小升初数学复习专题3:列方程解应用题专题训练(打印版)

合集下载

2017小升初数学复习第一轮阶段三:解方程及列方程解应用题

2017小升初数学复习第一轮阶段三:解方程及列方程解应用题

小升初总复习第一轮:阶段三一、字母表示数【重点梳理】1.用字母可以表示一个数,也可以表示一些数,也可以表示无数个数。

2.字母表示关系时,构成了一定的数量关系,它可以表示几个量之间的联系。

3.字母表示量时,构成了含有字母的量,它可以表示一定数量之间的关系。

【例题精讲】例1.用字母表示下列关系:(1)面粉每千克a元,大米每千克b元,面粉和大米各买10千克,付出c元,应找回多少元?(2)小明x天读书c页,平均每天读多少页?(3)某工厂每月用煤a吨,实际节约1.5吨,实际每月用煤多少吨?(4)小王每天做a个零件,小李每天比小王多做x个,7天两人一共做了多少个?(5)每本练习本a元,每支铅笔b元,小红买了4本练习本和6支铅笔,共花了多少元?(6)第一包化肥重A千克,第二包化肥比第一包的1.2倍轻B千克,第二包化肥重多少千克?例2.说一说下面每个式子所表示的意义:1.甲、乙两地相距S千米,快车从甲地开往乙地,6小时行完全程,慢车从乙地开往甲地,8小时行完全程。

两辆车同时出发,相向而行。

(1)S÷6表示:(2)S÷8表示:(3)S÷6 - S÷8表示:(4)S÷(S÷6+S÷8)表示:2.图书馆故事书X本,科技树比故事书多50本。

(1)X+50表示:(2)X+X+50表示:(3)(X+50)÷X表示:【课堂练习】1.判断(1)甲数是a,比乙数的3倍多b,表示的式子是(a+b)÷3。

()(2)b×b可以简写成2b。

()(3)a和2a所表示的意义相同。

()(4)4a表示4个相乘。

()2.填空(1)一批水泥,用汽车运走了a吨,剩下的比运走的少b吨,这批货共有()吨。

(2)一辆客车有60名乘客,到汉口东站下去a名,车上还有乘客()名。

(3)一架飞机每小时行495千米,x小时飞行()千米。

(4)长方形长10厘米,宽a厘米,面积是()平方厘米。

(完整版)小升初数学专项题-列方程解应用题

(完整版)小升初数学专项题-列方程解应用题

列方程解应用题【基础概念】:列方程解决问题就是根据题目中的等量关系先列出方程,再求得问题中的未知量的一种解决问题的方法。

知量的一种解决问题的方法。

把所求问题用一个字母表示,把所求问题用一个字母表示,把所求问题用一个字母表示,并让其参与分析与列式,并让其参与分析与列式,并让其参与分析与列式,很快理很快理清题中的数量关系,可以使一些整数、分数、百分数的应用题化难为易,既可以节省时间,又可以提高解题能力。

【典型例题1】:贵诚超市推销一种积压商品,减价25%出售,每件售价42元,原定价是多少元?【小结】:解决这类问题首先要找到等量关系——原价-减少的钱数=现价,再根据等量关系列出方程,从而解决问题。

【巩固练习】1.列方程解答。

2.列方程解答。

【典型例题2】:甲乙两地相距480千米,客货两车同时从甲乙两地相向而行,客车平均每小时行65千米,货车平均每小时行60千米,行驶了3小时,这时两车还相距多少千米?小时,这时两车还相距多少千米?【小结】:解决这类问题的关键是要明确“行驶的路程、剩下的路程、甲乙两地的距离”之间的关系,即行驶的路程+剩下的路程=甲乙两地的距离,列出方程解答即可。

甲乙两地的距离,列出方程解答即可。

【巩固练习】【巩固练习】3. 甲乙两地相距480千米.客车和货车同时从两地相对开出,千米.客车和货车同时从两地相对开出,相向而行,相向而行,4小时后,小时后,两车还两车还相距80千米.已知货车每小时行53千米,问客车每小时行多少千米?千米,问客车每小时行多少千米?4.一辆客车和一辆货车从甲乙两地同时出发相向而行,经过45小时两车相遇,这时货车行了全程的40%,已知货车每小时行60千米,求甲乙两地的距离。

千米,求甲乙两地的距离。

5、有两包面粉,第一包重是第二包的两倍,如果从第一包取出10千克放入第二包,那么两包样重,问,第一包面粉多重?6、六年级学生合买一件礼物 给母校作纪念,如果 每人出6元则多48元,如果每人出4.5元 ,则小27元,求六年级学生人数?7、妈妈买回一箱梨,按计划天数,如果每天吃四个,由多出24个,如果每天吃6个,则少四个,问计划吃多少天,妈妈买回了多少梨?8、育英学校小学体育室里有足球个数是排球数的2倍,体育课上,每班借7个足球5个排球,排球借完时,还有足球72个,体育室原来有足球排球多少个?9、甲乙仓库的冰箱台数是乙仓库的2倍,每天从甲仓库运出3台,从乙仓库运出冰箱2台,运出几天后,乙仓库的冰箱正好用完,而甲仓库还有25 台,原来乙仓库还有冰箱多少台10、有三个连续的整数,已知最少的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续的整数?11、已知三个连续奇数之和是75,求这三个数? 12、10年前父亲的年纪是儿子年纪的7倍,15年后父亲的年纪是他儿子的2倍,问今年父子二人各多少岁?13、小明今年的年龄是明明年龄的5倍,25年后,小明的年龄是明明年龄的2倍少16,问小明和明明各多少岁14、商店购进一批皮球每只成本1.5元,出售时每只售价2元,当商店卖到皮球剩20只时,成本已经全部收回,并且赚了50元,问商店原进购皮球多少只?15、一辆卡车运矿石,晴天每天可运20次,雨天可运12次,一共运了112次,平均每天运次,问这几天当中有几个晴天几个雨天?14次,问这几天当中有几个晴天几个雨天?答案及解析:答案及解析:例1、【思路分析】:本题中的等量关系是:原价-减少的钱数=现价,减少的钱数=原价×25%,所以原价-原价×25%=现价,即可解决。

