对数与对数函数备课讲稿
高二数学教案:对数与对数函数

高二数学教学设计:对数与对数函数一、课前准备:【自主梳理】1.对数:(1)一般地,假如,那么实数叫做 ________________ ,记为________,此中叫做对数的 _______,叫做 ________. (2)以 10 为底的对数记为________,以为底的对数记为_______.(3), .2.对数的运算性质:(1)假如,那么,(2)对数的换底公式:.3.对数函数:一般地,我们把函数____________ 叫做对数函数,此中是自变量,函数的定义域是______.4.对数函数的图像与性质:a1 0图象性质定义域: ___________值域: _____________过点 (1, 0),即当 x=1 时, y=0x(0 ,1)时 _________x(1 ,+)时 ________ x(0 , 1)时_________x(1 ,+)时 ________在___________ 上是增函数在 __________上是减函数【自我检测】1.的定义域为 _________.2.化简: .3.不等式的解集为 ________________.4.利用对数的换底公式计算:.5.函数的奇偶性是 ____________.6.对于随意的,若函数,则与的大小关系是___________________________.二、讲堂活动:【例 1】填空题:(1) .(2)比较与的大小为___________.(3)假如函数,那么的最大值是_____________.(4)函数的奇偶性是___________.【例 2】求函数的定义域和值域.【例 3】已知函数知足.(1)求的分析式 ;(2)判断的奇偶性;(3)解不等式.讲堂小结三、课后作业1. .略2.函数的定义域为 _______________.3.函数的值域是 _____________.4.若,则的取值范围是_____________.5.设则的大小关系是 _____________.6.设函数,若,则的取值范围为_________________.7.当时,不等式恒建立,则的取值范围为______________.8.函数在区间上的值域为,则的最小值为____________.9.已知 .(1)求的定义域 ;(2)判断的奇偶性并予以证明;(3)求使的的取值范围.10.对于函数,回答以下问题:(1)若的定义域为,务实数的取值范围;(2)若的值域为,务实数的取值范围;(3)若函数在内存心义,务实数的取值范围.四、纠错剖析错题卡题号错题原由剖析高二数学教学设计:对数与对数函数一、课前准备:【自主梳理】1.对数(1)以为底的的对数,,底数,真数.(2), .(3)0, 1.2.对数的运算性质(1), , .(2).3.对数函数4.对数函数的图像与性质a1 0图象性质定义域:(0,+)值域: R过点 (1, 0),即当 x=1 时, y=0x(0 ,1)时 y0x(1 ,+)时 y0 x(0 ,1)时 y0x(1 ,+)时 y0在(0, +) 上是增函数在 (0,+)上是减函数【自我检测】1. 2. 3.4. 5.奇函数 6. .二、讲堂活动:【例 1】填空题:(1)3.(2).(3)0.(4)奇函数 .【例 2】解:由得.因此函数的定义域是(0,1).由于,因此,当时,,函数的值域为;当时,,函数的值域为.【例 3】解: (1) ,因此.(2)定义域 (-3,3)对于原点对称,因此“教书先生”唯恐是街市百姓最为熟习的一种称号,从最先的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人仰慕甚或敬畏的一种社会职业。
对数与对数函数(教案)

对数与对数函数一、知识讲解考点1对数的概念及其运算性质(1)对数的概念:b a =N (a >0, a ≠1)N b a log =⇒(2)对数的性质: ①负数与零没有对数; ②,;③对数恒等式:.(3)对数的运算:①log MN a =log N M a a log + ②log N M NMa a alog log -= ③M n M a na log log =(M 、N >0, a >0, a ≠1)推广:M mnMa na m log log =01log =a 1log =a a log a N a N=④换底公式:aNN b b a log log log =(a ,b >0,a ≠1,b ≠1)考点2对数函数(1)对数函数定义:形如y =x a log (a >0且a ≠1,x >0)的函数,叫做对数函数. (2)对数函数的图象与性质二、例题精析【例题1】求下列各式的值:(1); (2); (3);(4).【解析】(1).(2).(3).()352log 24⨯5log 125lg 32lg 21lg1.2+-22log log ()3535222log 24log 2log 4⨯=+235log 435213=+=+⨯=3555log 125log 53log 53===lg32lg 21lg3lg 41lg1.2lg1.2+-+-=lg1.21lg1.2==(4).【例题2】求下列各式的值. (1)35log 5+2log 221-501log 5-14log 5;(2)6log 4log 1836+log 263. 【解析】(1)35log 5+2log 221-501log 5-14log 5 =35log 5-2log 2+50log 5-14log 5 =)145035(log 5÷⨯-1=355log -1=2. (2)6log 4log 1836+log 263=18log 2log 66⋅+log 263=)3log 22(log 2log 666+⋅+log 263 =3log 3log 22log 6626⋅++log 263 =266)2log 3(log +=1.提示:灵活运用对数的运算性质、换底公式进行对数式的转化,是对数学习的重点,需进行反复训练,熟能生巧.【例题3】已知 ,, 用, 表示.