电荷和表面修饰等可以改变其在细胞内部的行为,提高药物传递的效率和特异性。

同时,纳米颗粒还可以通过积累在肿瘤组织内,增加药物在肿瘤组织内的浓度和抗肿瘤效应。

纳米药物可以用于治疗多种疾病,如肝癌、肺癌、胰腺癌、神经病、心血管疾病等。

纳米生物传感器纳米生物传感器是一种将纳米材料与生物分子结合在一起,用于检测和诊断疾病的技术。

纳米生物传感器具有高度的灵敏度、特异性和快速性,可以用于检测多种生物分子,如DNA、RNA、蛋白质和细胞等。

此外,纳米生物传感器还可以与光学、电学、磁学等技术相结合,提高检测的灵敏度和选择性。

纳米生物传感器已用于检测多种疾病,如癌症、感染病、自身免疫性疾病等。

纳米仿生材料仿生学是一门研究模仿和应用自然生物的原理和方法的学科,纳米仿生材料是仿生学中的一种重要分支。

纳米仿生材料可以通过模仿自然材料的结构、形态和功能,实现多种生物医学研究和应用目标。

如,仿生纳米粘附材料可以模仿生物粘附的特殊性质,用于修复或替代受损组织,如心血管血管壁、肝脏、皮肤等组织的修复。

同时,仿生纳米材料还可以用于制备仿生器官、仿生组织等工作。

纳米生物材料纳米生物材料是一类以生物大分子为基础制备的纳米结构材料。

纳米生物材料可以通过生物分子的物理和化学特性,利用自组装和自组装技术,制备出具有高度多层次结构的纳米材料。

纳米生物材料有良好的生物相容性,种类繁多,包括DNA、蛋白质、聚糖等材料。

纳米生物材料具有广泛的生物医学应用,如生物传感、生物成像、药物传递等。

纳米磁性材料的制备与性能优化方法

纳米磁性材料的制备与性能优化方法

纳米磁性材料的制备与性能优化方法概述:纳米磁性材料是一种具有很高应用潜力的材料,其独特的磁性能使其在信息存储、生物医学、能源等领域展现出广泛的应用前景。

制备高质量的纳米磁性材料并优化其性能是实现这些应用的重要关键。

本文将介绍纳米磁性材料的制备方法,并探讨了性能优化的策略。

一、纳米磁性材料的制备方法1. 化学合成法:化学合成法是制备纳米磁性材料最常用的方法之一。

其中,共沉淀法、热分解法和溶胶凝胶法是常用的制备方法。

在共沉淀法中,通过溶液的共沉淀反应,将金属离子还原成金属粒子,形成纳米尺寸的磁性材料。

热分解法则通过高温下的化学反应使金属有机络合物分解,生成磁性纳米颗粒。

溶胶凝胶法则通过溶胶和凝胶中间相的相互转化,形成纳米尺寸的颗粒。

2. 物理制备法:物理制备方法主要包括溅射法、磁控溅射法、熔融法和机械合金化法。

溅射法利用高速离子轰击固体靶材产生的溅射粒子来形成纳米尺寸的磁性材料。

磁控溅射法则在溅射过程中加入磁场,以控制溅射和成膜过程中的离子行为,进一步优化纳米磁性材料的性能。

熔融法则利用高温使固相反应发生,形成纳米尺寸的磁性材料。

机械合金化法则通过高能球磨使原料粉末发生冶金反应,形成纳米尺寸的磁性材料。

二、纳米磁性材料的性能优化方法1. 形貌调控:通过调控纳米磁性材料的形貌,可以有效优化其性能。

例如,可以通过调控合成方法和条件,控制颗粒的大小、形状和分布,从而影响其磁性能。

此外,还可以利用表面修饰剂对纳米颗粒进行表面修饰,如包覆一层稳定剂或功能化分子,增强其磁性能、稳定性以及生物相容性等特性。

2. 结构调控:纳米磁性材料的晶体结构对其磁性能具有重要影响。

可以通过控制合成条件和添加适当的合金元素来调控晶格结构,从而优化其磁性能。

此外,还可以通过结构调控来调整纳米磁性材料的饱和磁化强度、居里温度和磁晶各项差等性能指标。

3. 磁场处理:磁场处理是一种常用且有效的优化纳米磁性材料性能的方法。

通过对纳米材料施加外加磁场,并在特定磁场条件下进行退火和磁化处理,可以有效地调控纳米磁性材料的结晶度、晶体尺寸和磁畴结构等参数,从而优化其磁性能。

Magneticnanoparticles磁性纳米粒子

Magneticnanoparticles磁性纳米粒子

Magneticnanoparticles磁性纳米粒子磁性纳米粒子(Magnetic Nanoparticles)是一种具有特殊物理和化学性质的纳米材料,具有广泛的应用前景。

