数学史几何学的变革下解析
解析几何的发展史

解析几何的发展史由于研究数学方法和使用工具的不同,导致人们对数学发展历程和状态所形成的印象也各不相同。
一般来说,在人们眼里,近代数学似乎是一个平静、沉稳、和谐、统一的世界。
但实际上,自文艺复兴之后,随着生产力的发展和科学技术的进步,特别是17世纪牛顿的微积分问世之后,数学却经历了三次飞跃式的变革。
解析几何就是第二次数学变革中的重要内容。
由于我国古代缺乏高等数学的理论基础,加上一千多年来西方数学的传播,对中国数学的影响较小。
虽然解析几何问题早已被欧洲学者研究,并作出了贡献,但我们在当时还只能处于跟随、模仿的阶段。
直到18世纪末期,费马为费尔马大定理写了完整的证明,中国人才从此翻开了数学史上新的一页。
19世纪初,高斯证明了一元二次不等式,揭示了线性方程组无解的问题,得到了解析几何的基本定理;韦达公式的提出,为线性变换提供了比较充分的条件;德国数学家黎曼的关于非齐次线性微分方程的论文问世,为非齐次线性微分方程的研究奠定了基础。
解析几何的创始人是意大利数学家费马。
他的贡献主要在三个方面:①把三角学、代数和几何结合起来;②用数学符号来表示未知量的几何意义;③建立了解析几何的基本概念、基本定理和基本性质。
后来,意大利数学家维尔斯特拉斯把解析几何的思想发扬光大,他不仅独立地创立了解析几何,而且在其理论体系的研究中取得了丰硕的成果。
随着时间的推移,人们对三次数学变革有了不同的认识。
一些外国数学史专家指出, 16世纪以前,数学主要是希腊数学的继续; 16世纪中叶以后,数学发生了变化,它从古代数学中分离出来,成为一门独立的科学。
他们通过引入新的数学语言,探索一系列深层次的新的数学内容,使数学不断产生新的飞跃,从而走向繁荣。
法国数学史专家加塔利说, 16世纪下半叶,数学获得了全面的长足的发展,呈现出“百花齐放”的局面。
其中,欧几里得几何学的出现标志着数学史上的一个里程碑,它预示着数学将摆脱繁琐的演绎,获得新的突破。
几何发展史简要概括

几何发展史简要概括几何学的发展史是一个漫长而丰富多彩的过程,它伴随着人类文明的发展,不断推动着人类对自然界和宇宙的认识。
以下是几何学发展史的简要概括:1. 早期几何学:早在公元前7世纪,古希腊的数学家们就开始研究几何学。
其中,欧几里德被认为是几何学的奠基人,他的《几何原本》一书成为了数学史上的经典之作。
在这个时期,几何学主要关注平面上图形的性质和度量,如长度、角度、面积等。
2. 解析几何学:到了17世纪,笛卡尔引入了坐标系的概念,将几何图形与代数方程结合起来,从而开创了解析几何学的新纪元。
解析几何学的出现,使得几何学的研究范围从平面扩展到了空间,同时也使得代数和几何在理论上得到了统一。
3. 微分几何学:在19世纪,高斯提出了微分几何学,将几何学的研究重点放在了曲面上。
微分几何学的研究对象包括曲线、曲面以及它们之间的变化和性质。
在这个时期,几何学的研究方法也得到了极大的发展,如微积分、线性代数等数学工具的引入,使得几何学的研究更加深入和广泛。
4. 拓扑学:拓扑学是几何学的一个重要分支,它研究的是图形在连续变形下保持不变的性质。
拓扑学的研究范围非常广泛,包括图形的连通性、紧致性、同胚性等方面。
在20世纪初,随着数学的发展和各学科之间的交叉融合,拓扑学逐渐成为了一个独立的数学分支。
5. 现代几何学:进入20世纪以后,几何学的发展更加多元化和深入。
在这个时期,出现了许多新的几何学分支,如纤维丛几何、黎曼几何、辛几何等。
这些分支的出现,使得几何学的研究范围更加广泛,同时也推动了数学和其他学科的发展。
总的来说,几何学的发展史是一个不断开拓、不断创新的过程。
在这个过程中,许多杰出的数学家们为几何学的发展做出了卓越的贡献。
他们的思想和成果不仅推动了数学的发展,也对其他学科产生了深远的影响。
今天,几何学已经成为一个庞大而复杂的学科体系,它将继续引领着人类对自然界和宇宙的认识和理解。
《数学史》几何学的变革(下)解析