【解析】因为,所以, 所以 .22log log2log =22log log 42===2log 3a =3log 7b =a b 42log 562log 3a =31log 2a=2333423333log (79)log 7log 3log 63log (237)log 2log 3log 7⨯+==⨯⨯++22111b ab a ab a b a++==++++【例题4】计算(1);(2)【解析】(1)原式. 或 原式. (2)原式.【例题5】(1)设410=a ,5lg =b ,求b a -210的值. (2)1052==b a ,求ba 11+的值. (3)设3log 22=x ,求xx xx --+-222233的值.【解析】(1)由5lg =b ,得510=b,∴ba -210=51610102=b a .(2)∵1052==b a , ∴a =10log 2,b =10log 5, ∴15lg 2lg 11=+=+ba . (3)由3log 22=x ,得3log 2=x ,∵ N a Na=log,∴xx xx --+-222233=6131331931333133=+-=+-. 提示:对数的运算性质和换底公式都是根据对数的定义及对数与指数的关系推导,灵活进行指数、对数之间的的转化,可以帮助我们解决对数式的求值、化简和等式证明. 【例题6】427125log 9log 25log 16⋅⋅483912(log 3log 3)(log 2log 2)log ++-lg 9lg 25lg16lg 4lg 27lg125=⨯⨯2lg32lg54lg 282lg 23lg33lg59=⨯⨯=23524log 3log 5log 233=⋅⋅89==2233111(log 3log 3)(log 2log 2)232+⋅+25log 24+53556242=⨯+=求下列函数的定义域:(1); (2); (3). 【解析】(1)由得,所以函数的定义域是;(2)由,得, 所以函数的定义域是. (3)由 得,所以,函数的定义域是. 【例题7】对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围;(2)若函数的值域为R ,求实数a 的取值范围;(3)若函数在),1[+∞-内有意义,求实数a 的取值范围; (4)若函数的定义域为),3()1,(+∞-∞ ,求实数a 的值; (5)若函数的值域为]1,(--∞,求实数a 的值;(6)若函数在]1,(-∞内为增函数,求实数a 的取值范围. 【解析】记2223)(32)(a a x ax x x g u -+-=+-==,(1)R x u ∈>对0 恒成立,33032min <<-⇒>-=∴a a u , ∴a 的取值范围是)3,3(-;(2)由u 21log 的值域为R ,即)(x g u =能取遍),0(+∞的一切值.)(x g u = 的值域为),,0(),3[2+∞⊇+∞-a∴命题等价于33032min ≥-≤⇒≤-=a a a u 或,0.2log (4)y x =-71log 13y x=-y =40x ->4x <0.2log (4)y x =-(,4)-∞130x ->13x <71log 13y x =-1{|}3x x <2log (43)0x -≥431x -≥1x≥y =[1,)+∞∴a 的取值范围是),3[]3,(+∞--∞ ;(3)命题等价于“),1[0)(+∞-∈>=x x g u 对恒成立”,应按)(x g 的对称轴a x =0分类,∴ ⎩⎨⎧<<--≥⎩⎨⎧->-<⇒⎩⎨⎧<-=∆-≥⎩⎨⎧>--<33121012410)1(12a a a a a a g a 或或, ∴a 的取值范围是)3,2(-;(4)由定义域的概念知,命题等价于不等式0322>+-ax x 的解集为}31|{><x x x 或, ∴ 3,121==x x 是方程0322=+-ax x 的两根, ∴ ,2322121=⇒⎩⎨⎧=⋅=+a x x ax x 即a 的值为2;(5)函数的值域为]1,(--∞,即)(x g 的值域为),2[+∞, ∵)(x g 的值域是),3[2+∞-a ,∴命题等价于123)]([2min ±=⇒=-=a a x g ; 即a 的值为±1; (6)命题等价于:⎩⎨⎧>≥=⇔⎩⎨⎧-∞∈>-∞0)1(1]1,(0)(]1,()(0g a x x x g x g 恒成立对为减函数在, 即⎩⎨⎧<≥21a a ,得a 的取值范围是)2,1[.三、课堂运用【基础】 1.填空:(1)- ; (2) - ;(3) ; (4)=3+2log 32)(-. 【答案】(1)1;(2)-1; (3)2;(4)-1.2log 62log 3=3log 53log 15=551log 75log 3+=2.计算:(1)14;(2). 【解析】(1)原式.或原式; (2)原式.【巩固】3.已知,试用表示.【解析】因为,所以, 所以. 4.(1)已知a =3log 2,b =7log 3,用a ,b 表示56log 42;(2)已知log ,6log ,3log ,2===c b a x x x 求x abc log 的值. 【解析】(1)log 5642=42lg 56lg =3lg 2lg 7lg 2lg 37lg +++, 又∵,3lg 2lg ,3lg 7lg 3lg 7lg ,2lg 3lg ab b a ==⇒== ∴ log 5642=131133lg 3lg 3lg 3lg 33lg +++=+++=+++a ab ab ab a b a b a b . (2)∵a =x 2,b =63,x c x =,∴ 111log log 632==++x x x abc . lg -2lg18lg 7lg 37-+2lg 2lg32lg 0.362lg 2+++2lg(27)2(lg7lg3)lg7lg(32)=⨯--+-⨯lg 2lg72lg72lg3lg72lg3lg 20=+-++--=0=27lg14lg()lg 7lg183=-+-2147lg 7()183⨯=⨯lg10==2lg 2lg32lg3622lg 2+=+-+2lg 2lg314lg 22lg32+==+3log 12a =a 3log 24333log 12log (34)12log 2a =⨯=+=31log 22a -=333log 24log (83)13log 2=⨯=+1311322a a --=+⨯=5.