纳米材料的湿法合成

合集下载

纳米材料的化学合成

纳米材料的化学合成

纳米材料的化学合成纳米材料是一种具有纳米尺度特征的材料,其在材料科学领域具有重要的应用前景。

纳米材料的化学合成是制备高质量纳米材料的关键步骤,通过精确控制合成条件和方法,可以获得具有特定结构和性能的纳米材料。

本文将介绍纳米材料的化学合成方法及其在材料科学领域的应用。

一、溶剂热法合成溶剂热法是一种常用的纳米材料合成方法,通过在高温高压条件下将金属盐或金属有机化合物与溶剂反应,形成纳米颗粒。

溶剂热法可以控制反应条件,如温度、压力、溶剂种类等,从而调控纳米材料的形貌和尺寸。

例如,利用溶剂热法可以合成金属氧化物、金属硫化物等纳米材料,具有优异的光电性能和催化性能。

二、水热法合成水热法是一种在高温高压水溶液中进行合成的方法,通过调控反应条件和溶液成分,可以合成具有特定结构和形貌的纳米材料。

水热法合成的纳米材料具有较高的结晶度和纯度,广泛应用于电池、传感器、催化剂等领域。

例如,利用水热法可以合成氧化物、磷化物等纳米材料,具有优异的电化学性能和光催化性能。

三、溶胶-凝胶法合成溶胶-凝胶法是一种通过溶胶的形成和凝胶的固化过程来合成纳米材料的方法,通过控制溶胶的成分和凝胶的形成条件,可以制备具有特定结构和形貌的纳米材料。

溶胶-凝胶法合成的纳米材料具有较大的比表面积和孔隙结构,适用于催化剂、吸附剂等领域。

例如,利用溶胶-凝胶法可以合成二氧化硅、氧化铝等纳米材料,具有优异的吸附性能和催化性能。

四、气相沉积法合成气相沉积法是一种通过气相反应在基底表面沉积纳米材料的方法,通过控制气相反应条件和基底表面特性,可以制备具有特定结构和形貌的纳米材料。

气相沉积法合成的纳米材料具有较高的结晶度和纯度,适用于纳米电子器件、光电器件等领域。

例如,利用气相沉积法可以合成碳纳米管、氧化锌纳米线等纳米材料,具有优异的电子传输性能和光电性能。

综上所述,纳米材料的化学合成是制备高质量纳米材料的关键步骤,不同的合成方法可以获得具有不同结构和性能的纳米材料,广泛应用于材料科学、能源领域等。

湿化学法制备_Al_2O_3纳米粉_李江

湿化学法制备_Al_2O_3纳米粉_李江

湿化学法制备A 2Al 2O 3纳米粉李江 潘裕柏 陈志刚* 郭景坤(中国科学院上海硅酸盐研究所高性能陶瓷与超微结构开放实验室,上海 200050;*江苏理工大学材料科学与工程学院,镇江 212013)摘 要 以分析纯硫酸铝铵和碳酸氢铵为原料,采用湿化学法制备单分散超细N H 4Al 2(O H)2CO 3先驱沉淀物,在1100e 下灼烧得到平均粒径为20n m 的A 2Al 2O 3纳米粉体。

对粉体进行了扫描电镜(SEM)、透射电镜(TE M)、X 射线衍射(X RD )、比表面积(BE T)、热重(TG)、差热(D TA)、粒度分布等表征,此法获得的粉体无明显团聚,粒度分布均匀,颗粒尺寸小,其煅烧温度比通常低100e 左右。

关键词 A2Al 2O 3纳米粉 湿化学法 籽晶 先驱沉积物 团聚国家973资助项目(G200006720422)1作者简介:李江(1977年~),男,研究实习员1主要从事陶瓷的低温活化烧结及金属陶瓷的研究1纳米粉体由于晶粒尺寸小、表面积大,在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出奇特的性能,因此,得到人们的极大重视,被广泛地应用于冶金、电子、化工、生物医学等领域。

要使纳米粉体具有良好的性能,制备方法的选择和制备工艺的控制是关键。

Al 2O 3具有多种晶型结构,其中H y A 2Al 2O 3的相变通常在1200e 左右的高温下才能进行,使原本超细的过渡晶型严重粗化,并形成硬团聚。

本文以廉价的无机盐为原料,采用湿化学法制备了单分散超细NH 4Al 2(O H)2CO 3先驱沉淀物,由于较低的灼烧温度,解决了A 2Al 2O 3纳米粉体粗化和硬团聚的问题。

1 实验步骤111 粉体的制备实验用的N H 4Al(S O 4)2#12H 2O 和N H 4HC O 3均为分析纯,配制成水溶液并滤除不溶性杂质,采取(A),(B)2组对比实验。

(A)将N H 4Al(SO 4)2溶液缓慢滴入剧烈搅拌的N H 4HC O 3溶液中(N H 4HCO 3稍过量),均相沉淀反应生成N H 4Al 2(O H)2C O 3先驱沉淀物。

纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法
纳米材料的制备方法主要有几种,其中包括物理法、化学法和生
物技术法。

