流体流动过程中能量损失与管道计算
流体在管道中对流动规律——流动能量损失的确定.

流体在管道中对流动规律——流动能量损失的确定流体流动时会产生能量损失,只有知道流体流动过程的能量损失,才能用柏努利方程解决流体输送中的实际问题。
流体流动过程的能量损失一般简称为流体阻力。
一、流体阻力的产生原因1.黏度理想流体在流动时不会产生流体阻力,因为理想流体是没有黏性的,实际流体流动时会产生流体阻力,是因为实际流体有黏性。
流体的黏性是流体流动时产生能力损失的根本原因,而流体层与层之间、流体和壁面之间的相对运动是产生内磨擦阻力,引起能量损失的必要条件。
流体黏性的大小用黏度来表示,其数值越大,在同样的流动条件下,流体阻力就会越大。
流体黏度的定义为:两层流体之间单位面积上的内磨擦与速度梯度为之比,用符号μ表示,其单位是:Pa ·s液体的黏度随温度升高减小,气体的黏度则随温度升高而增大。
压力变化时,液体的黏度基本不变;气体的黏度随压力的增加而增加得很少,在一般工程计算中可忽略,只有在极高或极低的压力下,才需要考虑压力对气体黏度的影响。
某些常用流体的黏度,可以从有关手册中查得。
流体流动时产生的能量损失除了与流体的黏性、流动距离有关外,还取决于管内流体的流速等因素。
流速对能量损失的影响与流体在流道内的流动形态有关。
2.流体的流动型态1883年著名的科学家雷诺用实验揭示了流体流动的两种截然不同的流动型态。
实验装置:图1-36,在1个透明的水箱内,水面下部安装1根带有喇叭形进口的玻璃管,管的下游装有阀门以便调节管内水的流速。
水箱的液面依靠控制进水管的进水和水箱上部的溢流管出水维持不变。
喇叭形进口处中心有一针形小管,有色液体由针管流出,有色液体的密度与水的密度几乎相同。
实验现象:①当玻璃管内水的流速较小时,管中心有色液体不扩散,呈现一根平稳的细线流,沿玻璃管的轴线向前流动(如图1-36(a)所示)。
②随着水的流速增大至某个值后,有色液体的细线开始抖动,弯曲,呈现波浪形(如图1-36(b)所示)。
③速度增大到一定程度后,有色液体的细线扩散,使管内水的颜色均匀一致(如图1-36(c )所示)。
《流体力学》第四章 流动阻力和能量损失4.8-4.9

2
实验研究表明:局部损失和沿程损失一样,不 同的流态遵循不同的规律。
如果流体以层流经过局部阻碍,而且受干扰后仍能 保持层流的话,局部阻力系数为: B
z=
Re
要使局部阻碍处受边壁强烈干扰的流动仍能保 持层流,只有当Re远小于2000才有可能。因此, 以紊流的局部损失讨论为主。
局部阻碍的种类很多,但按其流动特性 来分,主要是过流断面的扩大或收缩、流动 方向的改变、流量的合入与分出三种基本形 式以及这几种形式的不同组合。
2 a 1v12 a 2 v2 hm = 2g 2g v2 + (a 02 v2 - a 01v1 ) g
av a v v2 hm = + (a 02 v2 - a 01v1 ) 2g 2g g
(v1 - v2 ) hm = 2g
2
2 1 1
2 2 2
(取动能、动量修正系数均为1)
突然扩大的水头损失等于以平 均流速差计算的流速水头。 断面突然扩大时的水流图形
gQ p1 A2 - p2 A2 + g A2 ( Z1 - Z 2 ) = (a 02 v2 - a 01v1 ) g
Q = v2 A2 p1 p2 v2 ( Z1 + ) - ( Z 2 + ) = (a 02v2 - a 01v1 ) g g g
将上式代入能量方程
2 p1 a 1v12 p2 a 2 v2 hm = ( Z1 + + ) - (Z2 + + ) g 2g g 2g
Re=1000000时弯管的局部阻力系数
序号 断面形状 R/d(R/b) 1 圆形 方形 h/b=1.0 矩形 h/b=0.5 矩形 h/b=2.0
流体流动6-管路计算概述.

