几种MEMS陀螺仪(gyroscope)的设计和性能比较
2024-微机械陀螺简述,微惯性技术

LOGO
1.2 微机械陀螺特点
MEMS陀螺仪是利用 coriolis 定理,将旋转物体的角速度转换成 和角速度成正比的直流电压信号,其核心部件通过掺杂技术、光刻技 术、腐蚀技术、LIGA技术、封装技术等批量生产的,它主要特点是
振动平板结构 振动梁结构 振动音叉结构 加速度计振动结构
振动平板结构 振动梁结构 振动音叉结构
按加工方式
体微机械加工 表征微机械加工 LIGA(光刻、电铸和注塑)
LOGO
1.3 微机械陀螺分类
按驱动方式
压电式 静电式 电磁式
微
机
按检测方式
压电检测 电容检测
械 陀
压阻式检测
螺
光学检测
分
隧道效应检测
类 闭环模式
4. 测量范围大,一些MEMS 陀螺仪测量范围可高达数千°/s
缺点: 目前,各种微机械陀螺的角速度测量精度相对较低,
漂移较大。
LOGO
1.3 微机械陀螺分类
按振动结构
微
机
械
陀
螺
分
按材料
类
旋转振动结构 线性振动结构
硅材料 非硅材料
振动盘结构陀螺 旋转盘结构陀螺
正交线振动结构 非正交线振动结构
单晶硅 多晶硅 石英 其它
速率陀螺
按工作模式
开环模式
速率积分陀螺
整角模式
LOGO
2、微机械陀螺根本原理
振动式微机械陀螺根本原理 柯氏加速度及柯氏力
LOGO
2.1 振动式微机械陀螺根本原理
MEMS加速度计(accelerometer)与陀螺仪的(gyroscope)原理介绍

基本應用原理
• F:物體所受合外力 • m:物體質量 • a:物體的加速度
• k:物質的彈性係數 • x:位移量
• C:電容量 • ε:介電常數 • A:極板截面積 • d:板間距離
MEMS加速度計原理
物體的加速度=物質的彈性係數X位移量/物體質量
A A點移動到B點
距離=1/2加速度 ×時間平方
• 陀螺儀又名角速度計,利用內部振動機械結構感測物體轉動所產生角速度, 進而計算出物體移動的角度。
• 兩者看起來很接近,不過加速度計只能偵測物體的移動行為,並不具備精確 偵測物體角度改變的能力,陀螺儀可以偵測物體水平改變的狀態,但無法計 算物體移動的激烈程度。
• 用簡單的例子就是Eee Stick 體感遙控器,這是一個類似 Wii 遊戲的遙控捍 , 例如玩平衡木遊戲,當搖桿向前傾斜時,陀螺儀用來計算搖桿傾斜的角度, 三軸加速度計可以偵測搖桿晃動的劇烈程度以及搖桿是否持續朝斜下方。
MEMS陀螺儀工作原理
• MEMS陀螺儀依賴於由相互正交的振動和轉動引起的交變 科氏力。振動物體被柔軟的彈性結構懸掛在基底之上。整 體動力學系統是二維彈性阻尼系統,在這個系統中振動和 轉動誘導的科氏力把正比於角速度的能量轉移到傳感模式。
Hale Waihona Puke 影響MEMS信號輸出因素• 透過改進設計和靜電調試使得驅動和傳感的共振頻率一致,以實現最大可能 的能量轉移,從而獲得最大靈敏度。大多數MEMS陀螺儀驅動和傳感模式完 全匹配或接近匹配,它對系統的振動參數變化極其敏感,而這些系統參數會 改變振動的固有頻率,因此需要一個好的控制架構來做修正。如果需要高的 品質因子(Q),驅動和感應的頻寬必須很窄。增加1%的頻寬可能降低20%的 信號輸出。(圖 a) 還有阻尼大小也會影響信號輸出。(圖 b)
MEMS陀螺仪的原理与应用优势分析