1. 物理法:物理法的制备方法又可以分为几类,包括电磁熔炼法、湿法分散器等。

例如电磁熔炼法可以通过电磁力场将含有特定成分的
材料加热融化,然后通过冷却和固定,形成小尺度的粒子。

湿法分散
器也可以将混入溶剂中的原料加以研磨并调节粒径,从而获得纳米溶胶。

2. 化学法:化学法中,主要有溶剂热法、溶剂冷法等。

溶剂热法
是使用溶剂作为介质,将原料溶解,然后加入体系内氧化剂进行氧化
聚合,最后用超声处理微粒,形成更小的纳米粒子。

而溶剂冷法则是
将原料溶解后,再加入表面活性剂,使其聚集形成纳米粒子。

3. 生物技术法:生物技术法则是利用微生物的合成能力进行合成,将原料添加到表面活性剂、微生物介质、磷酸肥料等中,以促进微生
物的生长和代谢,最终形成纳米粒子。

以上就是纳米材料的制备方法主要有几种,它们分别是物理法、
化学法和生物技术法。

这些方法都有不同的优点和缺点,需要根据具
体应用场景选择合适的方法,以期获得更高质量的纳米材料粒子。

纳米粒子合成及制备方法详解

纳米粒子合成及制备方法详解

纳米粒子合成及制备方法详解引言:纳米科学与技术作为近年来迅速发展的一门跨学科前沿科技,已经在能源、信息、材料等诸多领域展示出巨大潜力和广阔前景。

纳米粒子作为纳米科学的基本研究对象和应用载体,在纳米技术的发展中发挥着重要的作用。

本文将详细介绍纳米粒子的合成及制备方法,希望能对相关领域的研究者和科技工作者有所帮助。

一、纳米粒子的概念和应用纳米粒子是指其尺寸在纳米尺度范围内的微观颗粒,一般指的是直径小于100纳米的粒子。

由于纳米颗粒具有较大的比表面积和特殊的物理、化学性质,因此在材料科学、生物医学、环境科学等领域具有广泛的应用潜力。

例如,纳米金属颗粒可用于催化、传感、光学等领域;纳米二氧化硅颗粒可应用于材料增强剂、药物传递等领域。

因此,精确控制纳米粒子的合成具有重要意义。

二、纳米粒子的合成方法纳米粒子的合成方法包括物理法、化学法和生物法三种。

下面将详细介绍各种方法的原理和应用。

1. 物理法物理法合成纳米粒子主要包括溅射、热蒸发、气相法等。

其中,溅射法是通过高能束流轰击目标材料,使其产生离子、激发原子等,然后粒子重新沉积到基底上形成纳米粒子。

热蒸发则是将目标材料加热蒸发,蒸发产生的蒸汽凝结成纳米粒子。

气相法是通过控制气体中原子或分子的浓度等条件,使其发生聚集形成纳米粒子。

2. 化学法化学法合成纳米粒子常用的方法有溶胶-凝胶法、沉积法、还原法等。

溶胶-凝胶法是将溶胶中的金属离子或化合物在合适的条件下凝胶成固体,然后通过烧结或后处理得到纳米粒子。

沉积法是通过在基底上沉积材料薄膜后,利用溶剂或气体处理得到纳米粒子。

还原法是通过还原剂将金属离子还原为金属纳米粒子的方法。

3. 生物法生物法合成纳米粒子是利用生物体内的生物酶、微生物、植物等作为催化剂,通过调控生物体内的酶活性和环境条件,合成纳米粒子。

生物法合成纳米粒子具有绿色、环保的特点,并且操作简便、成本低廉。

三、纳米粒子的制备方法纳米粒子的制备方法主要包括溶剂法、凝胶法、气相法等。

湿化学合成法

湿化学合成法

湿化学合成法湿化学合成法是一种在液相条件下进行化学反应的方法。

与干法合成相比,湿法合成具有许多优势,如反应速度快、反应条件温和、产率高等。

湿法合成可用于制备各种有机化合物、无机化合物和杂化材料。

湿化学合成法可以分为溶剂热法、水热法、溶胶-凝胶法等多种方法。

溶剂热法是指在有机溶剂中进行高温反应。

常见的有机溶剂有乙醇、二甲基甲酰胺等。

水热法是指在高温高压水环境下进行反应。

水热法可以使反应物更好地溶解在水中,从而促进反应的进行。

溶胶-凝胶法是指通过溶胶的形成和凝胶的形成来制备材料。

溶胶-凝胶法可以制备各种形状的材料,如粉末、薄膜、纳米颗粒等。

湿化学合成法在有机合成中具有广泛的应用。