例:在20℃下苯由高位槽流入某容器 中,其间液位差5m且视作不变。两容 器均为敞口,输送管为φ32×3无缝钢 管(ε=0.05mm)长100m(包括局部 阻力的当量长度)。
求:流量。 该题为试 差法求解(因为流量未 知)
解:已知h=5m, p1=p2=pa, d=32-2×3=26mm 本题为操作型问题,输送管路的总阻 力损失已给定 即
现已知 设流动已进入阻力平方区,查p29图 1-32取初值
或用公式 以截面1-1(高位槽液面)及2-2(输送 管出口断面)列柏氏方程
查得20℃时苯为
查p29图1-32得 与假设值有差别,重新计算速度如下:
所得流速正确
4、分支与汇合管路的计算
工程上解决交点 0 处的能量交换和损失的两 种方法:
管径的优化:
最经济合理的管径dopt或流速u的选择:
使总费用(每年的操作费与按使用年限计的 设备折旧费之和)为最小 操作费:包括能耗及每年的大修费(设备费 的某一百分数),故u过小、d过大时,操作 费反而升高。 圆整:据管道的国家标准 结构限制:最小半径,如支撑在跨距5米以上 的普通钢管,管径应不小于40mm
2 1
2 2
P1
2 2 u l u l 1 3 d 1 2 d 3 2
P2
4
d u
2 1 1
4
d u
2 2 2
4
d u
2 3 3
操作型计算: 设为一常数,由上述方程组求出u1、u2、u3 如有必要,验算总管及各支管的Re数,对假 设的值作出修正
摩擦系数计算式:
du ,d
流体流动在管道中的能量损失分析

流体流动在管道中的能量损失分析管道是流体能量传递和流动的重要通道。
在流体流动过程中,由于管道内部和外部的各种因素的影响,会出现能量损失现象。
了解和分析管道中的能量损失对于优化管道系统设计以及提高流体传输效率具有重要意义。
本文将对流体流动在管道中的能量损失进行分析和讨论。
1. 管道摩阻损失管道内部的摩阻是流体流动中主要的能量损失来源。
摩阻损失是由于流体与管道壁面以及流体分子之间的相互作用而导致的。
在实际应用中,一般使用阻力系数来表示管道的摩阻损失。
常见的阻力系数有雷诺数、摩阻系数等。
2. 管道展向损失管道的展向变化也会导致能量损失。
展向变化会引起流体的速度变化和压力变化,从而引起能量的损失。
一般情况下,展向变化越大,能量损失越大。
常见的展向损失形式有管子的扩流和缩流。
3. 管道弯头损失管道中的弯头会引起流体流动方向的改变,从而引起能量损失。
弯头会造成流体分离、涡旋和摩擦,从而引起能量转化和能量损失。
弯头损失一般用弯头阻力系数来表示。
4. 管道阻塞损失管道中可能出现各种类型的阻塞物,如沉积物、腐蚀产物等。
这些阻塞物会导致管道中的截面积减小,从而引起压力降低和能量损失。
阻塞损失与阻塞物的形状、粘度、密度等有关。
5. 管道分歧损失管道中的分歧会导致流体流动方向改变和速度分布不均匀,从而引起能量损失。
对于分歧损失的分析和计算,需要考虑分歧的形状、角度、大小等因素。
6. 管道壁面摩擦损失流体在管道内部流动时,与管道壁面之间存在摩擦力。
摩擦力会消耗流体的能量,从而引起能量损失。
管道壁面摩擦损失与管道的表面粗糙度、流体的黏度等因素相关。
综上所述,管道中的能量损失是由多个因素共同作用而产生的。
了解和分析这些能量损失的来源和特点,对于优化管道系统设计、提高流体传输效率具有重要意义。
在实际应用中,通过合理选择管道材料、减小展向变化、优化管道弯头设计等方式,可以有效减少能量损失,提高管道系统的性能。
流体力学流动效率计算公式

流体力学流动效率计算公式流体力学是研究流体在运动中的力学性质和规律的一门学科。
在工程领域中,流体力学的研究对于设计和优化流体系统具有重要意义。