六年级下册数学试题-小升初解方程应用题及答案3-人教版

六年级下册数学试题-小升初解方程应用题及答案3-人教版

六年级下册数学-小升初解方程应用题及答案-人教版评卷人得分一、解答题1.下面是一个同学证明1=2的过程,请你先判断一下,他做得对不对,如果错了,请说明错在哪一步?如果a=b,且a,b>0,则1=2.证明:①因为:a,b>0②又因为:a=b③两边同“×b”,有:a×b=b×b④两边同“﹣a×a”,得:a×b﹣a×a=b×b﹣a×a⑤两边分别提取与分解:a×(b﹣a)=(b+a)×(b﹣a)⑥两边同“÷(b﹣a)”,得a=(b+a)⑦用b=a代入,得:a=2a⑧两边同“÷a”,有:1=2所以:1=2正确!2.补全等式.(1)x+24=71x+24﹣24=71(2)y﹣24+24=71.3.已知5a﹣3b﹣1=5b﹣3a,利用等式的性质比较a、b的大小.4.列式计算.(1)0.6与2.25的积去除3.2与1.85的差,商是多少?(2)一个数的比30的25%多1.5,求这个数.345.用方程表示下面的数量关系。

小方每天跑s km,他一个星期共跑2.9km。

()6.用方程表示下面的数量关系。

有a颗水果糖,平均分给26个小朋友,每人分3颗,正好分完。

()7.给小式子找家。

5+8a=37 4-2x 4y=5a 5a÷818×0.2=3.6 a+9<16 a÷4=7 4y+5y=7×9等式方程不等式8.货架上有三种不同规格的饮料,每层货架上的总质量相等。

如果每瓶重100克,那么每瓶重()克。

9.看图列方程10.按要求写方程.方程中含有除法式子11.如下图所示,一架天平的左边托盘中放一个20克和一个30克的木块,右边托盘中放一个50克的砝码,天平处于平衡状态.请用一个等式表示左右两个托盘中物体的质量.12.如下图所示,一架天平左边托盘中放一个20克的木块和一个未知质量(用x 表示)的木块,右边托盘中放一个100克的砝码,当天平平衡时,请用一个等式表示出来.13.如图,在平衡架的左侧已挂上了4个砝码,每个20克.在右边第5格处必须挂多少克砝码?才能使平衡架平衡.14.想一想,画一画根据下列竹竿左侧放棋子的数量和位置,想一想,在右侧的什么位置放几个棋子才能保证竹竿平衡?共有几种方案呢?把你的方案都画出来.15.解方程并检验。

(完整版)小升初典型应用题精练列方程解应用题附答案

(完整版)小升初典型应用题精练列方程解应用题附答案

典型应用题精练(列方程解应用题)列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。

此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。

问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。

基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。

(2)等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

(3)调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

(4)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

(5)工程问题。

其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

(6)溶液配制问题。

其基本数量关系是:溶质=溶液×浓度(浓度溶质溶液,溶液溶质浓度==),溶液=溶质+溶剂。

2020年小升初数学专题复习训练—数与代数:应用题(3)(知识点总结+同步测试)

2020年小升初数学专题复习训练—数与代数:应用题(3)(知识点总结+同步测试)