例如,湿法合成可以用于合成有机小分子化合物、有机聚合物和金属有机框架材料。

有机小分子化合物是一类具有特定功能的有机化合物,如药物、染料、涂料等。

有机聚合物是由有机小分子通过化学键连接而成的大分子化合物,具有重要的应用价值。

金属有机框架材料是一类具有特殊结构的材料,具有高比表面积和多孔性,广泛应用于气体吸附、分离和催化等领域。

湿化学合成法在无机合成中也具有重要的地位。

例如,湿法合成可以用于制备无机纳米材料、无机薄膜和无机纳米颗粒。

无机纳米材料是一类具有纳米尺寸的无机材料,具有独特的物理和化学性质。

无机薄膜是一种具有特殊结构和功能的薄膜材料,广泛应用于光学、电子和能源等领域。

无机纳米颗粒是一种具有纳米尺寸的无机颗粒,具有高比表面积和多孔性,可用于催化、吸附和传感等领域。

除了有机合成和无机合成,湿化学合成法还可以用于制备杂化材料。

杂化材料是由两种或多种不同类型的材料组成的复合材料,具有多种性质和应用。

湿法合成可以通过控制反应条件和反应物比例来调控杂化材料的结构和性能。

湿化学合成法是一种在液相条件下进行化学反应的方法。

它广泛应用于有机合成、无机合成和杂化材料的制备中。

湿法合成具有反应速度快、反应条件温和、产率高等优点。

通过选择合适的湿法合成方法和反应条件,可以制备出具有特定结构和性能的材料,满足不同领域的需求。

纳米材料的制备方法及其原理

纳米材料的制备方法及其原理
27/372
注意:对于金属材料,电磁场不能透入内部而 是被反射出来,所以金属材料不能吸收微波。 小块金属会发出电火花,注意安全!!! 水是吸收微波最好的介质,所以凡含水的物质 必定吸收微波。 特点:加热速度快;均匀加热;节能高效;易 于控制;选择性加热。
28/372
6) 电弧加热
在两个电极间加一电压,当电源提供较大功率的电能时, 若极间电压不高(约几十伏),两极间气体或金属蒸气中可 持续通过较强的电流(几安至几十安),并发出强烈的光辉, 产生高温(几千至上万度),这就是电弧放电。 电弧放电最显著的外观特征是明亮的弧光柱和电极斑点。 电弧放电可分为 3个区域:
23/372
化学法:利用大功率激光器的激光束照射于反应 物,反应物分子或原子对入射激光光子的强吸收, 在瞬间得到加热、活化,在极短的时间内反应分 子或原子获得化学反应所需要的温度后,迅速完 成反应、成核凝聚、生长等过程,从而制得相应 物质的纳米微粒。
24/372
• 激光加热蒸发法制备纳米粒子的优点:
❖ 我国近年来在纳米材料的制备、表征、性能及理论研究方面取 得了国际水平的创新成果,已形成一些具有物色的研究集体和 研究基地,在国际纳米材料研究领域占有一席之地。在纳米制 备科学中纳米粉体的制备由于其显著的应用前景发展得较快。
纳米材料的制备
纳米材料的合成与制备一直是纳米科学领域的一个重要研究课题,新材 料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的 影响。在所有纳米材料的制备方法中,最终目的是所制得的纳米颗粒具 有均一的大小和形状。理论上,任何能够制备出无定型超微粒子和精细 结晶的方法都可以用来制备纳米材料。如果涉及了相转移(例如,气相 到固相),则要采取增加成核以及降低在形成产品相过程中颗粒的增长 速率的步骤,从而获得纳米颗粒。一旦形成了纳米颗粒,则要防止其团 聚和聚结。此外,许多方法合成制备出的纳米材料都是结构松散、易团 聚的纳米超细微粒,这样只可得到纳米粉体。如果要获得纳米固体材料, 须将纳米颗粒压实才可得到致密的块材。因此,材料的压制工艺也是纳 米制备技术的重要部分。

湿法纳米二氧化硅的原理

湿法纳米二氧化硅的原理

湿法纳米二氧化硅的原理
湿法纳米二氧化硅的原理是通过溶胶-凝胶法制备。

具体原理如下:
1. 溶胶的制备:将无机硅源物质(如硅酸钠、硅酸乙酯等)溶解在溶剂中,加入催化剂或表面活性剂,在适当的温度和压力条件下搅拌混合,形成均匀分散的溶胶。