比较下列各组数中两个数的大小:(1),; (2),; (3),,. 【解析】(1)对数函数在上是减函数,于是;(2)因为,,所以;(3)因为,,而, 所以. 【拔高】6.求值(n n 3log 27log 9log 3log 2842++++ )n 32log 9;【解析】 ∵ ,3log 3log 22=nn∴ 原式=25=2log 3log =32log 3log 532922nn .7.已知11log )(--=x mxx f a是奇函数(其中)1,0≠>a a , (1)求m 的值;(2)讨论)(x f 的单调性; (3)求)(x f 的反函数)(1x f-;(4)当)(x f 定义域区间为)2,1(-a 时,)(x f 的值域为),1(+∞,求a 的值.【解析】(1)011log 11log 11log )()(222=--=--+--+=+-xx m x mx x mx x f x f a a a对定义域内的任意x 恒成立,0.5log 1.80.5log 2.17log 56log 72log 34log 5320.5log y x =(0,)+∞0.5log 1.8>0.5log 2.766log 7log 61>=77log 5log 71<=6log 7>7log 524log 3log 9=43log 82=444log 5log 8log 9<<4log 532<<2log 3∴10)1(11122222±=⇒=-⇒=--m x m xx m , 当)1(0)(1≠==x x f m 时不是奇函数,1-=∴m , (2)11log )(-+=x x x f a,∴定义域为),1()1,(+∞--∞ , 11log )(-+=x x x f a =)121(log -+x a , 1>a 时,)(x f 在),1()1,(+∞--∞与上都是减函数; 10<<a 时,)(x f 在),1()1,(+∞--∞与上都是增函数;另解:设11)(-+=x x x g ,任取111221>>-<<x x x x 或, ∵0)1)(1()(21111)()(2112112212<----=-+--+=-x x x x x x x x x g x g , ∴)()(12x g x g <,结论同上;(3)111)1(1111log -+=⇒+=-⇒-+=⇒-+=y y yy y a a a x a x a x x a x x y , ∵ 01≠-y a ,∴0≠y ;)10,0(11)(1≠>≠-+=-a a x a a x f x x 且.(4))2,1()(,3,21->∴-<<a x f a a x 在 上为减函数, ∴ 命题等价于1)2(=-a f ,即014131log 2=+-⇒=--a a a a a , 解得32+=a .提示:函数的性质综合问题,需要准确把握定义域、值域、奇偶性、单调性、反函数等概念,充分运用数形结合、分类讨论、等价转换等数学思想,灵活运用通性通法.四、课程小结(1)对数函数与指数函数的关系对数函数y =x a log (a >0且a ≠1,x >0)是指数函数xa y =)1,0(≠>a a 且的反函数.互为反函数的两个函数的图象关于直线x y =对称. (2)对数函数图象特征1,0≠>a a 时,)(log x y a -=与x y a log =的图象关于y 轴对称;x x x y a aalog 1log log 1-===,x y a1log =与x y a log =的图象关于x 轴对称; 对数函数y =x a log (a >0且a ≠1,x >0)都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴,当1>a 时,图象向下无限接近y 轴).(3)利用对数函数比较大小问题的处理方法: ①看类型 ②同底用单调性 ③其它类型找中间量. 零和负数无对数,是求函数定义域的又一条原则.五、课后作业【基础】1.把下列各题的对数式写成指数式:(1)27log =5x :___ _____ (2) 7log =8x : ____ _____ (3) 3log =4x : ___ _____ (4)31log 7=x :___ _____ (5)log 241=-2: ___ _____ (6)log 3811=-4:___ _____ 【答案】(1)27=5x ; (2) 7=8x ; (3) 3=4x ;(4)31=7x; (5)41=22-; (6)811=34-.2.计算下列各式的值 (1);(2).【解析】(1)原式. 83log 9log 32⨯272log 9+lg9lg32lg8lg3=⨯2lg35lg 23lg 2lg3=⨯103=(2)原式. 3.函数x a y +=1 (0<a <1)的反函数的图象大致是()(A )(B )(C )(D【答案】 C4.已知=,=,求下列对数的值(精确到小数点后第四位)(1);(2);(3). 【解析】(1)0.7781;(2) 0.1761; (3)1.5050.5.比较下列各题中两个值的大小:(1)5log ,9log 76; (2)6.0log ,log 23π;(3)7.0log ,7.0log 32;【解析】(1)1>9log 6,1<5log 7,∴5log >9log 76;(2)0>log 3π,0<6.0log 2,∴6.0log >log 23π;(3)0<2log <3log 7.07.0,∴7.0log =2log 1>3log 1=7.0log 27.07.03.【巩固】1.求下列函数的定义域:233log 922log 273=+=+=83lg 20.3010lg 30.4771lg 63lg 2lg 32lg 6lg 2lg3=+=3lg lg 3lg 22=-=lg325lg 2==(1); (2); (3). 