本文将介绍磁性纳米粒子的制备方法、表征手段以及在生物医学、环境治理和能源等领域的应用。

1. 制备方法磁性纳米粒子的制备方法多种多样,常见的包括物理合成、化学合成和生物合成等。

物理合成方法包括热分解、溶胶-凝胶法和磁控溅射等,可以通过调节反应条件来控制粒子的尺寸和形貌。

化学合成方法主要通过溶液反应来合成纳米粒子,常见的包括共沉淀法、热分解法和水热法等。

生物合成方法则利用生物体内的酶、植物提取物等来合成纳米粒子,具有环境友好性和可再生性。

2. 表征手段对磁性纳米粒子的表征主要包括形貌结构、晶体结构、磁性能和表面性质等方面。

形貌结构可以通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)等观察到,可以了解粒子的形态、尺寸和分布情况。

晶体结构常常通过X射线衍射(XRD)来进行分析,可以确定晶体相和晶格参数。

磁性能可以通过振动样品磁强计(VSM)等仪器来测试,可以获得粒子的矫顽力、饱和磁化强度和磁导率等参数。

表面性质则常常通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等技术来研究,可以了解粒子表面的化学组成和功能基团等信息。

3. 生物医学应用磁性纳米粒子在生物医学领域具有广泛的应用前景。

一方面,磁性纳米粒子可以作为纳米载体,用于药物传递和基因传递等方面。

通过表面修饰可以增加纳米粒子与生物体内靶标的亲和性,实现靶向输送药物和基因,提高药物的疗效和减少副作用。

另一方面,磁性纳米粒子还可用于磁共振成像(MRI)和磁热疗法等诊断和治疗方面。

通过控制纳米粒子的磁性能和形貌,可以实现对肿瘤等异常组织的定位和治疗。

4. 环境治理应用磁性纳米粒子还可以在环境治理领域发挥重要作用。

一方面,磁性纳米粒子可以用于水处理和废水处理等方面。

通过表面修饰可以增加纳米粒子与污染物的亲和性,实现对重金属离子和有机污染物的吸附和去除。

纳米磁性材料的制备及其在生物医药领域中的应用研究

纳米磁性材料的制备及其在生物医药领域中的应用研究

纳米磁性材料的制备及其在生物医药领域中的应用研究一、前言作为在纳米科学中的一个重要分支,纳米磁性材料近年来在各个领域都得到了广泛关注和应用。

作为精细材料领域中的一种核心技术,纳米磁性材料在生物医药领域中也迎来了越来越普及的发展机遇,成为生物医学领域研究和治疗的新技术。

二、纳米磁性材料制备技术1. 软化学合成纳米磁性材料的制备方法中,软化学合成法是最常用的一种。

该方法通过溶液中化学还原、水热合成、微波辐射等化学反应方法制备纳米磁性材料。

这种方法有一些优点,例如合成过程容易控制,易于实现大规模生产,产物纯度高等。

同时,合成过程中的控制条件可以影响产物形态、尺寸、内部结构等,因此可以根据实际需要对产物进行修饰。

2. 气相法气相法是纳米磁性材料制备方法的另一种方式,该法通过在一定温度下对气体原子或分子进行反应制备产品。

这种方法对于制备具有一定结构的纳米材料、以及制备大面积纳米材料来说有一定的优点,但是由于需要高温来进行反应,因此也存在安全性问题。

3. 机械法机械法是纳米磁性材料制备的另一种方式,在该方法中,加入一定数量的粉末材料和球磨介质在球磨器中进行机械合成。

由于这种方法可以在短时间内制备高性能的纳米磁性材料,并且可以根据需求调整颗粒尺度和组成,因此也在相关领域得到了广泛应用。

三、纳米磁性材料在生物医药领域中的应用1. 生物成像由于纳米磁性材料具有特殊的磁性和表面结构,因此适合成为高分辨率成像的材料。