2. 凝胶的形成:将溶胶缓慢地从溶剂中蒸发或加热干燥,使溶胶中的硅源物质发生聚合反应,形成凝胶。

凝胶中的硅酸根离子和催化剂形成三维网络结构,使凝胶逐渐凝胶化。

3. 胶的处理:将凝胶进行破碎、研磨,得到细小的凝胶颗粒,形成胶体。

4. 胶体成型:将胶体进行分散,加入其他添加剂如增稠剂、分散剂等,通过调整配方和控制工艺参数,将胶体进行成型。

可以通过凝胶的热解、溶胶凝胶、半干胶烧结等方法进行。

5. 热处理:将成型的胶体进行高温处理,通常在600-1000摄氏度下进行热解或烧结,以去除有机物质、促进晶体的生长和颗粒的熟化。

同时,可以通过控制热处理的温度、时间和氛围等参数,调控纳米二氧化硅的晶体相、晶粒尺寸、比表面积等性质。

通过以上步骤,湿法纳米二氧化硅制备完成。

芳纶纳米纤维的制备及其相关应用

芳纶纳米纤维的制备及其相关应用

芳纶纳米纤维的制备及其相关应用近年来,由于加工技术的进步和应用材料的改善,微米和纳米尺度的材料备受关注。

芳纶纳米纤维作为一种具有强度、高弹性和光学性能优越的纳米纤维,被应用在各个领域,如生物医学、纳米载体、渗透膜等。

本文旨在介绍芳纶纳米纤维的制备原理和相关的应用研究。

芳纶纳米纤维的制备芳纶纳米纤维的制备可以分为以下几种方法:湿法法、冷凝法、化学气相沉积(CVD)法和溶胶-凝胶法。

(1)湿法法湿法法是制备芳纶纳米纤维技术中最常用的技术之一,它可以实现纳米纤维快速、经济、简单有效地制备。

它主要包括盐类复合法、固溶体熔融法、化学反应沉积法、二级反应管等多种技术。

(2)冷凝法冷凝法的原理是利用液态芳纶的自聚性,使得芳纶在溶液中结晶而形成纳米纤维。

此法的特点是可以将芳纶的聚合物形成纳米尺度的纤维。

(3)CVD法CVD法是一种通过化学反应产生纳米纤维的技术,它可以实现在温度范围内稳定地合成纳米纤维。

它可以利用溶液中的气相物质来控制纤维的形状与尺寸,使芳纶纤维更加结实、均一。

(4)溶胶-凝胶法溶胶-凝胶法是一种综合性技术,它可以实现纳米纤维的快速制备。

它结合了溶胶-凝胶法和冷凝法的优点,可以实现溶液中芳纶的快速凝胶化,从而制备出细长的芳纶纳米纤维。

芳纶纳米纤维的应用研究1.物医学领域芳纶纳米纤维具有良好的生物相容性和可控制的孔径尺寸,可以用作改善病毒传播、抗癌药物载体、医疗介质调节等生物医学领域的材料。

2.米载体芳纶纳米纤维具有良好的化学稳定性和相对较高的附着力,可以用作可控释放和多功能纳米载体,如功能纳米药物、专项纳米载体等,用于抗癌药物分子的智能释放。

3.透膜芳纶纳米纤维具有优越的机械性能、电学导电性能等优点,可以用作制备渗透膜,如芳纶/多孔硅复合膜、芳纶/多孔金属膜等,用于水滤渗透等应用领域。

结论芳纶纳米纤维是一种具有良好性能的纳米纤维,可以用于生物医学领域、纳米载体和渗透膜等领域的研究与应用。

其制备技术也不断地发展和完善,以更加全面、有效地满足不同应用的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文中英文摘要作者姓名:孙旭平论文题目:纳米材料的湿化学合成及新颖结构的自组装构建作者简介:孙旭平,男,1972年08月出生,2000年09月师从于中国科学院长春应用化学研究所汪尔康研究员,于2006年03月获博士学位。

中文摘要围绕论文题目“纳米材料的湿化学合成及新颖结构的自组装构建”,我们开展了一系列研究工作。

通过湿化学途径,在贵金属纳米粒子及其二维纳米结构和导电聚合物纳米带的合成方面进行了深入研究。

同时,利用界面自组装及溶液自组装技术,构建了一些新颖结构。

本论文研究工作的主要内容和创新点表现在以下几个方面:(1)首次提出了一步加热法制备多胺化合物保护的贵金属纳米粒子。

我们利用多胺化合物(包括聚电解质和树枝状化合物)作为还原剂和保护剂,直接加热贵金属盐和多胺化合物的混合水溶液,在不加入其它保护剂和还原剂的情况下,一步制备得到了稳定的贵金属金和银的纳米粒子。

我们在实验中发现,树枝状化合物聚丙烯亚胺能对反应生成的金纳米粒子的大小及成核和生长动力学进行有效控制。

我们还发现,室温下直接混合浓的阳离子聚电解质分支型聚乙烯亚胺和浓的HAuCl4水溶液可得到高浓度的、稳定的胶体金。

这种一步合成法操作简单且方便易行,是一种制备多胺化合物保护的贵金属纳米粒子的通用方法;同时,本方法合成的纳米粒子表面带正电荷,可用作加工纳米粒子功能化薄膜的构建单元。

(2)首次提出了一种无表面活性剂的、无模板的、大规模制备导电聚合物聚邻苯二胺纳米带的新方法。

我们通过在室温下直接混合邻苯二胺和HAuCl4水溶液,在没有表面活性剂或“硬模板”存在的条件下,获得了长度为数百微米、宽度为数百纳米、厚度为数十纳米的聚邻苯二胺。

纳米带的自发形成可归因于反应中生成的金纳米粒子催化的邻苯二胺的一维定向聚合。

本方法方便快速,无需加入表面活性剂或使用“硬模板”,且可用于大规模制备。

此外,我们通过在室温下直接混合AgNO3和邻苯二胺水溶液,也获得了大量的一维纳米结构,并发现其形貌可通过调节实验参数而改变。

我们还发现,当溶液pH降低时,这些一维结构将分解成水溶性的低聚体,而如果再次升高pH,这些低聚体又将自组装形成一维纳米结构。

各种数据表明,这种一维纳米结构是由邻苯二胺被AgNO3氧化后所生成的低聚体在溶液中自组装而形成的。

(3)发展了一系列可大量制备沿(111)晶面优先生长的单晶金二维结构(包括纳米片及微米盘)的湿化学合成方法。

在室温下直接混合HAuCl4和邻苯二胺水溶液,我们得到了大量的、呈六角形的、纳米厚度的单晶金片,其尺寸达1.5μm,邻苯二胺和HAuCl4间的摩尔比是纳米片形成的关键,这种纳米片不仅能应用于光学领域,还可用于加工具有独特机械性能的新型结构材料。