【解析】(1)由得,所以函数的定义域是.(2),且,解得且,所以函数的定义域是且. (3), 得 或, 所以函数的定义域是.2.将函数()x x f 2=的图象向左平移一个单位得到图象1C ,再将1C 向上平移一个单位得图象2C ,作出2C 关于直线x y =对称的图象3C ,则3C 对应的函数的解析式为()A. ()11log 2+-=x yB. ()11log 2--=x yC. ()11log 2++=x yD. ()11log 2-+=x y【答案】B3.计算1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅. 【解析】分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++; 分母=41006lg 26lg 101100036lg)26(lg =-+=⨯-+; ∴ 原式=43. 4.(1)已知36log ,518,9log 3018求==b a 值.log a y =(0,1)a a >≠21log y x=2(21)log (23)x y x x -=-++10x ->1x>log a y =(0,1)a a >≠{1}x x >2log 0x ≠0x >0x >1x ≠21log y x={0x >1x ≠}2210211230x x x x ⎧->⎪-≠⎨⎪-++>⎩112x <<13x <<2(21)log (23)x y x x -=-++1(,1)(1,3)2(2)已知a =++-)12(log )122(log 27,求)12(log )122(log 27-++.【解析】(1)518=b ,∴,5log 18b = ∴ab a b -+-=-+-+=++=22)2(2)3log 18(log )9log 18(log 16log 5log 2log 18log 36log 181818181818181830. (2)∵ )12(log )122(log 27++- =a =--+-)12(log )122(log 127 ∴a -=-++1)12(log )122(log 27.【拔高】1.若132log >a,则a 的取值范围是()A .231<<aB .23110<<<<a a 或C .132<<aD .1320><<a a 或 【答案】C .2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为()A .[0,1]B .[1,2]C .[2,4]D .[4,16]【答案】D【解析】∵函数)2(x f y =的定义域为[1,2],即)2(xf y =中的4≤2≤2x ; 再由4≤log ≤22x ,得16≤≤4x ,∴函数)(log 2x f y =的定义域为[4,16]. 3.求函数)32(log 221-+=x x y 的单调递增区间.【答案】),--3∞( 4.函数)+(log =221a ax x y -在]2,(-∞上是增函数,求实数a 的取值范围.【解析】 因为对数的底为21,问题转化为在]2,(-∞上0>+2a ax x -, 且a ax x x u +=)(2-在]2,(-∞上是减函数. 于是有2≥2a ,且0>+22=)2(2a a u -. 所以2+22<≤22a 即为所求实数a 的取值范围.。
对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
(精品教案)《对数函数》讲课稿

(精品教案)《对数函数》讲课稿为大伙儿整理的《对数函数》讲课稿,欢迎阅读,希翼大伙儿可以喜爱。
我今天讲课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面举行讲明。
恳请在座的各位老师批判指正。
1、教材的地位、作用及编写意图《对数函数》浮现在职业高中数学第一册第四章第四节。
函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生差不多学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学办法,是往后数学学习中别可缺少的部分,也是高考的必考内容。
2、教学目标的确定及依据。
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:(1)知识目标:明白对数函数的概念、掌握对数函数的图象和性质。
(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。
(3)德育目标:培养学生对待知识的科学态度、勇于探究和创新的精神。
(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键重点:对数函数的概念、图象和性质;难点:利用指数函数的图象和性质得到对数函数的图象和性质;关键:抓住对数函数是指数函数的反函数这一要领。
大部分学生数学基础较差,明白能力,运算能力,思维能力等方面参差别齐;并且学生学好数学的自信心别强,学习积极性别高。
针对这种事情,在教学中,我引导学生从实例动身启示指数函数的定义,在概念明白上,用步步设咨询、课堂讨论来加深明白。
在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直截了当地同意并提高学生的学习兴趣和积极性,非常好地突破难点和提高教学效率。
教给学生办法比教给学生知识更重要,本节课注重调动学生积极考虑、主动探究,尽量地增加学生参与教学活动的时刻和空间,我举行了以下学法指导:(1)对比比较学习法:学习对数函数,处处与指数函数相对比。
对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)以下是网友分享的关于对数与对数运算说课稿的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一§2.2.1对数与对数运算说课稿大家好,我是。