2020年小升初数学专题复习训练——数与代数应用题(3)知识点复习一.列方程解应用题(两步需要逆思考)【知识点归纳】列方程解应用题的步骤:①弄清题意,确定未知数,并用x表示.②找出题中数量之间的相等关系.③列方程,解方程.④检查或验算,写出答案.列方程解应用题的方法:①综合法:先把应用题中已知的数(量)和所设的未知数(量)列成有关的代数式,并找出它们之间的等量关系,列出方程.这是从部分到整体的一种思维过程,其思考的方向是从已知到未知.②分析法:先找出等量关系,再根据建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式,列出方程.这是从整体到部分的一种思维过程,其思考方向是从未知到已知.【命题方向】常考题型:例1:元旦期间,合益商场搞优惠活动,买一箱牛奶送一盒,五(1)班一共52人,如果买4分析:观察题干,分析数量关系,如果设每箱牛奶有x盒,则买的加送的牛奶盒数为4x+4,正好等于人数,则可得方程,解方程即可.解:设每箱牛奶有x盒,4x+4=52,4x=52-4,x=48÷4,x=12.答:每箱牛奶有12盒.故答案为:12.点评:观察题干,分析数量关系,设出未知数列方程解答即可.例2:同学们植树,一班比二班多植63棵,一班42人,平均每人植8棵,二班39人,平均每人植多少棵?(用方程解答)分析:根据题意可找出数量间的相等关系:一班植树的棵树-二班植树的棵数=一班比二班多植的63棵,已知一班的人数和平均每人植的棵数,二班的人数,所以设二班平均每人植x棵,列方程解答即可.解:设二班平均每人植x棵,由题意得,42×8-39x=63,39x=336-63,39x=273,x=7.答:二班平均每人植7棵.点评:此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.二.列方程解三步应用题(相遇问题)【知识点问题】甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程甲走的路程+乙走的路程=总路程【命题方向】常考题型:例1:甲乙两列火车分别从相距600千米的两地同时相向而行,2.5小时后两车还相距220千米.已知甲车每小时行80千米,乙车每小时行多少千米?分析:由题意知,甲车所行的路程、乙车所行的路程和两车相距的距离三部分的和正好是两地之间的距离;已知甲车速度,相遇时间,设出乙车速度,分别表示出两车所行的距离,加上两车相距的距离等于两地之间的距离,列出方程解答即可.解:设乙车每小时行x千米,由题意得,80×2.5+2.5x+220=600,200+2.5x+220=600,2.5x+420=600,2.5x=600-420,2.5x=180,x=72;答:乙车每小时行72千米.点评:此题主要考查相遇问题中的基本数量关系:速度和×相遇时间=总路程或甲车所行的路程+乙车所行的路程=两地之间的距离;再由关系式列方程解决问题.例2:甲乙两城相距460千米,货车以每小时60千米的速度从甲城开往乙城,2小时后,客车才从乙城开往甲城,又经过3.4小时两车相遇,客车每小时行多少千米?分析:根据题意从问题出发,要求客车每小时行多少千米?因为客车行驶的时间知道(3.4小时)必须先求客车行驶的路程;要求客车的路程,必须再求货车(2+3.4=5.4)小时内行驶了多少千米(60×5.4);然后解答即可.解:设客车每小时行x千米,3.4x+60×(2+3.4)=460,3.4x+60×5.4=460,3.4x=460-324,3.4x=136,x=136÷3.4,x=40.答:客车每小时行40千米.点评:本题是相遇问题,要注意路程与时间的对应,“3.4小时两车相遇”表示各自都行了3.4小时,本题的解答思路是:可以从问题入手去分析.三.列方程解含有两个未知数的应用题【知识点归纳】列方程解应用题的步骤:①弄清题意,确定未知数,并用x表示.②找出题中数量之间的相等关系.③列方程,解方程.④检查或验算,写出答案.【命题方向】例1:车库中停放若干辆双轮摩托车和四轮小轿车,已知车的辆数与车轮数的比是2:5,摩托车与四轮小轿车的比是()A、4:1B、3:1C、2:1D、1:1分析:设四轮小轿车有x辆,则四轮小轿车一共有4x个轮子,双轮摩托车有y辆,则双轮摩托车一共有2y 个轮子,再根据“车的辆数与车轮数的比是2:5,”求出摩托车与四轮小轿车的比.解:设四轮小轿车有x辆,双轮摩托车有y辆,(x+y):(4x+2y)=2:5,(4x+2y)×2=5(x+y),8x+4y=5x+5y,8x-5x=5y-4y,3x=y,所以,y:x=3:1,答:摩托车与四轮小轿车的比是3:1.故选:B.点评:解答此题的关键是,根据题意设出未知数,并根据数量关系写出比例,再根据比例的基本性质作答.例2:红星小学五年级有学生110人,男生人数是女生人数的1.2倍,男生、女生各有多少人?(用方程解)分析:根据题意数量间的相等关系为:女生人数+男生人数=110,设女生有x人,则男生有1.2x人,根据题意列出方程求解即可.解:设女生有x人,则男生有1.2x人,x+1.2x=110,2.2x=110,2.2x÷2.2=110÷2.2,x=50;男生人数:50×1.2=60(人).答:男、女生各有60人、50人.点评:此题考查列方程解应用题,解决此题的关键是女生人数+男生人数=110,由此得出答案.四.比例尺应用题【知识点归纳】分数比例尺和线段比例尺缩小比例尺和放大比例尺比例尺各部分的关系:图上距离:实际距离=比例尺图上距离:比例尺=实际距离实际距离×比例尺=图上距离.【命题方向】常考题型:例1:在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A、15B、17C、21分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”360÷24=15(小时),6+15=21(时);答:货轮到达B港的时间是21时.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=答:这幢教学楼的实际面积是720平方米.点评:分别求出长和宽的实际距离,是解答本题的关键.五.按比例分配应用题【知识点归纳】把一个数按一定的比(或连比)分成若干部分,叫做按比例分配.解答这类题的方法是:把一个总数A分成几部分,使顺次与几个已知数的连比成正比例关系,只要求出总份数,然后,把A分别乘以各部分量所占总量的几分之几,或者求出总份数后,再求平均每份是多少,然后,按照各个量所占的份数,求出几份是多少.