在生物医药领域中,纳米磁性材料多被用来作为新型的生物成像探针,例如:超级顺磁性氧化铁。

2. 靶向治疗纳米磁性材料可以与抗癌药物等解离在细胞内,这可以帮助实现对肿瘤的精确诊治。

纳米磁性材料还可以用于制备新型的靶向抗癌药物,实现在肿瘤区域释放药物并减轻产生药物的副作用。

3. 细胞标记纳米磁性材料也被用于细胞追踪和定位,可以用来显微照明等技术进行内部成像。

通过使用纳米磁性材料进行纵向、横向研究,可以帮助研究人员更深入了解生物学方面的一系列问题。

磁性纳米颗粒在医学成像中的应用

磁性纳米颗粒在医学成像中的应用

磁性纳米颗粒在医学成像中的应用随着科学技术的快速发展,磁性纳米颗粒在医学成像中的应用日益广泛。

磁性纳米颗粒具有特殊的物理性质和生物相容性,能够在医学领域中实现多种功能,如磁共振成像、生物标记、药物传递等。

本文将详细介绍磁性纳米颗粒在医学成像中的应用,包括其基本原理、主要方法及现状。

一、磁性纳米颗粒的基本原理磁性纳米颗粒是由磁性材料制成的小颗粒,具有特殊的磁性质。

其基本原理是通过磁性材料自身的磁性作用,与外加磁场进行相互作用,达到对组织或细胞的成像或治疗目的。

二、磁共振成像中的磁性纳米颗粒应用磁共振成像(MRI)是一种非侵入性的医学成像技术,广泛应用于临床检查中。

磁性纳米颗粒在MRI中的应用主要包括两个方面,一是作为MRI对比剂,二是作为MRI引导下的靶向治疗剂。

1. 磁性纳米颗粒作为对比剂磁性纳米颗粒具有较强的磁性,可以对局部组织或器官产生明显的磁性信号。

将磁性纳米颗粒注射到人体内部,结合MRI技术,可以获得高对比度的图像,以便实时观察身体各个部位的情况。

特别是在肿瘤检测中,磁性纳米颗粒的应用使得肿瘤的位置、大小和形态得以清晰显示,为医生提供了更准确的诊断依据。

2. 磁性纳米颗粒作为靶向治疗剂磁性纳米颗粒具有较强的生物相容性,可以通过表面修饰实现对肿瘤细胞的靶向识别和治疗。

将药物包裹在磁性纳米颗粒表面,通过外加磁场的作用,将药物准确地输送到肿瘤部位,提高治疗效果的同时减少对正常细胞的损伤,实现了精确的靶向治疗。

三、磁性纳米颗粒在生物标记中的应用生物标记是指将特定的磁性纳米颗粒与生物分子(如抗体、核酸等)结合,通过磁性纳米颗粒的磁性信号实现对生物体系的特定成分的检测。

在医学领域,磁性纳米颗粒常用于体内肿瘤细胞的检测和定位,通过与抗体的结合,能够准确检测和追踪肿瘤细胞的位置和数量,为肿瘤治疗提供有力的依据。

四、磁性纳米颗粒在药物传递中的应用磁性纳米颗粒在药物传递中的应用是近年来的研究热点之一。

通过将药物包裹在磁性纳米颗粒内部,以磁性纳米颗粒为载体,通过外加磁场的作用将药物传递到指定的治疗部位。

磁性纳米材料的合成与特性分析

磁性纳米材料的合成与特性分析

磁性纳米材料的合成与特性分析在当今的科学研究领域中,磁性纳米材料因其独特的物理和化学性质,成为了材料科学中的一个热门研究方向。

磁性纳米材料具有超顺磁性、高矫顽力、低居里温度等特性,在生物医学、电子信息、环境保护等众多领域都展现出了广阔的应用前景。

本文将重点探讨磁性纳米材料的合成方法以及对其特性的分析。

一、磁性纳米材料的合成方法1、化学共沉淀法化学共沉淀法是制备磁性纳米材料最常用的方法之一。

其基本原理是将含有二价和三价铁离子的盐溶液在一定条件下混合,通过加入碱液使金属离子沉淀,经过一系列的处理得到磁性纳米粒子。

这种方法操作简单、成本低,但所制备的纳米粒子尺寸分布较宽,且容易团聚。

2、水热合成法水热合成法是在高温高压的水热条件下,使反应物在水溶液中进行反应生成纳米材料。