,我今天的讲课内容是对数与对数的运算。
我将从以下5个方面来进行今天的说课,第一是教学内容分析,第二是学生的学情分析,第三是教学方法的策略,第四是教学过程的设计,第五的教学反思。
一、教学内容分析对数与对数的运算是人教版高中教材必修一第二章第二节第一课时的内容。
本节课是第一课时,主要讲的就是认识对数和对数的一些基本运算性质。
本节课的学习蕴含着转化化规的数学思想,类比与对比等基本数学方法。
在上节课,我们学习了指数函数以及指数函数的性质,是本节课学习对数与对数的运算的基础,而下节课,我们又将学习对数函数与对数函数的性质,这节课恰好为下节课的学习做了一个铺垫。
二、学生学情分析接下来我将从认知、能力、情感三个方面来进行学生的学情分析。
首先是认知,该阶段的高中生已经学习了指数及指数函数的性质,具备了学习对数的基础知识;在能力方面,高一的学生已经初步具备运用所学知识解决问题的能力,但是大多数同学还缺乏类比迁移的能力;而在情感方面,大多数学生有积极的学习态度,能主动参与研究,但是还有部分的学生还是需要老师来加以引导的。
三、教学方法的策略根据教材的要求以及本阶段学生的具体学习情况,我制定了一下的教学目标。
首先是知识与技能,理解对数与指数的关系,能进行指对数互化并可利用对数的简单性质求值;接着是过程与方法,通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力;最后是情感态度与价值观,通过对问题转化过程的引导,培养学生敢于质疑、勇于开拓的创新精神。
基于以上的分析,我制定了本节课的重难点。
本节课的教学重点是对数的定义,对数式与指数式的互化,对数的运算法则及其推导和应用;本节课的难点是对数概念的理解和对数运算法则的探究和证明;本节课我所采用的教学方法是探究式教学法,分为以下几个环节:教师创设问题情境,启发式地讲授,讲练结合,引导学生思考,最后鼓励学生自主探究学习。
对数函数集体备课发言稿

对数函数集体备课发言稿各位老师、各位同事们:大家好!今天我们聚集在一起,是为了共同备课、探讨对数函数的教学内容。
对数函数作为高中数学课程中的一部分,对学生来说可能是一个比较新颖的内容,也是一个比较抽象的概念。
因此,我们需要共同努力,以最有效的方式向学生传授对数函数的知识,引导他们理解和掌握这一部分内容。
首先,我想要强调的是对数函数在现实生活中的应用。
对数函数在实际社会中有着广泛的应用,比如在金融领域中用于计算利率、在物理领域中用于描述震级、在化学领域中用于描述PH值等等。
因此,我们在教学的时候,可以结合生活实际,让学生了解对数函数的实际用处,提高学生的学习兴趣和学习动力。
其次,对于对数函数的基本概念和性质,我们需要重点强调。
比如对数函数的定义,以及其在图像上的特点,对数函数的性质,比如对数函数的增减性、奇偶性、零点和极值等等。
这些是对数函数的基础知识,也是学生理解和掌握对数函数的关键。
在教学方法上,我们可以采用多种方式来让学生更好地理解和掌握对数函数的知识。
比如通过举例进行讲解,让学生在具体的案例中感受对数函数的运用;通过实际计算来锻炼学生的计算能力和分析能力;通过问题解决来培养学生的动手能力和创新能力等等。
我们可以结合多种教学方法,使得对数函数的教学更加生动有趣,让学生在轻松愉快的氛围中掌握对数函数的知识。
此外,我们也需要关注学生的学习情况,考虑到不同学生的学习能力和学习方式可能不尽相同。
对于学习能力强的学生,我们可以适当地增加一些拓展内容,让他们对对数函数有更深入的了解;对于学习能力一般的学生,我们可以进行更细致的辅导和指导,帮助他们理解对数函数的知识;对于学习能力较弱的学生,我们可以采用更直观、更具体的方式来讲解对数函数,比如通过图表和实例来帮助他们理解。
我们要根据学生的具体情况,采取不同的授课方法,使得每一个学生都能够得到有效的学习。
最后,我希望我们在备课的过程中,能够相互交流、相互学习,共同进步。
人教A版高中数学必修一对数函数对数与对数运算说课稿

2.2.1 对数与对数运算(2)从容说课本课是在理解对数概念的基础上,联系指数幂的运算性质来学习对数的运算性质.教学重点是探究并证明对数的运算性质.教学难点是在掌握对数运算性质的基础上,能灵活运用运算性质进行化简求值.根据指数式和对数式之间的关系,通过与指数幂的运算性质类比得出对数的运算性质,引导学生自己完成推导过程,以加深对公式的记忆和理解.对公式不仅要掌握其内容,更要注意公式适用条件.(运算性质的探究,层次较高的学生可以采用“概念形成”的学习方式通过对具体例子的提出,由特殊到一般归纳出法则,再利用指数式与对数式的关系完成证明)对数运算性质的综合运用,经常要求逆用运算性质,应掌握变形技巧,各部分变形要化到最简形式,同时注意分子、分母的联系,且要避免错用对数运算性质.运算性质的认识,可以类比指数运算法则来理解记忆,强化法则使用的条件,注意对数式中每一个字母的取值范围.三维目标一、知识与技能掌握对数的运算性质,能较熟练地运用对数的运算性质解决有关对数式的化简、求值问题.二、过程与方法1.通过师生之间、学生与学生之间互相交流,培养学生会与别人共同学习、共同研究探讨的能力.2.利用类比的方法,得出对数的运算性质,让学生体会到数学知识的前后连贯性,加深对公式内容及公式适用条件的记忆.3.通过探究、思考,培养学生理性思维能力、观察能力以及判断能力.三、情感态度与价值观1.在教学过程中,通过学生的相互交流,来加深对对数运算性质的推导过程的理解,增强学生数学交流能力和数学地分析问题的能力.2.通过对数运算性质的学习,使学生明确数学概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性.3.通过计算器来探索对数的运算性质,使学生认识到现代信息技术是认识世界的有效手段和工具,激发学生学习数学的热情.教学重点1.掌握对数的运算性质.2.应用对数运算性质求值、化简.