我们通过直接加热浓的HAuCl4和线型聚乙烯亚胺混合水溶液,也获得了大量的金纳米单晶片,其尺寸可达40μm,反应物浓度是获得纳米片的关键因素,这种具有大的(111)晶面的单晶金片有望用做扫描隧道显微镜(STM)的基底。

此外,通过加热草酸-HAuCl4混合水溶液,我们还得到了大量的、尺寸达4μm的、呈六角形的金二维结构,但其厚度大于100 nm,为微米盘,其大小和厚度可通过草酸的用量得到控制。

(4)发展了一种基于溶液中的配位组装的、室温下方便合成有机-无机配位聚合物杂化材料的单分散亚微米胶体球的新方法。

在室温下直接混合H2PtCl6和对苯二胺水溶液,通过对苯二胺和PtCl62-在溶液中的配位自组装,我们得到了亚微米尺寸的、单分散的、配位聚合物球形胶体球。

实验表明,粒子大小和多分散度可由反应物间的摩尔比和浓度进行控制,获得单分散胶体球的最佳实验条件是1:1摩尔比和适中的浓度。

本研究结果具有比较重要的意义:(1) 它提供了一个温和的、室温条件下获得单分散胶体粒子的合成方法,从而避免了获得单分散的无机材料胶体粒子所必须的高温反应条件;(2) 这种胶体粒子是一种新的杂化材料,它结合了两种组分的优点而具有多种属性,因而可用在许多领域;(3) 这种胶体粒子在强还原剂如NaBH4 存在的情况下,由于其中的 Pt阳离子组分被还原而发生分解,因此可用做易分解的胶体粒子模板加工中空球。

此外,我们通过室温下直接混合邻苯二胺的N-甲基吡咯烷酮溶液和AgNO3水溶液,得到了亚微米的球形银胶体粒子(平均粒径达850 nm)。

实验结果还表明,升高温度有利于更大尺寸的银粒子的生成,溶剂对纯的银粒子沉淀物的获得起着比较关键的作用。

这些亚微米粒子的形成经历了两个阶段:(1) 超饱和溶液中纳米主粒子的成核;(2) 形成的主粒子聚集成更大的均匀的粒子。

(5)我们发展了一种在表面巯基功能化的电极表面有效固定Ru(bpy)32+的新方法。

本方法同时运用了溶液自组装和固体表面自组装两种技术,即:先将Ru(bpy)32+和柠檬酸根阴离子保护的金纳米粒子的水溶液按照一定比例混合,得到了Ru(bpy)32+-金纳米粒子聚集体,然后把少量聚集体的悬浮液直接滴在表面巯基功能化的电极表面,从而实现Ru(bpy)32+在电极表面的有效固定。

该方法简单易行,制备的电极具有很好的稳定性和电化学发光性能,因而在固态电化学发光检测方面具有很好的应用前景;此外,该方法还可用于在固体表面构建Au纳米粒子多层膜。

(6)发展了一种通过加热3-噻吩丙二酸(3-thiophenemalonic acid, TA)和H2PtCl6混合水溶液直接制备小的Pt纳米粒子的新方法,并通过对该胶体溶液用Ru(bpy)32+处理,得到了Ru(bpy)32+-Pt纳米粒子聚集体。

通过对在裸电极表面的聚集体进行循环电势扫描,使得聚集体中的TA分子发生电化学聚合而在电极表面形成了稳定的聚合物膜;由于该膜有效地避免了聚集体从电极表面脱落,从而我们得到了非常稳定的、具有极好电化学发光性能的膜。