MEMS陀螺仪的原理与应用优势分析MEMS陀螺仪(Micro-Electro-Mechanical Systems gyroscope)是一种利用微机电系统技术制造的陀螺仪。
它基于微机电系统(MEMS)的原理,采用微型的加速度传感器和补偿器,用于测量和检测设备的角速度和方向变化。
下面将对MEMS陀螺仪的原理和应用优势进行详细分析。
MEMS陀螺仪的原理主要基于角动量守恒定律。
当一个物体绕一个固定点旋转时,其角动量保持不变。
因此,MEMS陀螺仪通过测量和检测旋转物体围绕固定点的角动量变化来确定其角速度和方向。
在MEMS陀螺仪中,有两个主要的工作原理:电容效应和表面波效应。
首先,电容效应原理是利用固定的电容和可移动电容之间旋转的部分引起的电容变化来测量角速度。
这种原理利用了微机电系统中的微小工作间隙和电容结构,当设备旋转时,旋转的部分会引起电容间距的变化,从而产生电容变化,进而通过电路将电容变化转换为电压变化,最终测量出角速度。
其次,表面波效应原理是利用固定的波导和通过旋转感应器引起的表面波频率变化来测量角速度。
MEMS陀螺仪将固定波导和可旋转感应器相互排列,波导的表面波频率与波导材料和尺寸相关,而旋转感应器的旋转将改变波导的尺寸,进而影响表面波频率。
因此,通过测量表面波频率的变化,可以获取设备的角速度和方向信息。
MEMS陀螺仪具有许多应用优势。
首先,它具有小型化和集成化的特点。
MEMS陀螺仪利用微机电系统技术制造,可以实现微型化和集成化,从而在体积和重量上具有明显的优势。
这使得MEMS陀螺仪可以广泛应用于移动设备、汽车电子、航空航天等领域,提高产品的性能和可靠性。
其次,MEMS陀螺仪具有高精度和高灵敏度。
由于MEMS陀螺仪基于微型加速度传感器和补偿器,可以实现高精度的角速度测量和方向检测。
这使得MEMS陀螺仪在导航系统、姿态控制和稳定系统等方面具有重要应用,可以提供精确的角度信息。
此外,MEMS陀螺仪具有低功耗和低成本的特点。
MEMS陀螺仪的简要介绍(性能参数和使用)

MEMS陀螺仪的简要介绍(性能参数和使用)MEMS传感器市场浪潮可以从最早的汽车电子到近些年来的消费电子,和即将来到的物联网时代。
如今单一的传感器已不能满足人们对功能、智能的需要,像包括MEMS惯性传感器、MEMS环境传感器、MEMS光学传感器、甚至生物传感器等多种传感器数据融合将成为新时代传感器应用的趋势。
工欲善其事,必先利其器,这里就先以MEMS陀螺仪开始,简要介绍一下MEMS陀螺仪、主要性能参数和使用。
传统机械陀螺仪主要利用角动量守恒原理,即:对旋转的物体,它的转轴指向不会随着承载它的支架的旋转而变化。
MEMS陀螺仪主要利用科里奥利力(旋转物体在有径向运动时所受到的切向力)原理,公开的微机械陀螺仪均采用振动物体传感角速度的概念,利用振动来诱导和探测科里奥利力。
MEMS陀螺仪的核心是一个微加工机械单元,在设计上按照一个音叉机制共振运动,通过科里奥利力原理把角速率转换成一个特定感测结构的位移。
以一个单轴偏移(偏航,YAW)陀螺仪为例,通过图利探讨最简单的工作原理。
两个相同的质量块以方向相反的做水平震荡,如水平方向箭头所示。
当外部施加一个角速率,就会出现一个科氏力,力的方向垂直于质量运动方向,如垂直方向箭头所示。
产生的科氏力使感测质量发生位移,位移大小与所施加的角速率大小成正比。
因为感测器感测部分的动电极(转子)位于固定电极(定子)的侧边,上面的位移将会在定子和转子之间引起电容变化,因此,在陀螺仪输入部分施加的角速率被转化成一个专用电路可以检测的电子参数---电容量。
下图是一种MEMS陀螺仪的系统架构,,陀螺仪的讯号调节电路可以分为马达驱动和加速度计感测电路两个部分。
其中,马达驱动部分是透过静电引动方法,使驱动电路前后振动,为机械元件提供激励;而感测部分透过测量电容变化来测量科氏力在感测质量上产生的位移。
当然,MEMS陀螺仪还具有其它功能模块,比如自检功能电路,低功耗以及运动唤醒电路等等。
下面主要介绍MEMS陀螺仪的主要性能参数。
MEMS加速度计(accelerometer)与陀螺仪的(gyroscope)原理介绍