【命题方向】常考题型:例1:一个三角形三个内角度数的比是3:2:1,这是一个()三角形.一个数乘分数的意义,求出最大角,进而判断即可.所以这个三角形是直角三角形故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角六.正、反比例应用题【知识点归纳】正比例和反比例都是两种相关联的量,一种量在变化,另一种量也随着变化.反比例:如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系,简称反比例.形式如:xy=k(一定)【命题方向】常考题型:例1:把1.5米长的竹竿直立在地上,量得它的影长是1.2米,同时量得学校的旗杆的影长是6.4米.学校的旗杆高多少米?分析:根据题意知道,物体的长度和它的影子的长度的比值一定,即物体的长度和它的影子的长度的成正比例,由此列式解答即可.解:设旗杆的高是x米.1.5:1.2=x:6.4,1.2x=1.5×6.4,x=8;答:旗杆的高是8米.点评:解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.例2:用边长15厘米的方砖给教室铺地,需要200块,如果改用边长25厘米的方砖铺地,需要多少块砖?分析:教室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.解:设需要x块砖,由题意得,25×25x=15×15×200,625x=45000,x=45000÷625,x=72;答:需要72块砖.点评:此题首先利用正反比例的意义判定两种量的关系,解答时关键不要把边长当做面积进行计算.2020年小升初数学专题复习同步测试卷题号一二三四五六总分得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)甲乙两筐苹果,甲筐重60千克,乙筐重x千克,从甲筐中取出8千克放入乙筐,两筐苹果就一样重.下列方程正确的是()A.60﹣x=8 B.x﹣60=8 C.x+8=60 D.x+8=60﹣82.(2分)农具厂要赶制500件农具,前10天平均每天制造32件.改进技术后,余下的每天制造36件,还要几天可以完成任务?列出方程错误的是()解:设还要x天可以完成任务.A.36x=500﹣32×10 B.(500﹣36x)÷10=32C.500﹣36x÷10=32 D.500﹣36x=32×103.(2分)两地相距128千米,甲、乙两人骑自行车同时从两地出发,相对而行4小时后相遇,甲每小时行14.5千米,甲每小时比乙慢()A.32千米B.17.5千米C.5千米D.3千米4.(2分)张宁和王晓星一共有画片86张.王晓星给张宁8张后,两人画片数同样多.王晓星原来有()张画片.A.15 B.51 C.745.(2分)小洋家客厅长5米,宽3.8米,画在练习本上,选用比例尺()较合适.A.B.C.6.(2分)要把实际距离缩小到原来的,应选择的比例尺为()A.1:50000000 B.1:5000 C.5000:17.(2分)用48厘米长的铁丝围成一个长方形,长方形长与宽的比是5:3,这个长方形的面积是()A.100平方厘米B.315平方厘米C.153平方厘米D.135平方厘米8.(2分)一个三角形的三个内角度数的比是1:2:3,这是()三角形.A.锐角B.直角C.钝角9.(2分)配制一种药水,药粉和水的质量比是1:40,要配制205千克的药水,需要药粉()A.5千克B.10千克C.20千克10.(2分)如右图所示,一个大长方形被两条线段分成四个小长方形.如果其中图形A、B、C的面积分别是2cm2、4cm2和5cm2那么阴影部分的面积为()cm2.A.1 B.C.D.二.填空题(共10小题,满分15分)11.(1分)看图列方程:列方程:.12.(1分)一根黄瓜30克,一支香蕉30克,它们的质量和是60克,等量关系是.13.(1分)列方程:.14.(3分)两辆汽车同时从相距522千米的两地相向而行,甲车每小时行50千米,乙车每小时行40千米,行了几小时后两车________?设行了x小时后两车.根据方程选择合适的信息.50x+40x+72=522;50x+40x﹣72=522.A.离中点72千米处相遇B.还相距72千米C.又相距72千米15.(2分)“姐姐和弟弟一共有180张邮票,其中姐姐的邮票数是弟弟的3倍,弟弟有多少张邮票?(列方程解答)”淘气在解决这道题时这样设未知数并列方程.解:设弟弟有x张邮票,姐姐有3x张邮票①这样设未知数并列方程是否正确?在括号内填“正确”或“不正确”.②如果不正确,请指出原因,并填在括号里..16.(2分)在一幅地图上,用3厘米代表150千米,这幅图纸的比例尺是;在这幅地图上量得甲、乙两地之间的距离是4.5厘米,则甲、乙两地实际相距千米.17.(1分)一个长方形零件,按比例尺1:50将它画在图纸上,长是15厘米,宽是8厘米,求这个零件的实际面积是平方米.18.(2分)六年级有42人,负责学校的两块卫生区.第一块卫生区30平方米,第二块卫生区40平方米.如果按照面积的大小分配值日生,两块卫生区各应派多少人?第一块、第二块(按第一块、第二块卫生区的顺序填写)19.(1分)操场边一棵小树的高度是1.5米,影子长度是0.8米,一棵大树的影子长度是4.8米,这棵大树的高度是米.20.(1分)如图,支架两侧每个孔的距离是4厘米,如果在支架右侧第4个孔挂4个珠子,那么在支架左侧第2个孔挂个这样的珠子才能保持支架平衡.三.判断题(共5小题,满分10分,每小题2分)21.(2分)计算图中两条彩带一共长多少米,列出的方程是6.9=x+2.7.(判断对错)22.(2分)门老师发给甲班每人4本故事书,乙班每人3本故事书,共发故事书716本;若发给甲班每人3本故事书,乙班每人4本故事书,则共发705本.两班共有203人.(判断对错)23.(2分)图上1厘米相当于地面上实际距离100米,这幅图的比例尺是..(判断对错)24.(2分)一块长方形菜地有984平方米,计划按3:5中茄子和西红柿,茄子要种369平方米.(判断对错)25.(2分)把一根木料锯成3段需要9分钟,如果锯成5段,需要l8分钟.列成比例式是:9:(3﹣1)=18:(5﹣1).(判断对错)四.计算题(共3小题,满分15分,每小题5分)26.(5分)看图列方程解决问题.27.(5分)看图列式计算.28.(5分)甲、乙两地相距1075km,一辆慢车从甲地开往乙地,每小时行90km;一辆快车从乙地出发,每小时比慢车多行35km.两车同时开出相向而行,出发后多长时间相遇?(用方程解)五.应用题(共4小题,满分20分,每小题5分)29.