流动效率是评价流体系统性能的重要指标之一,它反映了流体在管道或设备中的运动效果和能量损失情况。
在工程实践中,我们常常需要计算流动效率来评估流体系统的性能,并根据计算结果进行优化设计。
本文将介绍流体力学流动效率的计算公式及其应用。
1. 流动效率的定义。
流动效率是指流体在管道或设备中的运动效果和能量损失情况。
在实际工程中,流动效率通常用流动的能量损失与输入的能量之比来表示,即流动效率=输出能量/输入能量。
流动效率的计算可以帮助工程师了解流体系统的性能状况,找出能量损失的原因,并进行优化设计。
2. 流动效率的计算公式。
流动效率的计算公式可以根据具体的流体系统和流动情况来确定。
一般来说,流动效率的计算公式可以分为两种情况,定常流动和非定常流动。
(1)定常流动情况下的流动效率计算公式。
在定常流动情况下,流动效率可以用流体在管道或设备中的能量损失与输入的能量之比来表示。
假设流体在管道中的能量损失为ΔP,输入的能量为P,那么流动效率η可以表示为:η = (P-ΔP)/P。
其中,ΔP为流体在管道中的能量损失,P为输入的能量。
(2)非定常流动情况下的流动效率计算公式。
在非定常流动情况下,流动效率的计算相对复杂一些。
一般来说,可以利用流体动力学方程和能量守恒方程来进行计算。
非定常流动情况下的流动效率计算公式可以表示为:η = (W-ΔW)/W。
其中,W为输入的能量,ΔW为流体在管道中的能量损失。
3. 流动效率的应用。
流动效率的计算可以帮助工程师评估流体系统的性能,找出能量损失的原因,并进行优化设计。
在实际工程中,流动效率的应用非常广泛,下面以几个具体的应用场景来介绍流动效率的应用。
(1)管道流动效率的计算。
在管道流动中,流动效率的计算可以帮助工程师了解管道中的能量损失情况,找出能量损失的原因,并进行管道的优化设计。
管内流体流动损失计算公式

管内流体流动损失计算公式管道是工业生产中常见的输送工具,而管道内流体的流动损失是影响管道输送效率的重要因素之一。
在工程设计和运行过程中,对管内流体流动损失进行准确的计算和分析,可以帮助工程师们更好地优化管道系统,提高输送效率,降低能耗成本。
本文将介绍管内流体流动损失的计算公式及其应用。
首先,我们需要了解一下管内流体流动损失的定义。
管内流体流动损失是指由于管道内流体流动而产生的能量损失,其大小与流体的流速、管道的形状和粗糙度、流体的黏度等因素有关。
在实际工程中,通常采用一些经验公式或者理论模型来计算管内流体流动损失,以便进行工程设计和运行分析。
管内流体流动损失的计算公式可以根据流体的性质和管道的特点进行选择。
在一般情况下,可以采用以下几种常见的计算公式:1. 瑞利数公式。
瑞利数是描述流体流动稳定性的一个重要参数,其定义为惯性力与粘性力的比值。
在管道内流体流动过程中,瑞利数的大小会影响流体的流动状态和流动损失的大小。
瑞利数公式可以表示为:Re = ρVD/μ。
其中,Re为瑞利数,ρ为流体的密度,V为流体的流速,D为管道的直径,μ为流体的黏度。
通过计算瑞利数,可以判断流体的流动状态,并进一步计算管内流体流动损失。
2. 辛克勒公式。
辛克勒公式是描述管道内流体流动损失的经验公式之一,适用于流速较低、管道内壁较光滑的情况。
辛克勒公式可以表示为:ΔP = f (L/D) (V^2/2g)。
其中,ΔP为管道内流体流动损失的压力降,f为摩擦阻力系数,L为管道的长度,D为管道的直径,V为流体的流速,g为重力加速度。
通过辛克勒公式,可以计算出管道内流体流动损失的压力降。
3. 安德森-达西公式。
安德森-达西公式是另一种常见的管内流体流动损失计算公式,适用于流速较高、管道内壁较粗糙的情况。