本工作不但提供一种方便制备Pt纳米粒子的新途径,而且还发展了一种在任何表面直接加工电化学发光检测器的新方法,在固态电化学发光检测方面具有重要应用价值。

(7)通过在室温下直接混合H2PtCl6和Ru(bpy)3Cl2水溶液,我们获得了具有新颖形貌的、含有Ru(bpy)32+的微结构。

实验结果表明,金属价态、金属种类及反应物摩尔比和浓度对微结构的形貌有重要影响,形成的微结构都具有很好的电化学发光性能。

这些微结构给我们提供了一种新的功能材料,将在毛细管电泳或毛细管电泳微芯片的固态电化学发光检测方面有着很好的应用前景。

关键词:纳米材料,湿化学,自组装,电化学发光Wet-Chemical Routes to the Preparation of Namomaterials and Self-Assembly-Based Fabrication of Novel StructuresSun XupingABSTRACTBoth the wet-chemical preparation of nanomaterials and self-assembly-based fabrication of novel structures have been paid considerable attention. We carried out several studies on the preparation of noble metal nanoparticles and its two-dimensional nanostructures and conducting polymers nanobelts via wet-chemical routes. On the other hand, we fabricated some novel structures through self-assembly on planar solid substrates or in solutions. Especially, the application of some structures in the field of solid-state electrochemiluminescence detection is also explored.We have developed a heat-treatment-based strategy for the one-step preparation of polyamine-protected noble metal nanoparticle. With the use of third-generation poly(propyleneimine) (PPI G3) dendrimer to simultaneously act both as the reducing agent and protective agent, stable noble metal gold nanoparticles have spontaneously formed by heating a solution containing HAuCl4 and PPI G3. As a result, an additional step of introducing a reducing agent as well as a protective agent is no longer needed. It is found that the size, the nucleation and growth kinetics of the gold nanoparticles thus formed can be tuned by changing the initial molar ratio of PPI G3 to gold. Similarly, highly stable Ag nanoclusters with narrow size distribution have been prepared by heating a AgNO3/PPI G3 aqueous solution without the additional step of introducing other reducing agents and protect agents. It is found that as-obtained particle is in coexistence of Ag and Ag2O and increasing temperature results in both the decrease in number of small particles and the increase in size of large particles. In addition, such thermal process has been successfully used to prepare amine-functionalized polyelectrolyte-protected gold nanoparticles by directly heating an aqueous solution containing HAuCl4 and polyelectrolytes. Four polyelectrolytes including N-[3-(trimethoxysilyl)propyl]polyethylenimine (Si-PEI), branched polyethylenmine(BPEI), linear polyethylenimine (LPEI) and poly(allylamine hydrochloride) (PAH) were used in our study and well-stabilized gold nanoparticles with relatively narrow size distribution were obtained. Because gold nanoparticles thus formed can be combined with the properties of the polyelectrolytes used, they hold promise for use in the biomedical and bioanalytical field and on the other hand, as building blocks for the creation of nanoparticles-containing thin films. This strategy will be general to other polyelectrolytes with the same chemical structure as these four polyelectrolytes used and to the preparation of other nanoparticles such as Ag nanoparticles. Furthermore, we have found that highly concentrated, well-stable gold colloids can be prepared by direct mix of concentrated HAuCl4 and BPEI aqueous solutions at room temperature.We have developed for the first time a novel but simple surfactantless, templateless method for preparing conducting polymer poly(o-phenylenediamine) nanobelts on a large scale. The mix of HAuCl4 and o-phenylenediamine aqueous solutions at room temperature results in the formation of a large quantity of precipitate. Lower magnification scanning electron microscopy (SEM) image indicates that the precipitate consists of a large quantity of uniform one-dimensional structures. Higher magnification SEM image further reveals these structures are transparent nanobelts with several hundred micrometers in length, several hundred nanometers in width, and several ten nanometers in height. Also observed in these SEM images are a number of nanoparticles. The X-ray diffraction (XRD) analysis of the resulting precipitate reveals the formation of amorphous poly(o-phenylenediamine) polymers with larger crystalline size as well as crystalline gold. Elemental analysis of the resulting precipitate using secondary electrons by SEM indicates the belts are poly(o-phenylenediamine) polymers but the particles are gold particles. The possible formation of the nanobelts can be explained as follows: The reduction of HAuCl4by o-phenylenediamine leads to the formation of gold nanoparticles with the occurrence of o-phenylenediamine oligomers first, then gold nanoparticles produced serve as active catalysts to catalyze the oriented oxidative polymerization of other o-phenylenediamine monomers by HAuCl4 along the oligomers produced, resulting in the formation of poly(o-phenylenediamine) nanobelts. Furthermore, we have found that mixing of AgNO3 and o-phenylenediamine in aqueous medium results in the formation of uniform one-dimensional structures. However, the formation of such 1D structure involves the following two stages: (1) The oxidation of o-phenylenediamine by AgNO3 leads to the formation of individualo-phenylenediamine oligomers. (2) The resulting individual oligomers self-assembly to form uniform larger 1D structures. Interestingly, decreasing medium pH can break these 1D structures apart to form individual oligomers, or vice versa. It is also found that both the concentration and molar ratio of reactants have considerable influences on the morphologies of the structures thus formed.We have developed several wet-chemical approaches for the large-scale preparation of two-dimensional, single-crystalline gold structures including nanoplates and microdisks. The mix of an appropriate volume of an aqueous solution of freshly prepared o-phenylenediamine and HAuCl4 at room temperature with 1:1 molar ratio of o-phenylenediamine to gold gradually leads to a large quantity of precipitate, which is collected by centrifugation, washed several times with THF and water, and then suspended in water. The lower magnification SEM image indicates that the precipitate consists of a large amount of particles, while the higher magnification SEM image clearly reveals that the particles are micrometer-scale plates (about 