(5分)共享单车的广泛使用正不断改变人们的出行方式.目前某市四个品牌共享单车的投放量已达5.4万辆,期中A共享单车投放了1.2万辆,比B共享单车多60%,B共享单车投放了多少万辆?(用方程解答)30.(5分)小红买4块橡皮5枝铅笔,共用去3.82元.已知一块橡皮一枝铅笔共需要0.83元,一块橡皮需要多少元.(用方程解)31.(5分)在比例尺是1:6000000的地图上,甲、乙两地之间的距离是12厘米,一辆汽车从甲地开往乙地用了8小时,这辆汽车平均每小时行驶多少千米?32.(5分)小芳买了一本新书,计划每天读12页,20天正好读完.实际她只用15天就读完了,实际每天读了多少页?(用比例解)六.解答题(共4小题,满分20分,每小题5分)33.(5分)客车每时行46千米,比自行车每时行的3.5倍少1.6千米,自行车每时行多少千米?(用方程解答)34.(5分)看图列方程,并求出方程的解.35.(5分)在一块平行四边形小麦试验田.底长120米,高80米,用1:4000 的比例尺画在平面图上,这块试验田在图纸上的面积是多少?36.(5分)长方形的周长为192cm,长方形的长与宽的比是5:3,这个长方形的面积为多少平方厘米?参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.【分析】根据题意,设乙筐原来有x千克,有关系式:乙筐原来的质量+8千克=甲筐原来的质量﹣8千克,列方程即可.【解答】解:设乙筐原来有x千克,x+8=60﹣8x=60﹣8﹣8x=44答:乙筐原来有44千克.所以方程为:x+8=60﹣8.故选:D.【点评】本题主要考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.2.【分析】设还需要x天可以完成任务,根据题意,有关系式:前10天制造的农具数量+后x天制造的农具数量=500件,据此解答.【解答】解:设还需要x天可以完成任务,有关系式:后x天制造的农具数=总数﹣前10天制造的数量列方程为:36x=500﹣32×10所以A选项正确;由关系式:总数量﹣后x天生产的数量=前10他生产的数量列方程为:500﹣36x=32×10变形为:(500﹣36x)÷10=32所以选项B、D正确.所以选项C错误.故选:C.【点评】本题主要考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.3.【分析】设乙每小时行x千米,然后根据等量关系式:速度和×相遇时间=总路程,然后列方程解答求出乙的速度,再进一步解答即可.【解答】解:设乙每小时行x千米,(14.5+x)×4=12814.5+x=32x=17.517.5﹣14.5=3(千米)答:甲每小时比乙慢3千米.故选:D.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.4.【分析】根据题意,两人一共有画片86张.王晓星给张宁8张后,两人画片数同样多,由此可知:王晓星比张宁多(8×2)张,根据和差问题,(两数和﹣差)÷2=较小数,然后用和减去较小数就是较大数,据此解答.【解答】解:86﹣(86﹣8×2)÷2=86﹣70÷2=86﹣35=51(张),答:王晓星原来有51张画片.故选:B.【点评】此题属于“和差问题”,根据,(两数和﹣差)÷2=较小数,据此解答即可.5.【分析】实际距离和比例尺已知,依据“图上距离=实际距离×比例尺”即可求出操场的长和宽的图上距离,再与练习本的实际长度比较即可选出合适的答案【解答】解:因为5米=500厘米,3.8米=380厘米,A、500×=50厘米,380×=38厘米,画在练习本上,尺寸过大,不符合实际情况,故不合适;B、500×=5厘米,380×=3.8厘米,画在练习本比较合适;C、500×=0.5厘米,380×=0.38厘米,画在练习本上太小,故不合适.故选:B.【点评】此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意结合实际情况.6.【分析】根据比例尺的意义,即比例尺=图上距离:实际距离,再根据“把实际距离缩小到原来的,”是把原来的实际距离看做“1”,那现在图上距离是,由此即可解答.【解答】解::1=1:5000,故选:B.【点评】这道题主要考查比例尺的定义:比例尺是图上距离与实际距离的比.7.【分析】根据题意可知,48厘米是围成长方形的周长,则长与宽的和为:48÷2=24(厘米),利用按比分配原则,先计算其长和宽各是多少,然后利用长方形面积公式计算其面积即可.【解答】解:48÷2÷(5+3)=24÷8=3(厘米)(3×5)×(3×3)=15×9=135(平方厘米)答:这个长方形的面积为135平方厘米.故选:D.【点评】本题主要考查按比分配原则的应用,关键根据铁丝的长求出长方形的长和宽.8.【分析】三个内角度数的比是1:2:3,份数最大的角占,三角形的内角和为180°,用乘法得出最大角的度数,进而按照三角形的分类解答即可.【解答】解:180×=180×=90(度),根据直角三角形的含义可知:该三角形是直角三角形;答:这个三角形是直角三角形.故选:B.【点评】此题主要利用三角形的内角和与按比例分配来解答问题;用到的知识点:直角三角形的含义.9.【分析】首先求药粉和水的总份数,再求药粉占总份数的几分之几,最后根据乘法的意义求出药粉的千克数,列式解答即可.【解答】解:总份数:1+40=41,药粉的千克数205×=5(千克),答:需要药粉5千克.故选:A.【点评】此题解答的关键在于求出药粉占总数的几分之几,运用乘法即可求出药粉的重量.10.【分析】由于长方形A与长方形B等长,长方形B与长方形C等宽,设阴影所在的长方形的面积为x 平方厘米,即可列比例求出这个长方形的面积,阴影部分占这个长方形面积的一半,由此即可求出阴影部分面积.【解答】解:设阴影所在的长方形的面积为x平方厘米.2:x=4:54x=10x=2.52.5÷2=(平方厘米)答:阴影部分面积是厘米.故选:C.【点评】关键是求出阴影部分所在的长方形的面积.也可这样理解,长方形A与长方形B等长,长方形B与长方形C等宽,由于长方形A的面积是长方形B的一半,因此阴影部分所在的长方形的面积是长方形C的一半,从而求出阴影所在的长方形的面积,进而求出阴影部分面积.二.填空题(共10小题,满分15分)11.【分析】根据题干,设《三只小猪》有x本,则《十万个为什么》就是3x本,根据等量关系:《三只小猪》本数+《十万个为什么》本数=120本,据此列出方程即可解答问题.