教学难点对数运算性质的灵活运用.教具准备多媒体课件、投影仪、打印好的作业.教学过程一、复习回顾,引入新课师:上一节课我们学习了对数的概念、指数式与对数式的互化,我们知道,对数和指数都是一种运算,而且对数运算是指数运算的逆运算,指数有它自己的一套运算性质.从指数与对数的关系以及指数运算性质,能得出相应的对数运算性质吗?这就是本节课所要探究的知识.(引入课题,书写课题——对数的运算性质) 二、讲解新课(一)对数的运算性质的探索 师:指数幂运算有哪些性质? (生口答,师简单板书) 当a 、b >0,m 、n ∈R 时, a m ·a n =a m +n ,a m ÷a n =a m -n , (a m )n =a mn ,mna =amn .师:根据对数的定义可得:log a N =b a b =N (a >0,a ≠1,N >0),那么,对数运算也有相应的运算性质吗?如果有,它们的运算性质会与指数幂的运算性质之间有什么联系呢?(生思考)合作探究:由于a m ·a n =a m +n , 设M =a m ,N =a n , 于是MN =a m +n .由对数的定义得到log a M =m ,log a N =n ,log a (M ·N )=m +n .这样,我们就得到对数的一个运算性质:log a (M ·N )=log a M +log a N .师:同样地,可以仿照上述过程,由a m ÷a n =a m -n 和(a m )n =a mn ,得出对数运算的其他性质.(生板演)∵a m ÷a n =a m -n ,设M =a m ,N =a n ,∴NM =a m -n.∴由对数的定义得到 log a M =m ,log a N =n , log aNM=m -n . ∴log a N M =log a M -log a N .∵(a m)n =a mn , 设M =a m ,∴M n =a mn . ∴由对数的定义得到 log a M =m , log a M n =mn , ∴log a M n =n log a M .(师组织生讨论得出) 对数的运算性质:log a (MN )=log a M +log a N ,log aNM=log a M -log a N , log a M n =n log a M (n ∈R ),其中,a >0,a ≠1,M >0,N >0.师:以上三个性质可归纳为:(1)积的对数等于各因式对数的和;(2)商的对数等于被除数的对数减除数的对数;(3)幂的对数等于指数乘以底数的对数.师:这几条运算性质会对我们进行对数运算带来哪些方便呢? (生交流探讨,得出如下结论)结论:利用以上性质,可以使两正数的积、商的对数运算问题转化为两正数各自的对数的和、差运算,大大的方便了对数式的化简、求值.(二)概念理解合作探究:利用对数运算性质时,各字母的取值范围有什么限制条件? (师组织,生交流探讨得出如下结论)底数a >0,且a ≠1,真数M >0,N >0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.师:性质能否进行推广? (生交流讨论)性质(1)可以推广到n 个正数的情形,即log a (M 1M 2M 3…M n )=log a M 1+log a M 2+log a M 3+…+log a M n (其中a >0,且a ≠1,M 1、M 2、M 3…M n >0).知识拓展:当a >0,a ≠1,M >0时,还有log m a M n =mnlog a M . (三)运算性质的应用师:这样我们就可以心底坦然地使用这些性质了,请同学们完成以下训练. (投影显示如下练习,生完成,组织学生交流评析各自的训练成果) 【例1】 用log a x ,log a y ,log a z 表示下列各式: (1)log a z xy ;(2)log a 32zy x . (生板演)【例2】 求下列各式的值: (1)log 2(47×25);(2)lg 5100.(生板演)【例3】 已知lg2≈0.3010,lg3≈0.4771,求下列各式的值:(结果保留4位有效数字)(1)lg12;(2)lg 1627. 方法引导:要用lg2≈0.3010,lg3≈0.4771这个已知条件来求以上各式的值,需先根据对数的运算性质将其化为含lg2、lg3的多项式进而求出结果.【例4】 计算:(1)lg14-2lg 37+lg7-lg18;(2)9lg 243lg ;(3)2.1lg 10lg 38lg 27lg -+.(1)解法一:lg14-2lg 37+lg7-lg18 =lg (2×7)-2(lg7-lg3)+lg7-lg (32×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0. 解法二:lg14-2lg37+lg7-lg18=lg14-lg (37)2+lg7-lg18=lg 18)37(7142⨯⨯=lg1=0.(2)解:9lg 243lg =253lg 3lg =3lg 2351g =25. (3)解:2.1lg 10lg 38lg 27lg -+=1023lg10312lg )3lg(2213213⨯-+g =12213lg )12213(lg 23-+-+g g =23.方法引导:以上各题的解答,体现对数运算法则的综合运用,应注意掌握变形技巧,每题的各部分变形要化到最简形式,同时注意分子、分母的联系,要避免错用对数运算性质.(四)目标检测课本P 79练习第1,2,3.答案:1.(1)lg (xyz )=lg x +lg y +lg z ;(2)lg zxy 2=lg (xy 2)-lg z=lg x +lg y 2-lg z =lg x +2lg y -lg z ;(3)lgzxy 3=lg (xy 3)-lg z=lg x +lg y 3-21lg z =lg x +3lg y -21lg z ;(4)lgzy x 2=lg x -lg (y 2z )=21lg x -lg y 2-lg z =21lg x -2lg y -lg z . 2.