MEMS加速度計
• 加速度計是一種慣性傳感器,主要功用為測量物 體速度變化率,一般經常被用來測量距離及衝擊 力。
• 在微機電(MEMS)技術製造的加速度計,使尺寸 大大縮小,故具有體積小、重量輕、可靠度高、 低功率等優點。
• 目前最廣泛的應用在車用電子領域(high g & low g),近年來已有趨勢大量朝著Game 和手機的應 用。
• 陀螺儀又名角速度計,利用內部振動機械結構感測物體轉動所產生角速度, 進而計算出物體移動的角度。
• 兩者看起來很接近,不過加速度計只能偵測物體的移動行為,並不具備精確 偵測物體角度改變的能力,陀螺儀可以偵測物體水平改變的狀態,但無法計 算物體移動的激烈程度。
• 用簡單的例子就是Eee Stick 體感遙控器,這是一個類似 Wii 遊戲的遙控捍 , 例如玩平衡木遊戲,當搖桿向前傾斜時,陀螺儀用來計算搖桿傾斜的角度, 三軸加速度計可以偵測搖桿晃動的劇烈程度以及搖桿是否持續朝斜下方。
基本ቤተ መጻሕፍቲ ባይዱ用原理
• v = ω ×r • ω=2π/T • ω=n ×2π • a=v^2/r
=w^2 ×r =ω ×v ×r • F=ma
線速度=角速度×半徑 角速度=圓周/周期 角速度=轉速×圓周率 向心加速度=線速度平方/半徑
=角速度平方×半徑 =角速度×線速度×半徑 向心力=質量×向心加速度
MEMS陀螺儀結構
基本應用原理
• F:物體所受合外力 • m:物體質量 • a:物體的加速度
• k:物質的彈性係數 • x:位移量
• C:電容量 • ε:介電常數 • A:極板截面積 • d:板間距離
MEMS加速度計原理
物體的加速度=物質的彈性係數X位移量/物體質量
转(转)陀螺仪的结构原理以及种类简介

(转)陀螺仪的结构原理以及种类简介陀螺仪(Gyroscope)是测定姿态用的一种仪表。
经典陀螺仪具有高速旋转的刚体转子,能够不依赖任何外界信息而测出、等运载体的姿态。
现代,陀螺仪这一名称已推广到没有刚体转子而功能与经典陀螺仪等同的仪表。
发展概况1852年法国科学家J.B.L.傅科制作了一套能显示地球转动的仪器,命名为陀螺仪陀螺仪于1914年开始作为惯性基准构成飞机的电动陀螺稳定装置。
从20年代起,陀螺仪广泛应用于各种运载体(如船舶、飞机等)上,成为各种运载体的自动控制、制导和导航系统中测定姿态、角速度、角加速度、方位的重要元件。
40年代,陀螺仪开始在早期导弹上作为制导系统的姿态基准。
但是直至50年代,陀螺仪在构造原理上改进不大,大体上仍沿袭傅科所制作的陀螺仪,测量精度不高。
50年代以后陆续出现陀螺仪转子的液浮、磁浮、动压气浮、静电悬浮以及挠性支承技术,使陀螺仪的构造得到很大改善,测量精度大大提高。
1975年激光陀螺仪研制成功,它不存在机械摩擦不受重力加速度的影响,承受振动的能力强,在飞机和导弹的惯性导航系统中得到广泛应用。
结构和组成陀螺仪一般由转子、内外环和基座组成(图1[ 陀螺仪结构])。
通过轴承安装在内环上的转子作高速旋转。
内环通过轴承与外环相连,外环又通过轴承与运动物体(基座)相连。
转子相对于基座具有3个角运动自由度,因有三自由度陀螺仪之称。
但转子实际上只能绕内环轴和外环轴转动,因而近代又称之为双自由度陀螺仪。
它又因转子可自由转向任意方向而被称为自由转子陀螺仪。
陀螺仪的转子一般就是电动机的转子。
为了保证陀螺仪的性能良好,转子的角动量要尽可能大,为此电动机的转子放在定子的外部。
此外,为使转子的转速不变而用同步电机作为陀螺电机。
在控制系统中的陀螺仪应有输出姿态角信号的元件(角度传感器)。
图1 中陀螺仪的两个输出轴(内环轴和外环轴)上均装有这种元件。
为使陀螺仪工作于某种特定状态(如要求陀螺仪保持水平基准),在内环轴和外环轴上应装力矩器,以便对陀螺仪加以约束或修正。
3D Gyro (三轴陀螺仪)介绍