【解答】解:设《三只小猪》有x本,则《十万个为什么》就是3x本,根据题意可得:x+3x=1204x=120x=3030×3=90(本)答:《三只小猪》有30本,《十万个为什么》有90本,故答案为:x+3x=120.【点评】解答此题容易找出基本数量关系,由此列方程解决问题.12.【分析】根据题意可得等量关系式:一根黄瓜的质量+一支香蕉的质量=总质量60克,据此解答即可.【解答】解:一根黄瓜的质量+一支香蕉的质量=总质量60克故答案为:一根黄瓜的质量+一支香蕉的质量=总质量60克.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系.13.【分析】根据题意可得等量关系式:每盒的单价×盒数+一本书的价钱=总价,设每盒的单价是x元,然后列方程解答即可.【解答】解:设每盒的单价是x元,3x+7=283x=21x=7答:每盒的单价是7元.故答案为:3x+7=28.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.14.【分析】(1)根据:50x+40x+72=522,可得:甲车行的路程+乙车行的路程+72=两地之间的距离,所以是还相距72千米.(2)根据50x+40x﹣72=522,可得:甲车行驶的路程+乙车行驶的路程﹣72=两地之间的路程,也就是甲乙所行路程比全程多了72千米,所以为:又相距72千米.【解答】解:(1)由算式50x+40x+72=522可知:即甲车行的路程+乙车行的路程+72=两地之间的距离,所以是还相距72千米.(2)由算式50x+40x﹣72=522,可得:甲车行驶的路程+乙车行驶的路程﹣72=两地之间的路程,也就是甲乙所行路程比全程多了72千米,所以为:又相距72千米.故答案为:B;C.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.15.【分析】根据题干,设弟弟有x张,则姐姐就是3x张,再利用等量关系:姐姐的张数+弟弟的张数=总张数180,据此列出方程解决问题.【解答】解:设弟弟有x张,姐姐有3x张x+3x=1804x=180x=45答:弟弟45张邮票.由以上可知:①这样设未知数是正确的,但是没列方程,所以是不正确的.②没列方程,再添加上方程x+3x=180.故答案为:不正确,没列方程,再添加上方程x+3x=180.【点评】本题考查了运用方程解应用题的方法,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.16.【分析】根据比例尺的意义,=比例尺,据此求出这幅图的比例尺,再根据实际距离=图上距离÷比例尺,即可求出甲、乙两地相距多少千米.【解答】解:3厘米:150千米=3厘米:15000000厘米=3:15000000=1:50000004.5÷=4.5×5000000=22500000(厘米)22500000厘米=225千米答:这幅图纸的比例尺是1:5000000,甲、乙两地实际相距225千米.故答案为:1:5000000;225.【点评】此题主要考查比例尺的意义及已知比例尺和图上距离求实际距离.注意单位的换算.17.【分析】根据实际距离=图上距离÷比例尺,分别求出这个零件和实际的长和宽,再根据长方形的面积公式进行计算.据此解答.【解答】解:实际的长是:15÷=750(厘米)=7.5(米),实际的宽是:8=400(厘米)=4(米),实际面积是:7.5×4=30(平方米);答:这个零件的实际面积是30平方米.故答案为:30.【点评】本题的关键是根据实际距离=图上距离÷比例尺,求出这个长方形的长和宽,再根据长方形的面积公式进行计算.18.【分析】先求出两块卫生区的总面积,再分别求出两块卫生区的面积各占总面积的几分之几,把六年级学生人数看作单位“1”,根据一个数乘分数的意义,用乘法解答.【解答】解:30+40=70(平方米),42×=18(人),42×=24(人),答:第一块卫生区应分配值日生18人,第二块卫生区应分配值日生24人.故答案为:派18人、派24人.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律,即先求出总份数,再分别求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.19.【分析】影长与树高成正比,设这棵大树的高度是x米,先表示出小树影长和树的高度的比,再表示出大树影长和树的高度的比,组成比例,依据比例基本性质解答.【解答】解:设这棵大树的高度是x米,0.8:1.5=4.8:x0.8x=4.8×1.5x=9答:这棵大树的高度是9米.故答案为:9.【点评】本题考查了正反比例应用题,解答此题的关键是:表示出影长与树的高度的比.20.【分析】根据题意可知,支架平衡时,左边的孔数×挂的珠子数量=右边的孔数×挂的珠子数量,据此列反比例解答.【解答】解:设支架左侧第2个孔挂x个珠子,2x=4×42x=16x=8答:在支架左侧第2个孔挂8个这样的珠子才能保持支架平衡.故答案为:8.【点评】解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.三.判断题(共5小题,满分10分,每小题2分)21.【分析】设第一条彩带长x米,则第二条长x+2.7米,又知第二条长6.9米,所以可得方程6.9=x+2.7,解方程得到的x为第一条彩带长,再与第二条长度相加才得两条彩带一共长多少米.【解答】解:设第一条彩带长x米,x+2.7=6.9x+2.7﹣2.7=6.9﹣2.7x=4.2,4.2+6.9=11.1(米),答:两条彩带一共长11.1米.所以原题说法错误.故答案为:×.【点评】本题考查了列方程解应用题,注意求得的x不是两条彩带一共的长度.22.【分析】首先根据题意,如果甲班比乙班每人多发1本故事书,则共发故事书716本;如果甲班比乙班每人少发1本故事书,则共发故事书705本,所以甲班比乙班的人数多,甲班比乙班每多1人,则甲班就比乙班多发1本故事书,据此判断出甲班比乙班多11(716﹣705=11)人,设甲班有x人,则乙班有x﹣11人;然后根据:甲班的人数×4+乙班的人数×3=716,列出方程,求出甲班有多少人;然后用甲班的人数减去11,求出乙班有多少人,再把两个班的人数求和,求出两班一共有多少人即可.【解答】解:甲班比乙班多:716﹣705=11(人)设甲班有x人,则乙班有x﹣11人,4x+3(x﹣11)=7167x﹣33=7167x﹣33+33=716+337x=7497x÷7=749÷7x=107107﹣11+107=96+107=203(人)。