该方法可以有效地控制纳米粒子的尺寸和形貌,所制备的磁性纳米粒子结晶度高、分散性好,但反应条件较为苛刻,对设备要求较高。

3、热分解法热分解法通常是在高沸点有机溶剂中,将金属有机前驱体在高温下分解,得到磁性纳米粒子。

这种方法能够制备出尺寸均匀、单分散性好的纳米粒子,但所用的前驱体往往较为昂贵,且反应过程中需要严格控制温度和气氛。

4、微乳液法微乳液法是利用微乳液体系中的微小“水池”作为反应场所,控制纳米粒子的成核和生长。

该方法可以制备出粒径小且分布均匀的磁性纳米粒子,但微乳液的制备和后续处理较为复杂。

二、磁性纳米材料的特性1、磁学特性磁性纳米材料的磁学特性是其最重要的性质之一。

当纳米粒子的尺寸小于一定值时,会出现超顺磁性现象,即在没有外加磁场时,纳米粒子的磁性消失,而在外加磁场作用下,表现出较强的磁性。

此外,磁性纳米材料的矫顽力、饱和磁化强度等参数也会随着粒子尺寸、形状和晶体结构的变化而改变。

2、表面特性由于纳米粒子的比表面积大,表面原子所占比例高,因此表面特性对磁性纳米材料的性能有着重要影响。

表面活性剂的修饰可以改善纳米粒子的分散性和稳定性,同时也可以赋予其特定的功能,如生物相容性、靶向性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25卷第2期大学化学2010年4月今日化学磁性纳米材料的化学合成、功能化及其生物医学应用侯仰龙(北京大学工学院先进材料与纳米技术系北京100871)摘要从纳米材料的生长动力学模型出发,讨论磁性纳米材料的控制合成原理。

总结磁性纳米材料的化学设计与合成、表面功能化及其在核磁共振成像和多模式影像等方面的应用研究最新进展。

磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。

近年来,随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。

本文将从纳米磁学开始,回顾磁性材料的基本概念、化学设计与合成、表面功能化及其在生物医学领域的潜在应用[1]。

1纳米磁学在磁场中,铁磁体的磁化强度M或磁感应强度B与磁场强度H的关系可用曲线来表示。

当外磁场作周期变化时,铁磁体中的磁感应强度随磁场强度的变化而形成一条闭合线,即磁滞回线,图1(a)为铁磁物质磁滞现象的曲线。

一般说来,铁磁体等强磁物质的磁化强度M(或B)不是磁场强度H的单值函数而依赖于其所经历的磁状态。

以磁中性状态为起始态,当磁状态沿起始磁化曲线磁化时,此时磁化强度逐渐趋于饱和,曲线几乎与H轴平行,将此时的磁化强度称为M s。

此后若减小磁场强度,则从某一磁场强度开始,M随H的变化偏离原先的起始磁化曲线,M的变化落后于H。

当H减小至0时,M并未同步减小到0,而存在剩余磁化强度Mr 。

为使M减至0,需加一反向磁场,称为矫顽力Hc。

反向磁场继续增大时,磁体内的M将沿反方向磁化到趋于饱和(M s),反向磁场减小至0再施加正向磁场时,按相似的规律得到另一支偏离反向起始磁化曲线的曲线。

当外磁场完成如上变化时,铁磁体的磁状态可由图1(a)所示的闭合回线描述。

当温度高于居里点时,磁性材料将变成顺磁体,其磁性很容易随周围磁场的改变而改变。

如果温度进一步提高,或者磁性颗粒的粒度很小时,即便在常温下,当尺寸达到临界畴时,材料中电子的热运动将逐渐占主导作用,热运动引起的扰动能超过磁能,使得原有的磁有序发生无序化,该现象称为超顺磁现象,如图1(b)所示,此时材料矫顽力和剩磁为0。