几何学的变革
几何,就是研究空间结 构及性质的一门学科。它是 数学中最基本的研究内容之 一,与分析、代数等等具有 同样重要的地位,并且关系 极为密切。
几何学发展
• 几何学发展历史悠长,内容丰富。它和代数、分析、 数论等等关系极其密切。
• 几何思想是数学中最重要的一类思想。目前的数学各 分支发展都有几何化趋向,即用几何观点及思想方法 去探讨各数学理论。
x1 x2 x ,y x3 x3
齐次坐标成为代数地推导包括对偶原理在内许多 射影几何基本结果的有效工具.但这种代数的方法遭 到了以庞斯列为首的综合派学者的反对,19世纪的射 影几何就是在综合的与代数的这两大派之间的激烈争 论中前进的. 支持庞斯列的数学家还有斯坦纳 (J.Steiner) 、沙 勒 (M.Chasles) 和施陶特 (K.G.C.von Staudt) 等,其中 施陶特的工作对于确立射影几何的特殊地位有决定性 的意义.
其次,非欧几何的出现打破了长期以来只有一 种几何学即欧几里得几何学的局面.
19世纪中叶以后,通过否定欧氏几何中这样或那样的公 设、公理,产生了各种新而又新的几何学,除了上述几种非 欧几何、黎曼几何外,还有如非阿基米德几何、非德沙格几 何、非黎曼几何、有限几何等等,加上与非欧几何并行发展 的高维几何、射影几何,微分几何以及较晚出现的拓扑学等, 19世纪的几何学展现了无限广阔的发展前景.
其中 aij 的行列式必须不为零.射影变换下的不变量有线性、 共线性、交比、调和点组以及保持圆锥曲线不变等.显然, 如果 ,射影变换就成了仿射变换. a31 a32 并且 0 a33 1
下表反映了以射影几何为基础的克莱因几 何学分类中一些主要几何间的关系:
在克莱因的分类中,还包括了当时的代数几何 和拓扑学.克莱因对拓扑学的定义是“研究由无限 小变形组成的变换的不变性”.这里“无限小变形” 就是一一对应的双方连续变换。
几何学发展史简介

“几何”一词,拉丁文是geometric,其源于希腊文ycouerpua(土地测量术)。
我国明末科学家徐光启(1562-1637)与意大利传教士利玛窦(R.Matteo,1553- 1610)1607年合译《几何原本》时首次采用。
几何学是一门古老而崭新的数学分支,其产生可追溯到距今8000年前的新石器时代。
最早始于人类生存及生产的需要,在长期生活、生产实践中,人们逐渐对图形有了一定的认识,形成了一些粗略的几何概念,归纳出一些有关图形的知识和经验,产生了初步的几何。
再经历代数学家的提炼和加工,逐渐形成了一门研究现实世界空间形式,即物体形状、大小和位置关系的数学分支,进而发展成为研究一般空间结构的数学分支。
几何学的发展大致经历了4个基本阶段。
1.实验几何的形成与发展几何学最早的产生可以用“积累几何事实,并企图建立起各个事实间的某种联系”来概括和描述。
源于人们观察天体位置、丈量土地、测量容积、制造生产工具等实践活动。
据考古资料记载,出土的十万年前的一些器皿上已出现的简略几何图案。
相传公元前2000年前大禹治水时,就已经能够使用规和矩等绘图工具进行测量和设计工作。
另外,从现存的古埃及、古巴比伦等国的史料可看出,在天文、测量中也大量地反映了几何图形与计算的知识。
然而,这一历史时期,尽管人们在观察实验的基础上积累了丰富的几何经验。
但在现存的史料中,未见这一时期总结出几何知识真实性的推理证明;某些计算公式仅是粗略和近似的;直至公元前7世纪以前,可以说是单纯地由经验积累,通过归纳而产生几何知识的阶段,被称为实验(归纳)几何阶段。
2.理论几何的形成与发展到了公元前7世纪,随着古埃及、古希腊之间贸易与文化的交流,埃及的几何知识逐渐传入希腊并得到巨大的发展。
这一时期,人们对几何知识开始了逻辑推理与论证,古希腊的泰勒斯(Thales,约公元前625一前547)首先证明了“对顶角相等”、“等腰三角形两底角相等”、“半圆上的圆周角是直角”等,因而被人们称为第一位几何学家;毕达哥拉斯(Pythagoras,公元前580一前501)学派首先证明了“三角形内角和等于二直角”、“勾股定理”、“只有五种正多面体”等。
平面解析几何数学史