3D Gyro (三轴陀螺仪)在一定的初始条件和一定的外在力矩作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。
陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。
传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。
指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。
我们现在常接触的便是电子式的陀螺仪,有压电陀螺仪,微机械陀螺仪,光纤陀螺仪,激光陀螺仪等,并且还可以和加速度计,磁阻芯片,GPS,做成惯性导航控制系统。
-----------------------------------------------------MEMS陀螺仪基本技术原理要想将陀螺仪技术应用于手机、MID、手柄、鼠标、数码相机这样的小型设备中,将传统陀螺仪小型化是必然,为此,MEMS陀螺仪正全面走进数码设备、游戏设备。
MEMS是什么呢?MEMS(Micro Electro Mechanical systems,微电子机械系统)是建立在微米/纳米技术基础上的前沿技术,其是一种可对微米/纳米材料进行设计、加工、制造、测量和控制的技术。
它可将机械构件、光学系统、驱动部件、电控系统集成为一整体单元的微型系统。
MEMS产品已被广泛地应用于...数码相机(防抖防震器件,使用MEMS陀螺仪产品即便在持续震动的环境中,也能准确地进行归零的动作)、笔记本电脑或MID、手机(如加速度计)、MP3/MP4、游戏机等消费电子产品中。
陀螺仪利用这种技术,可在硅片上形成微米尺度的精密谐振结构,用来感应角速度的大小和方向。
与传统的利用角动量守恒原理的陀螺仪相比,MEMS陀螺仪使用了不同的工作原理。
传统的陀螺仪是一个不停转动的物体,其转轴的指向不随承载它的支架旋转而变化。
要把这样一个不停转动的没有支撑的能旋转的物体用微机械技术在硅片衬底上加工出来,显然难上加难。
GYPRO闭环MEMS陀螺仪

Product Express I精品推介Melexis推出全新版本的远红外(FIR)热传感器阵列MLX9064k相比当前版本的MLX90640,新版器件的热噪声显著降低,刷新率提高至64Hz,工作温度上限也提升至125°Co最新的传感技术使得温度测量功能更容易集成到应用中,尤其是在严苛的热条件下,安全性、效率和便捷性也更上一层楼。
新型MLX90641是一款16X12像素的小型IR阵列,采用符合行业标准的4引脚TO39封装,能够精确测量-40°C〜+300°C之间的温度。
器件出厂前己经过校准,在典型测量条件下精度可达到1°C。
其噪声等效温差(NETD)仅为0.1K RMS,支持更高的精度要求。
两种不同的视角(FoV)可供选择:标准55°X 35。
和110°X75°广角。
该器件采用3.3V单电源供电,可将所有结果存储在内部RAM中,以便通过FC兼容型数字接口进行访问,十分简单易用,即使在温度急剧变化的条件下,专有算法也能确保高度热稳定性。
MLX90641具有192个FIR像素点,使用性能较弱的处理器也毫无压力,有效降低了系统开销。
此外,器件不需要重新校准,进一步缩减了运营费用。
为了加速应用的开发,Melexis通过相关平台提供了MCU驱动程序软件,同时还额外提供一款用于通过热学特征对人员进行检测的软件。
温度范围的扩展开辟了多种全新的应用领域,新型MLX90641将特别适用于传统烤箱和微波炉等烹饪家电应用,以及动力电子元件过热检测和汽车等工业应用。
派克汉尼汾公司的精密流体部门推出其新型质量流量控制器X-Flowo X-Flow质量流量控制器通过长久验证的恒定流通量质量测量技术与派克流行的数字通信协议相结合,提供快速、可重复和可行的高精度流量控制。
X-Flow还具有派克跟踪系统,使客户能够跟踪资产,减少停机时间并集中文档。
此外,X-Flow附带免费下载软件Parker Floware,可以灵活地解决过程变化,下载存储的数据,查看控制器的性能以及设置警报和计数器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种MEMS陀螺仪(gyroscope)的设计和性能比较
现在市场上的MEMS陀螺仪主要有SYSTRON、BOSCH和INVENSENSE设计和生产。
前两者设计的陀螺仪属高端产品,主要用于汽车。
后者的属低端产品,主要用于消费类电子,象任天堂的Wii。
ADI2003年宣布设计和制造出了Z轴陀螺仪ADXRS300,但是没有正式成为产品。
下面主要介绍和比较三家公司的陀螺仪的设计、加工和性能。
一、Systron Donner “MICROGYRO” MEMS传感器:双石英调音叉
信号处理:混合信号架构,数字和模拟输出;开放回路;两个用于加速度传感器的A/D通道封装:MEMS封装在陶瓷腔体中并跟ASIC一起封装在塑料腔体中。
缺点:成本较高
Systron Donner “MICROGYRO”
二、博世BOSCH SMG 070
MEMS:平面MEMS;Z轴
信号处理:闭合回路;混合模式;自测试缺点:尺寸太大
BOSCH SMG 070
BOSCH SMG 070原理图
三、INVENSENSE IDG 300MEMS:体加工技术;用ASIC作封盖并提供收集和驱动信号的电极信号处理:开路;模拟
缺点:无零点修正;温度导致+/-50度/秒的漂移。
(汽车电子要求+/-1.5度/秒)
INVENSENSE IDG 300
INVENSENSE IDG 300原理图(曹志良)。