对于纳米颗粒的超顺磁转变温度,称为B loc k i n g温度。

其磁学性质随尺寸的变化,如图2所示,与块体磁性材料的多畴结构相比,纳米颗粒具有单畴结构,当颗粒尺寸小于临界畴尺寸时,纳米颗粒的磁自旋将无序排列。

在单畴区域,矫顽力随着颗粒尺寸的增加而增加,在颗粒1尺寸大于单畴尺寸时,颗粒呈现多畴结构,只有在一个较小的反向磁场的作用下,其磁化强度才能变为0。

磁性材料的临界畴尺寸(R sd),可用如下公式计算[2]:R sd=36AKL0M s其中,A为交换常数,K为磁晶各向异性常数,M s为饱和磁化强度。

图1磁滞回线(a)单畴铁磁纳米颗粒;(b)超顺磁纳米颗粒。

图2颗粒磁性随尺寸的变化铁磁性纳米颗粒是理想的磁存储材料,结合垂直磁记录、热辅助图形等技术可大幅提高存储密度。

而超顺磁纳米颗粒,因为其相对较弱的磁相互作用,通过相应的表面修饰,在生物体内能够实现良好的分散,因此在药物传输、核磁共振成像和分子探针等领域有重要的应用。

2纳米颗粒的生长动力学近年来,已发展出多种化学方法合成高质量的磁性纳米颗粒,包括铁系单质、合金及其化合物等。

常见方法有水解沉淀法(包括酸、碱法)、金属有机热分解法、溶胶-凝胶法、微乳液法(W/O)、水热合成法、气溶胶喷射热解法、气相沉积法(C VD)等[3]。

本文重点回顾高温有机液相方法合成单分散的磁性纳米颗粒的研究进展。

LaM er理论认为[4],当反应溶液中单体的浓度快速增大并超过超临界浓度时,将快速成核,此后如无新核生成,所形成的核将以同样的速度成长,获得单分散的纳米颗粒,如图3所示[5]。

反应过程中,亦有小的颗粒重新溶解到溶液中,以较大的颗粒为核继续长大,最后获得均匀的较大颗粒,即O st w al d熟化。

因此,液相合成单分散纳米颗粒的常用技术是分离其成核和生长过程。

另外,纳米颗粒因其超大的比表面而容易团聚以减小其表面能。

为避免团聚,纳米颗粒表面通常以表面活性剂包覆,表面活性剂间的排斥力通常能够使颗粒得以稳定分散。

2图3L a M er模型示意图及分离胶体颗粒的成核和生长过程[5]3磁性纳米颗粒的化学合成有机金属配合物由于其亚稳态特征,在较温和的条件下,如加热、光照和超声等,可分解成0价的金属,因此常被用作合成磁性金属纳米颗粒的前躯体[6-7]。

金属羰基物及其衍生物是一类典型的金属有机配合物,在加热时,羰基很容易与金属核分离,使得0价的金属成核、生长成颗粒。

例如,五羰基铁(Fe(CO)5)在油酸保护下,可分解获得单分散的金属铁纳米颗粒;通过八羰基二钴(Co2(CO)8)的分解,可制备单分散的面心立方Co纳米颗粒,而以三烷基膦为稳定剂时,可获得E-Co纳米颗粒[8]。

在1,2-二氯苯中,同时分解Fe(C O)5和Co2(CO)8可以制得Fe Co纳米颗粒[9]。

值得注意的是,金属纳米颗粒易被空气氧化。

为稳定金属纳米颗粒,基于表面活性剂或者壳层结构的表面包覆成为避免深度氧化的重要方法。

例如,在制得金属铁的纳米颗粒后,通过弱氧化剂,如N-氧化三甲基胺(M e3NO),控制氧化其表面,形成可控厚度的氧化层,获得核壳型Fe@Fe3O4纳米颗粒[10]。

制备磁性纳米颗粒的另一种常用方法是在表面活性剂的稳定下还原金属盐。

与上述热分解过程相比,金属还原方法具有更大的选择性,前躯体可以是金属氯化物、硝酸盐、氧化物、乙酰丙酮盐,还原剂可选用硼氢化钠或超氢锂、多醇、水合肼等。

例如,通过三乙基硼氢化锂(超氢)在辛醚中还原CoC l2,利用油酸和三辛基膦的稳定作用,制备了单分散的E-Co纳米颗粒[8]。

通过硼氢化钠同时还原FeSO4和C o C l2,制备Fe Co纳米颗粒[11]。

在苯甲醚中,油酸和油胺共存时,以Li B E t3H还原FeC l2和Pt(acac)2可以获得4nm FePt颗粒[12]。

1,2-烷基二醇常被用作还原剂,用于制备氧化铁的纳米颗粒,例如在苯醚中,利用十六烷基二醇还原Fe(acac)3,可制备单分散的4~18nm Fe3O4纳米颗粒[13],该过程可以扩展到制备铁氧体,包括M Fe2O4,(M=Co,M n)。

最近,1,2-十六二醇也被用于在油酸-油胺中还原Fe(acac)3和Co(acac)2制备FeCo纳米颗粒;合成的20nm Fe Co纳米颗粒的饱和磁化率M s为207c m3#g-1,退火处理,包覆碳层后,其饱和磁化强度达到230c m3#g-1[14]。

烷基胺和酸在升高温度的情况下,也是较强的还原剂。

在反应过程中,油酸或者油胺在高3温(380e)时分解,产生一些还原性物质,如C、CO和H2。

最近,基于同样的原理,我们仅在油胺和苯甲醚环境中,合成了单分散的Fe3O4纳米颗粒,其尺寸可控制在7~10nm[15],该方法不需要加入价格较高的烷基二醇,而且更为简便实用。