(1)7;(2)4;(3)-5;(4)0.56.3.(1)log 26-log 23=log 236=log 22=1;(2)lg5-lg2=lg 25;(3)log 53+log 531=log 53×31=log 51=0;(4)log 35-log 315=log 3155=log 331=log 33-1=-1. 补充练习:若a >0,a ≠1,且x >y >0,N ∈N ,则下列八个等式: ①(log a x )n =n log x ; ②(log a x )n =log a (x n );③-log a x =log a (x1); ④y x a a log log =log a (yx ); ⑤n a x log =x1log a x ; ⑥n1log a x =log a n x ; ⑦anxa log =x n ;⑧log ay x y x +-=-log a yx yx -+.其中成立的有________个.(答案:4) 三、课堂小结 1.对数的运算性质.2.对数运算法则的综合运用,应掌握变形技巧:(1)各部分变形要化到最简形式,同时注意分子、分母的联系; (2)要避免错用对数运算性质.四、布置作业课本P 86习题2.2A 组第3,4,5题.补充作业:1.(1)已知3a =2,用a 表示log 34-log 36; (2)已知log 32=a ,3b =5,用a 、b 表示log 330. 2.计算:(1)1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+;(2)2log 32-log 3932+log 38-53log 25;(3)lg (53++53-).板书设计2.2.1 对数与对数运算(2)对数的运算性质对数与指数的比较性质的应用(例题及学生练习)例1例2例3例4三、课堂小结与布置作业。
对数与对数函数说课稿

说课稿(人教A版必修一第二章第二节对数函数的第一课时---对数)新课标指出,学生是教学的主体,教师的教应从学生的认知规律出发,以学生活动为主线,在原有知识的基础上建构新的知识体系。
下面将以此为基础从教材分析、学情分析、教学策略、教学程序、教学评价这几方面加以阐述:教材分析学情分析教学策略教学程序教学评价教材分析本节课是对数与对数运算的第一课时,主要包括对数的概念、指数与对数的互化以及对数的性质等内容,其中蕴含着转化与化归的数学思想,类比与对比的数学方法。
通过本节课的学习,既能加深学生对指数的理解,又能为后面对数运算性质和对数函数的学习打下基础。
基于以上分析,结合新课程标准,制定以下教学目标:知识与技能:1.理解对数的概念,了解对数与指数的关系;2.理解和掌握对数的性质;3.掌握对数式与指数式的互化。
过程与方法:1.通过与指数式的比较,引出对数的定义;2.经历探索对数基本性质的过程;3.感悟和体会转化和化归的数学思想。
情感、态度与价值观:1.学生能类比、分析、归纳;2.形成严谨的思维品质和探究意识;3.增强分析问题和解决问题的能力。
学情分析学生在此之前已经学习了指数与指数函数,具有了一定的探究能力和分析解决问题的能力,这有利于本节课的学习。
然而,高一学生的理解能力及逆向思维能力等方面参差不齐,大部分学生也比较怕概念的学习。
为此,结合教材分析和学生的实际情况,确定本课的教学重点和难点如下:教学重点:对数式与指数式的互化,对数的性质。
教学难点:对数概念的理解,对数性质的推导。
教学策略基于对学生情况的分析和本课的特点,在教学过程中,我将从实际问题出发,不断创设疑问,激发学生的求知欲和学习主动性,使学生紧紧抓住对数运算是指数运算的逆运算这一实质,重视指数式与对数式的互化。
通过教师的引导点拨和学生的练习思考,使学生理解和掌握对数的概念及本质。
教学程序知识引入:1.如果我国GDP 平均每年增长8%,则经过多少年我国的GDP 是现在的两倍?解:设经过x 年国民生产总值是现在的两倍,令现在的国民生产总值为a.依题意得:即: 如何计算式子中的x2.求下列各式中x 的值1).2 =32 2). =16 3).2 =7 X=5 X= -2 X=讲授新课:1.对数的定义:一般地,如果a =N ( a > 0 , 且a ≠ 1 ),那么数x 叫做以a 为底N 的对数, 其中a 叫做对数的底数, N 叫做真数.注意:限制条件是a > 0 , 且a ≠ 1a x =log N 记作: +=x a(18%)2a+=x (18%)21).练习1(将下列指数式写成对数式)2).思考(对数与指数的区别与联系)2.指数和对数的相互转化3.两个重要的对数(常用对数和自然对数)例题分析:例1.将下列指数式写成对数式:例2.将下列对数式写成指数式:例3.求下列各式中的x的值:讲授新课:4.对数的性质(1)试求下列各式的值:结论:零和负数没有对数(2)试求下列各式的值:思考:你发现了什么?(3)试求下列各式的值:思考:你发现了什么?(4)试求下列各式的值:思考:你发现了什么?(5)试求下列各式的值:思考:你发现了什么?巩固练习:归纳小结:布置作业:教学评价本节课的教学设计力求体现以教师为主导、学生为主体的原则,强调学生参与知识的形成过程,让学生在教师的点拨下开展探究活动,最终效果如何还需经过课堂教学来检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
)=ln
=ln(x+
)-1=-f(x).因此f(x)为奇函数.
(2)由f(x)=ln(2+ ),即x+
变式2. 若函数f(x)满足对于(0,+∞)上的任意实数x,y都有f(xy)=f(x)+f(y), 且x>1时 f(x)>0,试证: (1)f( )=f(x)-f(y);(2)f(x)=-f( );(3)f(x)在(0,+∞)上递增. 证明:(1)由已知f( )+f(y)=f(x),即f(x)-f(y)=f( ). (2)令x=y=1,则f(
利用对数函数的图象和性质可研究与对数函数相关的复合函数的图象和性 质,
比如函数y=lg(ax+b),y=lg(ax2+bx+c), y=
y=ln(x+
)等.