1.5 µm in size), mainly hexagonal in shape. The distance between two planes of one plate standing against the glass substrate indicates that these plates are nanoplates. The corresponding energy-dispersive X-ray spectrum (EDS) shows these nanoplates are pure metallic gold. Two surface plasmon absorption bands at about 680 and 925 nm which arise from the longitudinal plasmon resonance of gold particles are observed for these gold nanoplates, providing another piece of evidence for the formation of anisotropic gold particles. It suggests that the quantity of o-phenylenediamine in the solution is crucial to yielding gold nanoplates and we may suggest that o-phenylenediamine molecules serve as a soft template and kinetically control the growth rates of various faces of gold particles by selectively adsorbing on to the crystallographic planes, thus resulting in the formation of large single-crystalline gold nanoplates. The importance of the platelet-like gold particles is not restricted to optics; exceptionally interesting materials with unique mechanical properties can be obtained with such colloids. A polyamine process has also been successfully used for the high-yield preparation of single-crystalline gold nanoplates with several 10µm in size, mainly hexagonal in shape, carried out by heating a concentrated aqueous solution of LPEI and HAuCl4 at 100℃. The following experimental facts (1) there are no gold byproducts with other shapes except the nanoplates existing in the resulting products and (2) adding NaBH4 to the colorless supernatant afterthe termination of reaction gives no gold particles due to the depletion of HAuCl4 in the mixture by LPEI indicate that this heat-treatment-based polyamine process is a high-yield approach for the preparation of large gold nanoplates. It is found that the concentration of reactants is crucial to the formation of nanoplates. As-prepared gold nanoplates with a large Au(111) face may hold promise for scanning tunneling microscopy (STM) substrates. Furthermore, heating an aqueous oxalic acid/HAuCl4solution has been proven to be an effective and facile approach for the large-scale production of microsized, single-crystalline, hexagonal gold microplates with a thickness above 100 nm. Both the size and the thickness of these plates can be controlled by the molar ratio of oxalic acid to gold. It is also found that the concentration of reactants strongly influences the formation of the gold plates.We have demonstrated a novel coordination-based strategy to the fabrication of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials. The mix of p-phenylenediamine and H2PtCl6aqueous solutions at room temperature results in the formation of a large amount of precipitate. Low magnification SEM image of as-prepared precipitate indicates that the precipitate consists of a large quantity of monodisperse, submicrometer-scale particles about 420 nm in diameter. Higher magnification SEM image reveals that these particles are spherical in shape and well-separated from each other, and a local magnification of a single colloidal sphere by transmission electron microscopy (TEM) indicates that the resulting particles have electron-microscopically perfectly smooth surface. The chemical composition of the resulting colloids was determined by energy-dispersed spectrum (EDS) and the occurrence of the peaks of Pt, Cl, C, and N indicates that the colloids are products of p-phenylenediamine and H2PtCl6. A possible formation process is briefly presented as following: When p-phenylenediamine and PtCl62-are mixed together, the two nitrogen atoms on the para positions of one p-phenylenediamine aromatic ring can coordinate to two different Pt(IV) cations, resulting in p-phenylenediamine-bridged structure, and the Pt species contained in as-formed structure can further capture other p-phenylenediamine molecules by coordination interactions along different directions. This coordination-induced assembly process can proceed repeatedly until the depletion of reactants in the solution, resulting in the formation of large coordination polymers, finally. It is found that the particle size and polydispersity can be controlled by the molar ratio andconcentration of reactants, however, the optimum experimental parameters for the production of monodisperse colloids are 1:1 molar ratio and moderate concentration of the two reactants. Our observations are significant for the following reasons. (1) It provides a mild, room temperature route to fine colloids, avoiding the use of high temperature, which is crucial to the formation of fine colloids of inorganic materials. (2) Such colloids are new hybrid materials with versatile properties provoked by combining the merits of two sources and may find applications in many fields. (3) Such colloids are easily broken up by a strong reducing reagent, such as NaBH4, because of the reduction of the Pt cations contained therein, and therefore, they hold promise as easily decomposable colloidal templates for the fabrication of hollow spheres for a variety of applications. We have also demonstrated the rapid preparation of uniform, large, spherical Ag spheres with relatively low polydispersity through a simple wet-chemical route. The formation of Ag particles with about 750 nm in diameter occurs in a single process, carried out by direct mix of AgNO3 aqueous solution and o-phenylenediamine N-methyl-2-pyrrolidone (NMPD) solution at room temperature. The formation of monodisperse Ag colloids in our previous study can be explained as follows: AgNO3 is reduced by o-phenylenediamine to form metallic Ag atoms. With elapsed time, new Ag atoms are generated in this system and nucleation occurs as the concentration of Ag atoms reaches critical supersaturation, resulting in the formation of nuclei. The nuclei grow to nanoscale primary particles by further addition of Ag atoms, and then the primary particles aggregate to form large Ag spheres with relatively narrow size distribution. It is found that that increasing temperature results in increasing particle size. We have found that the mix of AgNO3 and o-phenylenediamine aqueous solutions, under otherwise identical conditions, yields precipitate consisting of a large quantity of large spherical