小学数学小升初列方程解应用题专项练习(有难度附参考答案)

小学数学小升初列方程解应用题专项练习(有难度附参考答案)

小升初数学列方程解应用题练习班级考号姓名总分1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。

2、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.3、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.4、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?6、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?9、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?10、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.11、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?12、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?13、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.14、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.15、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?16、25除以一个数的2倍,商是3余1,求这个数.17、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.18、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.19、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升?21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.附:参考答案1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。

小升初数学复习专题3:列方程解应用题专题训练(打印版)汇编

小升初数学复习专题3:列方程解应用题专题训练(打印版)汇编

列方程解应用题1、知识回顾我们在小学阶段学习过许多数量关系:(1)行程问题中路程、速度、时间之间的关系:相遇问题、追及问题、水流问题、过桥问题等;(2)溶液中浓度、溶液、溶质的关系;工程问题中工程量、工作效率、工作时间之间的关系;(3)年龄、数字问题(4)其它2、方法总结.列方程解应用题的步骤是:(1)审题:弄清题意,确定已知量、未知量及它们的关系;(2)设元:选择适当未知数,用字母表示;(3)列代数式:根据条件,用含所设未知数的代数式表示其他未知量;(4)列方程:利用列代数式时未用过的等量关系,列出方程;(5)解方程:正确运用等式的性质,求出方程的解;(6)检验并答题。

一、“鸡兔同笼问题”例1、苹果和梨共14筐,总重520千克,其中苹果每筐重35千克,梨每筐重40千克,问梨和苹果各几筐?练习:1、鸡兔共36个头,118只脚,问鸡兔各多少只?2、某人给农作物除草,下雨天每天除草12亩,晴天每天除20亩,他连续除草8天,平均每天除草14亩,那么这几天中,晴天有几天?3、工人搬运100只玻璃杯,搬运一只得3角,损坏一只赔5角,搬运完共得到26元。

损坏了多少只?二“盈亏问题”例2、六年级同学分苹果,如果每人分18个,苹果还剩2个,如果每人分20个,还差18个,一共多少人?练习:1、小雅去买一种练习本,如果买4本还剩1元,如果买6本就还差2元。

每本练习本多少钱?2、少先队颁奖,如果每人发4枝,则剩10枝,如果每人发6枝,则剩2枝。

有多少人获奖?三、分数应用题例3、一根钢管,第一次截去3米,第二次截去余下的1/3,这时还剩12米,钢管原长多少米?练习:汽车从A城市开往B城市,第一天行了全程的1/4,第二天行了剩下的2/5,这时离B城市还有90千米。