另外,在制备单分散的磁性纳米颗粒时,表面活性剂对纳米晶的成核和生长有较大的影响。

通常较短烷基链的稳定作用较弱,纳米晶可以快速生长。

相反,较长的烷基链使得纳米晶的生长速度较慢,通常获得较小尺寸的纳米颗粒[5]。

4形貌各向异性磁性纳米结构的化学合成除了球形纳米颗粒的合成外,形貌各向异性磁性纳米材料因其形貌依赖磁学行为等特性,引起了人们的关注。

利用烷基胺和烷基酸的还原化学,纳米立方和中空的纳米框等各向异性纳米结构得以合成[16],中空结构的产生主要源于熔盐的腐蚀。

在Co表面氧化和快速扩散时,亦可获得中空C o O纳米颗粒。

在油酸-油胺体系中,于300e还原Fe(acac)3,可获得Fe O纳米颗粒和纳米立方体(图4(a))[17]。

其形貌的控制主要依赖于表面化学,在油酸和油胺摩尔比小于1时,稍过量的油胺起主导作用,因其对氧化铁表面的稳定作用相对较弱,使得纳米晶在各个晶向的生长速度相近,产物即成球形颗粒。

而在油酸过量时(两者摩尔比大于1),羧酸根对氧化铁表面具有较强的稳定作用,只有特殊晶面得以优先生长,这样就获得了形貌各向异性的纳米立方体。

通过改变反应条件,在油胺中也得到了一维Fe Pt纳米线和纳米棒,其长度可以控制在20~200nm(图4(b))[18-19];初步实验研究表明,其生长机理可能是油胺在纳米晶的生长过程中形成准一维的空腔结构,类似于软模板,前躯体在该空腔结构中分解生长,获得一维结构。

当引入第二种溶剂时,由于油胺浓度降低,相当于剪裁了空腔的纵向长度,获得了单分散的纳米棒。

最近,利用类似的体系,合成了单分散的22n m Fe3O4纳米八面体(图4(c), (d))[20]。

图4形貌各向异性的磁性纳米结构(a)FeO,(b)FePt,(c,d)Fe3O445异质磁性纳米结构多功能异质纳米颗粒,因其多元组分提供了多功能的界面与功能,在纳米催化和生物医学领域具有巨大的应用潜力,引起了人们的关注和兴趣。

目前,通常有两种策略用于构建异质磁性纳米颗粒。

一是分子功能化,如链接抗体、蛋白和染料等;另一种方法是整合磁性纳米颗粒与其他功能化的颗粒于一体,如链接量子点、金属颗粒等[21]。

磁性纳米颗粒与量子点结合,使得多功能纳米颗粒具有磁学和光学的性质。

而与金属纳米颗粒的复合可以获得等离子发光的特性。

此外,其复合的多元结构还可能为药物治疗和传输提供平台,因为多功能纳米颗粒不仅具有增强的功能,还具有功能的多样性,所以在生物医学领域具有独特的应用优势。

本节重点回顾基于第二策略的多功能纳米颗粒合成的最新进展。

异质结构和球壳结构一样,通过将几种不同功能的组分结合在一起,使其作为一个多功能体。

不同点在于异质结构的不同组分都暴露在外侧,从而显示出一定的各向异性。

目前,在生物探针领域,异质结构以二聚体为主。

量子点因其独特的光学稳定性和优于荧光染料的抗光淬灭能力,在纳米生物医学的基础研究中得到广泛的应用[22]。

此外,量子点在体内的影像研究中具有多选择性。

基于Fe Pt纳米颗粒和硫族半导体纳米组分的复合纳米颗粒的系统研究表明,反应条件控制着不同的杂化结构的形成。

在一步反应中,依次向Fe Pt纳米颗粒的溶液中加入CdX(X=S or Se),低温时形成FePt@CdX核壳纳米颗粒(如图5(a),(c))[23-24]。

然而,用高沸点溶剂时,得到Fe P-t CdX二聚体纳米颗粒(图5(b),(d))。

在高温时,二聚体的形成可能是因为FePt和CdX间不同的相转变温度所致。

CdX在高温时可能熔融,引起与FePt 核的剥离。

这些核壳和二聚体结构的颗粒的合成具有很好的重复性,虽然其光学性质由于猝灭等原因需要进一步改进,但是其合成过程简单,便于操作。

相关文档
最新文档