【例3】设f(x)=lg
是奇函数,则使f(x)<0的x的取值范围是( )
A.(-1,0)
B.(0,1)
C.(-∞,0)
D.(-∞,0)∪(1,+∞)
解析:∵f(x)为奇函数,∴f(0)=0.解之,得a=-1.∴f(x)=lg
则0<
<1,∴x∈(-1,0).
.令f(x)<0,
答案:A
变式3.已知函数f(x)=ln(x+
)
(1)证明f(x)为奇函数;(2)若f(x)=ln(2+ ),求x的值.
解答:(1)证明:∵x+
>x+|x|≥0,∴f(x)的定义域为R.f(-x)=ln(-x
A.0.76<log0.76<60.7
B.0.76<60.7<log0.76
C.log0.76<60.7<0.76
D.log0.76<0.76<60.7
解 析 : 首 先 看 这 三 个 数 的 符 号 , log0.76 是 负 数 , 而 0.76 和 60.7 都 是 正 数 , 因 此 log0.76最小,排除A、B.又0<0.76<1,而60.7>1,则0.76<1<60.7.
(1)log3 32与log5 56; (2)log1.10.7与log1.20.7;
(3)已知 lo1gblo1galo1gc,比较2b,2a,2c的大
2
2
2
小关系.
解
(1)∵ log
3
2 3
<log31;log51=0,
∴
log3
2 3
log5 56.
(2)方法一 ∵0<0.7<1,1.1<1.2,
答案:D
4.(2010·黄冈月考)已知函数f(x)=lg
,若f(a)=b,则f(-a)等于( )
A.
B.-
C.-b
D.b
解析:函数f(x)的定义域为-1<x<1,又f(-x)=lg
=lg
-1=
-lg
=-f(x),则f(x)为奇函数,f(-a)=-f(a)=-b.
答案:C
5 比较下列各组数的大小.
第9课时 对数与对数函数
掌握对数的定义和运算性质/掌握对数函数的图象和性质
1.定义 一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N 的数,记作logaN=b,a叫做对数的底数,N叫做真数.
2.重要公式 (1)负数与零没有对数;(2)loga1=0,logaa=1;(3)对数恒等式alogaN=N.
6.对数函数的性质
2.设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为 , 则a等于 ( )
A.
B.2
C.2
D.4
解析:根据已知条件loga(2a)-logaa= ,整理得:loga2= ,则 =2, 即a=4.
答案:D
3.三个数60.7、0.76、log0.76的大小顺序是( )
∴0>log0.71.1>log0.71.2, 1 1 ,
lo0g.71.1 lo0g.71.2 即由换底公式可得log1.10.7<log1.20.7.
方法二 作出y=log1.1x与 y=log1.2x的图象. 如图所示两图象与x=0.7相
交可知log1.10.7<log1.20.7.
(3)∵ y log 1 x 为减函数,
2
且 lo1gblo1galo1gc,
2
2
2
∴b>a>c,而y=2x是增函数,∴2b>2a>2c.
对数源于指数,对数与指数互为逆运算,对数的运算可根据对数的定义、对 数的运算性质、对数恒等式和对数的换底公式进行.在解决对数的运算和与 对数的相关问题时要注意化简过程中的等价性和对数式与指数式的互化.
解答:(1)原式=
.
(2)原式=(lg 2+lg 5)(lg22-lg 2lg 5+lg25)+3lg 2lg 5
=lg22+2lg 2lg 5+lg25=(lg 2+lg 5)2=1.
(3)解法一:原式=
解法二:原式=
变式1.(1)若2a=5b=10,求+ 的值.(2)若xlog34=1,求4x+4-x的值.
解答:(1)由已知a=log210,b=log510,则
=lg 2+lg 5=lg 10=1.
(2)由已知x=log43,则
对数函数与指数函数互为反函数,在解决与对数函数相关的问题可类比指数 函数问题,不仅要注意二者之间的联系,同时更要明确二者之间的区别.
【例2】 设函数f(x)=|lg x|,若0<a<b,且f(a)>f(b),证明:ab<1. 证明:证法一:由题设f(a)>f(b),即|lg a|>|lg b|. 上式等价于lg2a>lg2b,即:(lg a+lg b)(lg a-lg b)>0, lg(ab)lg >0,由已知b>a>0,得0< <1.∴lg<0,故lg (ab)<0,∴ab<1. 证法二:数形结合,函数y=|lg x|的图象如图,由0<a<b且f(a)>f(b)可得两种 情况,①0<a<b<1,则ab<1或②0<a<1,b>1,则lg a<0,lg b>0. 故f(a)>f(b)等价于-lg a>lg b,即lg a+lg b<0,可得lg(ab)<0,故ab<1.
3.积、商、幂的对数运算法则 如果a>0,a≠1,M >0,N>0有:(1)loga(MN)=logaM+logaN; (2)loga =logaM-logaN; (3)logaMn=nlogaM(n∈R).
4.对数换底公式
logaN=
(a>0,a≠1,m>0,m≠1,N>0)
5.对数函数的定义
函数y=logax(a>0且a≠1)叫做对数函数,它是指数函数y=ax(a>0且a≠1)的反数.