Ag particles and belt-shaped structures corresponding to the oxidative products of o-phenylenediamine by AgNO3. NMPD is a powerful solvent with low toxicity and broad solubility, completely soluble in water at all temperatures and soluble in most organic solvents. We therefore choose NMPD in our present study as an effective cosolvent to dissolve the oxidative products of o-phenylenediamine in a timely manner, preventing them from precipitating with Ag particles and leading to the formation of pure Ag spheres.We have developed a novel method based on both solution- and planar solid substrate-based assembly techniques for effective immobilization of Ru(bpy)32+ on sulfhydryl-derivated electrodesurfaces for solid-state electrochemiluminescene detection application. The whole immobilization process involves the following two steps: (1) The addition of Ru(bpy)32+ cations into citrate-capped gold nanoparticles (AuNPs) solution results in the formation of a Ru-AuNPs precipitate due to electrostatic interactions-driven assembly of the positively charged Ru(bpy)32+cations and the negatively charged citrate ions coating on the AuNPs; (2) The suspension of Ru-AuNPs was placed on the sulfhydryl-derivated ITO electrode surface. The energy-dispersed spectrum (EDS) of the resulting precipitate indicates the precipitate consists of Ru(bpy)32+ and AuNPs. The absence of the peak of S element in the EDS may be attributed to the following two reasons: (1) The content of S element itself is too low to be detected. (2) The sulfhydryl groups are located below the Ru-AuNPs film, and the substrate is nearly completely covered by the Ru-AuNPs film. It is found that the modification of substrate with sulfhydryl group and the resultant strong Au-S interactions between sulfhydryl group and AuNPs are crucial to the effective immobilization of such Ru-AuNPs on the surface and there is no stable film formed on bare ITO surface. The Ru-AuNPs-modified ITO electrode is quite stable, exhibits excellent electrochemiluminescene behavior, and hence holds great promise for solid-state electrochemiluminescene detection in capillary electrophoresis (CE) or a CE microchip. It provides a new methodology for fabrication of stable Ru(bpy)32+-containing structures on a solid electrode surface for solid-state electrochemiluminescene detection and, on the other hand, also provides an interesting method of immobilization of nanoparticles on the surfaces for applications.We have developed a simple thermal process for the preparation of small Pt nanoparticles, carried out by heating a H2PtCl6/3-thiophenemalonic acid (TA) aqueous solution without the addition of other reducing agents and protective agents. The formation of such Pt nanoparticles can be attributed to the direct redox between TA and PtCl62-. It is found that such Pt nanoparticles were quite stable for several months without any observable aggregation, indicating that TA serves as a very effective protective agent for the formation of Pt nanoparticles, which can be attributed to the fact that the sulfur atom in TA has a very strong nucleophilicity with lone-pair electrons and such a lone-pair electron can form a type of donor-acceptor complex with the Pt atom on the particle surface, yielding TA-protected Pt nanoparticles. The following treatment of such colloidal Pt solution with Ru(bpy)32+ causes the assembly of Pt nanoparticles into aggregates. Given the acidicreaction condition, the Pt particle surface is mainly covered by protonated carboxylic acid groups and thus the electrostatic interactions between positively charged Ru(bpy)32+ and Pt nanoparticles are only partially responsible for the formation of the aggregates. On the other hand, both TA and Ru(bpy)32+are rich in π-type bonds and the strong intermolecular π-π interactions between them also contribute to the formation of the aggregates via self-assembly. The most attractive point is that directly placing such aggregates on any bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors. The formation of the stable film of the aggregates on a bare electrode surface can be attributed to the fact that the TA in the aggregates is electrochemically polymerized during the cycling scans to form stable polymer film on electrode surface and the polymer film can effectively protect the aggregates from falling from the electrode surface. Our finding is significant for the following two reasons: (1) It provides a general methodology for the preparation of noble metal nanoparticles for applications; (2) Such assemblies will provide us new kind of materials for solid-state electrochemiluminescence detection in capillary electrophoresis (CE) or a CE microchip.We have reported on the first preparation of novel, robust Ru(bpy)32+-containing supramolecular microstructures via a solution-based self-assembly strategy, carried out by directly mixing H2PtCl6 and Ru(bpy)3Cl2 aqueous solutions at room temperature. It is found that the microstructures thus formed are robust enough to stand a violent sonication process and their formation is very fast. Given the positive charge of Ru(bpy)32+and the negative charge of PtCl62-, we may suggest that electrostatic attractions between these two complexes drive the formation of micrometer-scale supramolecular microstructures. The observation that the UV-vis absorption spectra of Ru(bpy)32+ aqueous solution is similar to that of the microstructures suspension in water further indicates that only pure electrostatic interactions are responsible for the formation of the microstructures. The electrochemical behavior of the Ru(bpy)32+components contained in the solid film of the microstructures formed on the electrode surface is also studied and found to exhibit a diffusion-controlled voltammetric feature. We have found that both the molar ratio and concentration of reactants have a heavy influence on the morphologies of such microstructures. Most importantly, such microstructures exhibit excellent electrochemiluminescence behaviors and therefore hold great promise as new luminescent materials for solid-state electrochemiluminescencedetection in capillary electrophoresis (CE) or CE microchip.Keywords: nanomaterials, wet-chemical, self-assembly, electrochemiluminescence。

相关文档
最新文档