安德森-达西公式可以表示为:ΔP = f (L/D) (V^2/2g) + K (V^2/2g)。
其中,ΔP为管道内流体流动损失的压力降,f为摩擦阻力系数,L为管道的长度,D为管道的直径,V为流体的流速,g为重力加速度,K为局部阻力系数。
流体力学第5章管流损失和阻力计算

除了流体与管壁之间的摩擦外,流体内部的粘性、湍流等也会导致能量损失。 例如,湍流会使流体的流动变得不规则,增加流体之间的相互碰撞和摩擦,从 而产生更多的能量损失。
损失和阻力的影响
01
能量消耗
管流损失和阻力会导致流体在 流动过程中能量不断损失,这 需要额外提供能量来克服这些 损失,如泵或风机的能耗会增 加。
02 系统效率
管路中的损失和阻力会降低整 个系统的效率,使得系统需要 更多的输入能量才能达到预期 的输出效果。
03
设备选型
04
在进行设备选型时,需要考虑管 路中的损失和阻力,以确保所选 设备能够满足实际需求。例如, 在选择泵时,需要考虑到管路中 的损失和阻力,以确保泵能够提 供足够的扬程和流量。
安全风险
理论发展
实验结果可为流体力学理论的发展提 供实证支持,进一步完善管流损失和 阻力的计算模型。
THANKS
感谢观看
过大的管流损失和阻力可能会导 致流体流动受阻,甚至产生流体 过热、压力过高等问题,这可能 对设备和人员安全造成威胁。因 此,需要进行合理的设计和操作 ,以避免这些问题的发生。
02
管流损失的计算
局部损失计算
局部损失是由于流体在管道中 流动时,遇到突然扩大、缩小、 弯曲等局部障碍而产生的能量 损失。
控制流体流速和压力
降低流体流速
01
适当降低流体在管路中的流速,可以减小流体流动的阻力,从
而降低管流损失。
控制流体压力
02
合理控制流体在管路中的压力,避免过高的压力导致流体流动
阻力的增加。
使用减压阀和稳压阀
03
在管路中安装减压阀和稳压阀,可以稳定流体压力,减小流体
流体力学第六章 流动阻力及能量损失

第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35~60
20~40 5~7 2~4 1.5~2.5 25~30 35~45 >18 4~8 8~12 0.5~1.5 18~20
1.4.5.2 简单管路
简单管路是指具有相同管径、相同流量的管路,它是 组成各种复杂管路的基本单元。在管路上,流动阻力 即包括沿程阻力也包括局部阻力,因此其阻力公式为:
即hp hpi hp1 hp 2 hpn hl hk
i 1 j k 2 2 ln n vn l1 1v12 l2 2v2 (1 1 ) (2 2 ) (n n ) de1 2 de 2 2 d en 2
压头损失项
hW hL hM 米流体柱(或帕)
• 实际流体在流动过程中才会产生流动阻力,为了克服该 阻力才有阻力损失,因此,在工程上常将能量损失表示为动
能的某一倍数,这一倍数称为阻力系数。
1.4.1 流态和雷诺试验
1.4.1.1雷诺试验 在一般流动过程中,由于流体流动速 度不同,流体质点的运动可能处于两种完 全不同的状态。一种是流体质点互不干扰 而有规则的层流运动。而另一种则是流体 质点速度存在脉动的湍流流动。层流中, 流体质点沿其轨迹层次分明地向前运动, 其轨迹是一些平滑的随时间变化较慢的曲 线。湍流中流体质点的轨迹杂乱无章,互 相交错,而且迅速地变化,流体微团(或称 涡体)在顺流向运动的同时,还作横向、垂 向和局部逆向运动,也与它周围的流体发 生混掺。那么流体质点在什么情况下发生 层流流动,什么情况下发生湍流流动,什 么情况下发生从层流向湍流过渡呢?在讨 论这个问题之前,现看一下雷诺试验:
前一种情况说明流体运 动时,流体的质点成为互不 干扰的细流前进,各股流互 相平行,层次分明。流体的 这种流态是层流。 后一种情况说明流体流 动时,出现一种紊乱态。流 体各质点作不规则的运动。 液流内各股细流相互更换位 置,流体质点有轴向和横向 运动,互相撞击产生湍动和 旋涡,这种流态叫湍流或称 紊流。
试验时首先稍微开启阀门K ,流 体便开始缓慢的由水箱G中流出。然 后将细管上的阀门P稍微开启,则有 有色液体从T1管流入玻璃管T中,在 T管中形成一条直线,且很稳定。随 后如果将阀门K再稍微开大一些,则 玻璃管中流体的流速随之增大,但是 上述现象任然不变,染色流束仍将保 持稳定流态。也就是说当玻璃管内的 流速较低时,从细管注入的颜色液体 能成为单独的一股细流前进,同玻璃 内的水不相混杂。 但当K开启到一定程度时,也就 是当玻璃管内的流速较高时,从细管 注入的那股带颜色的细流马上消失在 水中,同水混杂起来。
发生炉煤气
5~8 3~5
1~3
天然煤气
氧气(p<100tm) (100tm<p<00tm)
20~25
7~8 3~4
流体种类
烟气(t=600~800℃) (t=300~400℃)
流速 v
m/s
1.5~2.0 2.0~3.0
过热蒸汽
饱和蒸汽 高压水 低压水 一般生产用冷却水管 煤粉与空气混合物(水平管) (循环管) (直吹管) 乙炔 二氧化碳 泥浆管 收尘管
2 H 气v孔 hM 孔 de 2
式中:H――料层高度,m; v孔 ――孔隙中的气流速度,m/s; de――孔隙的当量直径,m; 气 ――气体密度,kg/m3; 孔 ――阻力系数。
对上式的修正:
2 9 (1 ) H 气v hM 3 2 4 dm 2
式中:H――料层高度,m; dm――颗粒的平均直径,m; v ――气体通过散料层空床的流速,m/s;
Q
4
( D1 D2 )
2 ,而不是 ( D D2 )
1 2
4
Q ( D1 D2 )
2
(m / s)
1.4.2 沿程能量损失
l v2 hl d 2 • 式中 hl----沿程能量损失, N / m2或J / m3 ;
l -----管长,m;
1 2 v -----气体的动压头,N / m2 ; 2
D1 D2
必须着重指出,当量直径只是用来代替圆管的直径D, 以表明管道的几何因素对某些流体力学现象有相同的影响。 它不应该代替圆管的直径去计算不属于这个范围的物理量, 例如截面积、流速、流量等。例如上述的环形管道的截面 积是 时,流速应是
而不是 2 2
4 ( D1 D2 )
4
;其间的流量是 2 Q m3/s
当气体横向垂直流过管束时的阻力损失可按下式计算:
hM K
v2
2
( N / m2 )
式中: v――气体在通道内的工况流速,m/s;
――气体工况密度,kg/m3;
K――整个管道的阻力损失系数。
1.4.4.3 气体通过散料层的阻力损失
对于稳定均匀的散料层,可采用下式计算气体通过散 料层的阻力损失:
――物料堆积孔隙率; ――颗粒球形度;
A ――修正阻力损失系数,其值由实验确定。 f (Re )
1.4.5 管道计算
管道计算的目的是确定流速、管道尺寸、流动阻力 之间的关系。在工程实际中所遇到的管道问题可以分为 三类:
①已知流量和管道尺寸,计算压强降;
②已知管道尺寸和允许的压强降,确定流量;
层流、湍流示意图:
1.4.1.2 雷诺准数 (1)雷诺准数: Re D
式中
D:管道直径;
v:流速;
ρ :流体密度;
µ:动力粘度。
(2)雷诺准数的物理意义:表示作用于流体上的惯性 力与粘性力之比(相对大小)。
对于在平直的圆管中流动的流体: Re≤2320:流态属层流 Re≥4000:流态属湍流 2320<Re <4000:流态是不稳定的,可能是层流,也可能 是湍流,而且极容易从一种流态转变为另一种流态,所以 称过渡流。