A、B两城市相距多少千米?例4、某校有学生465人,女生2/3比男生的4/5少20人。

该校有男生多少人?练习:1、两根铁丝共长44米,若把第一根截去1/5,第二根接上2.8米,则两根长度一样。

《小升初解方程专项练习》

《小升初解方程专项练习》

欢迎阅读《小升初,解方程专题》一.字母的运算二.去括号(主要是运用乘法的分配律和加减法的运算性质)应用上面的性质去掉下面各个式子的括号,能进行运算的要进行运算三.等式的性质.1.等式的定义:,叫做等式;2.等式的性质:(1).等号的两边同时加上或减去同一个数,等号的左右两边仍相等;用字母表示为:若a=b,c为任意一个数,则有a+c=b+c(a-c=b-c);(2).等号的两边同时乘以同一个数,等号的左右两边仍相等;用字母表示为:;(3).等号的两边同时除以同一个不为零的数,等号的左右两边仍相等.用字母表示为:;四.方程1.方程的定义:含有未知数的等式叫做方程;2.方程的解:满足方程的未知数的值,叫做方程的解;3.解方程:求方程的解的过程,叫做解方程.四则运算:加——加数+加数=和乘——因数×因数=积→→加数=和-另一个加数→→因数=积÷另一个因数减——被减数-减数=差除——被除数÷除数=商被减数=减数+差被除数=除数×商减数=被减数-差除数=被除数÷商差=被减数-减商=被除数÷除数一、求加数或求因数的方程加数=和-加数7+x=19 x+120=176 58+x=90因数=积÷因数7 x=63 x × 9=4.5 4.4x=444二、求被减数或求被除数的方程被减数=差+ 减数x-6=19 x-3.3=8.9 x-25.8=95.4被除数=商×除数x ÷7=9 x÷4.4=10 x÷78=10.5三、求减数或除数的方程减数=被减数-减数9-x=4.5 73.2-x=52.5 87-x=22除数=被除数÷商3.3÷x=0.3 8.8÷x=4.4 9÷x=0.03四、带括号的方程(先将小括号内的式子看作一个整体来计算,然后再来求方程的解)欢迎阅读3×(x-4)=46 (8+x) ÷5=15先把(x-4)当作因数算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题
1、知识回顾
我们在小学阶段学习过许多数量关系:
(1)行程问题中路程、速度、时间之间的关系:相遇问题、追及问题、水流问题、过桥问题等;
(2)溶液中浓度、溶液、溶质的关系;工程问题中工程量、工作效率、工作时间之间的关系;
(3)年龄、数字问题
(4)其它
2、方法总结.列方程解应用题的步骤是:
(1)审题:弄清题意,确定已知量、未知量及它们的关系;
(2)设元:选择适当未知数,用字母表示;
(3)列代数式:根据条件,用含所设未知数的代数式表示其他未知量;
(4)列方程:利用列代数式时未用过的等量关系,列出方程;
(5)解方程:正确运用等式的性质,求出方程的解;
(6)检验并答题。

一、“鸡兔同笼问题”
例1、苹果和梨共14筐,总重520千克,其中苹果每筐重35千克,梨每筐重40千克,问梨和苹果各几筐?
练习:1、鸡兔共36个头,118只脚,问鸡兔各多少只?
2、某人给农作物除草,下雨天每天除草12亩,晴天每天除20亩,他连续除草8天,平均每天除草14亩,那么这几天中,晴天有几天?
3、工人搬运100只玻璃杯,搬运一只得3角,损坏一只赔5角,搬运完共得到26元。

损坏了多少只?
二“盈亏问题”
例2、六年级同学分苹果,如果每人分18个,苹果还剩2个,如果每人分20个,还差18个,一共多少人?
练习:1、小雅去买一种练习本,如果买4本还剩1元,如果买6本就还差2元。

每本练习本多少钱?
2、少先队颁奖,如果每人发4枝,则剩10枝,如果每人发6枝,则剩2枝。

有多少人获奖?
三、分数应用题
例3、一根钢管,第一次截去3米,第二次截去余下的1/3,这时还剩12米,钢管原长多少米?
练习:汽车从A城市开往B城市,第一天行了全程的1/4,第二天行了剩下的2/5,这时离B城市还有90千米。

A、B两城市相距多少千米?
例4、某校有学生465人,女生2/3比男生的4/5少20人。

该校有男生多少人?
练习:1、两根铁丝共长44米,若把第一根截去1/5,第二根接上2.8米,则两根长度一样。

两根铁丝各长多少米?
2、甲乙两数的差为10,甲数的1/7比乙数的2/9少20,求甲数。

3、甲乙两桶植物油,甲桶中的油比乙桶中的少120千克。

若果从乙中取出70千克放入甲中,则甲中的油比乙中的多1/8,原来乙桶中有油多少千克?
四、其它综合应用题
例5、成都一电视机厂接到一批任务,计划每天生产120台就可按时完成任务,实际每天比原计划多生产10台,结果提前4天完成任务。

这批电视机共多少台?
练习:同学列队出操,站成方阵。

每行站15人时的行数比每行站18人时的行数要多6行。

一共有学生多少人?
例6、一艘轮船所带的燃料最多可用12小时,驶出时顺水,速度是30千米/小时;返回时逆水,速度是顺水速度的4/5.这艘轮船最多行驶多远就应返航?
例7、加工一批零件,甲乙合作24天可以完成。

现在由甲先做16天,然后乙再做12天,还剩这批零件的2/5没完成。

已知甲每天比乙多做3个零件。

这批零件共多少个?
例8、爸爸对儿子说:“我像你这么大时,你才4岁;当你像我这么大时,我就79岁了。

”现在爸爸和儿子各多少岁?
练习:一件工程甲队独做需8天完成,乙队独做需9天。

甲做三天后,乙来支援,甲,乙合作做多少天完成任务的3/4 ?
一项工作由A单独做要40天完成,由B单独做要50天完成。

现在由A先做,工作了若干天后,因A有事离去,由B继续做,共用了46天完成。

问A、B各做了多少天?
某人从家里去上班,每小时行5千米,下班按原路返回时,每小时行4千米,结果下班返回比上班多花10分钟,上班用多少小时?
一架飞机飞行在两个城市之间,顺风要2小时45分钟,逆风要3小时,已知风速是20千米/时,则两城市间距离为多少千米?。

相关文档
最新文档