RH
因此,水力半径反映了管道或设备的集合因素对流动状态,也就 是对阻力大小的影响。 对于圆形管道,
F
D2
4
D2
, D
于是
RH
F D 4 D 4
即圆管直径为水力半径的4倍,对于非圆形管道或设备,也取水力 半径的4倍表示其尺寸,即取当量直径: De=4RH
1.4 流体流动过程中 能量损失与管道计算
•
实际流体由于具有粘性,在流动时就产生阻力。对于不可压缩流 体来说,这种阻力使流体的一部分机械能,不可逆地转化为热能而损 失到环境中去。这部分能量便不再参加流体动力学过程,称之为能量 损失。单位重量(单位体积)流体的能量损失,称为水头损失(压头 损失)并以hw(或△p)表示。
n----指数,可取n=0.285。
B值可取:球心阀,B=48.8;三通,B=32.5;角阀,B=21.7; 900弯头B=16.3。 在湍流流态下,可以认为局部阻力系数与Re无关。
1.4.4 特殊阻力引起的能量损失
1.4.4.1制品堆垛的阻力损失
hM K
v
2
2
L
式中: v ――堆垛空隙中的气体工况流速,m/s;
光滑的金属管道: =0.02~0.025;
一般氧化的金属管道: =0.035~0.04; 有锈的金属管道: =0.045;
砖砌管道: =0.05~0.06。
1.4.3局部能量损失
当流体经管道上的管件、阀门及出入口等处流过时 由于流体流向和速度大小的改变,以及产生旋涡等原因, 产生比同样长度的直管大得多的阻力,这种由于在局部地 方流动受到障碍和干扰而产生的附加阻力叫局部阻力。必 须注意到,干扰的因素虽然只是产生于局部地方,但其影 响在下游较长一段距离内却没有消失。
1.4.1.3 水力半径和当量直径
在生产上常常会遇到非圆形管,例如有些气体的 管道是矩形的,有些是环形的。对于非圆形管道内流 体的流动,必须找到一个和直径相当的量来计算Re值 以及阻力大小,即要用当量直径De来代替圆形管道的 直径D。
当量直径可通过水力半径RH求出。水力半径的定 义是:与流动方向相垂直的截面积F与被流体所浸润 的周边长度Π 之比,即 F
流 体 种 类
冷空气(p>5000Pa) (p<5000Pa) 热空气(p>5000) (1500 Pa <p<5000 Pa) (p<5000Pa) 压缩空气(p<4atm) 高压净煤气(不预热) (预热)
流速 v
9~12 6~8 5~7 3~5 1~3 8~15 8~12 6~8
m/s
低压净煤气(不预热) (预热)
管道的合理选择直接影响建设投资和能源消耗。当流量一定时,管 径越大,气流速度越小,能量消耗越低,但是基建投资费用越高; 反之,如果流速太大,虽然可节省基建投资,但经常性的内力消耗 会增高,为此在实际中必存在一个使基建投资较少,动力消耗也较 小的所谓“经济流速”。下表列举了一般工程实际中常见流体的 “经济流速”的选择范围。
――气体工况密度,kg/m3;
L――通道长度,m; K――气体通过每米通道时的阻力损失参数,Pa/m。
a K b de
de――孔隙当量直径,m; 直通式排列时:a=1.14,b=0.25; 交错式排列时:a=1.57,b=0.25;
其他情况,a、b可由实验确定。
1.4.4.2 气体通过管束的阻力损失
为了与沿程阻力的表示方法相一致,局部压头损失可表 示为:
w2 hM 2g
米流体柱
式中 hM----因局部阻力而产生的压头损失,米流体柱;
局部阻力系数 值在层流流态下随Re值而变化。 A 当Re<10时: Re
当Re较大时:
B n Re
式中 A、B----常数;
n
r