平面解析几何数学史一、引言平面解析几何是数学中的一个重要分支,它研究的是平面上的几何图形和代数方程之间的关系。
本文将从历史的角度出发,探讨平面解析几何的发展历程及其在数学领域中的重要作用。
二、古希腊时期平面解析几何的起源可以追溯到古希腊时期。
古希腊数学家Euclid (欧几里德)在他的著作《几何原本》中提出了一系列几何定理和证明,奠定了几何学的基础。
然而,在古希腊时期,人们对于代数方程的研究还相对较少。
三、笛卡尔的贡献直到17世纪,法国数学家笛卡尔(René Descartes)提出了坐标系的概念,将几何问题转化为代数问题,从而开创了平面解析几何的新纪元。
笛卡尔的思想是将平面上的点与实数对应起来,通过坐标系表示点的位置。
这一创新使得几何问题可以用代数方程来解决,极大地推动了数学的发展。
四、牛顿和莱布尼茨在笛卡尔之后,英国科学家牛顿和德国数学家莱布尼茨分别独立发现了微积分学,并将其应用于平面解析几何中。
微积分学的出现使得解析几何的研究更加深入和广泛。
牛顿和莱布尼茨的贡献使得平面解析几何和微积分学之间建立了紧密的联系,为后来的数学发展奠定了基础。
五、19世纪的发展19世纪是平面解析几何发展的重要时期。
法国数学家拉格朗日和德国数学家高斯等人在这一时期提出了许多重要的概念和定理。
拉格朗日提出了拉格朗日方程,用于求解平面上的曲线问题;高斯则提出了高斯曲线,通过曲率的概念研究了曲线的性质。
这些成果为后来的研究提供了重要的理论基础。
六、20世纪以后的发展20世纪以后,随着计算机技术的发展,平面解析几何得到了进一步的发展和应用。
计算机图形学的出现使得平面解析几何与计算机技术相结合,广泛应用于计算机图形的处理和生成。
通过计算机模拟和可视化,人们可以更加直观地理解和研究平面解析几何中的问题。
七、结论平面解析几何作为数学的一个重要分支,在数学的发展中起到了重要的推动作用。
从古希腊时期到现代,平面解析几何经历了漫长的发展历程,吸收了许多数学家的智慧和贡献。
数学史:几何图形的发展历程

数学史:几何图形的发展历程
几何学是数学的一个分支,研究空间和图形的形状、大小、相
对位置和性质。
在数学史上,几何学起源于古代文明,并发展成为
一门独立的学科。
古代埃及是几何学的诞生地之一。
在埃及,人们利用几何学来
测量土地的面积和建筑物的尺寸。
埃及人还发现了一些几何原理,
例如平行线的性质和三角形的性质。
这些原理为几何学的发展奠定
了基础。
另一个几何学的发源地是古希腊。
希腊的几何学家毕达哥拉斯
提出了著名的毕达哥拉斯定理,它描述了直角三角形边长之间的关系。
欧几里得则创立了《几何原本》,系统总结了希腊几何学的发
展成果,成为后世研究几何学的基本教材。
在几何学的发展中,还涌现出一些重要的数学家。
亚历山大的
阿基米德研究了圆锥曲线,给出了计算圆锥曲线面积的方法。
法国
数学家笛卡尔则将代数学与几何学结合起来,提出了笛卡尔坐标系。
随着科学技术的进步,几何学也得到了广泛的应用。
现代几何
学的发展成果广泛应用于物理学、工程学和计算机图形学等领域。
在计算机图形学中,几何学被用于构建三维模型、进行图像处理和
计算机辅助设计等方面。
总结起来,几何学的发展历程丰富而多样。
从古埃及到古希腊,再到现代科技时代,几何学一直在不断发展和应用。
它不仅帮助人
们认识和描述空间和图形的性质,还在科学技术的进步中发挥着重
要的作用。
解析几何的发展史

总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。
运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。
解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”
坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。
回答者:nanzong-举人四级 2-22 16:23
解析几何是数学中最基本的学科之一,也是科学技术中最基本的数学工具之一。
论解析几何的作用与意义

论解析几何的作用与意义众所周知,近代数学的第一个里程碑是解析几何的诞生。
这也是因应了时代发展的需要。
文艺复兴使得科技文明获得新生,近代科学技术的发展使运动变化的研究成为自然科学的中心问题,由此而迫切需要一种新的数学工具。
这样,数学就再一次“扮演了先行者、奠基者的角色”,“而其中影响无比深远者首推坐标解析几何和微积分,它们奠定了对于各种各样自然现象作深刻的数理分析的基本工具。
”1.作为“方法论”的坐标法思想解析几何的创建是为了科学发展的需要,同时,从数学内部来看,也是出于对数学方法的追求。
认识清楚这一点,对于我们理解解析几何的基本思想特别重要。
这可以从追溯Descartes和Fermat在创立解析几何时的心路历程看出这种追求。
(1)Descartes的坐标法思想Descartes1596年3月31日出生于法国拉埃耶一个古老的贵族家庭。
他从小体弱多病,但非常好学,勤于思考,他不仅在数学上做出了重要的开创性贡献,而且在哲学、生物学、物理学等众多领域都做出了杰出贡献。
他是机械自然观的第一个系统表述者,被誉为近代哲学的开创者。
正如克莱因指出的,“Descartes 是第一个杰出的近代哲学家,是近代生物学的奠基人,是第一流的物理学家,但只偶然地是个数学家。
”他以大哲学家的眼光审视数学,认为数学立足于公理上的证明是无懈可击的,而且是任何权威所不能左右的。
数学提供了获得必然结果以及有效地证明其结果的方法。
数学方法“是一个知识工具,比任何其他由于人的作用而得来的知识工具更为有力,因而它是所有其他知识工具的源泉……所有那些目的在于研究顺序和度量的科学,都和数学有关。
”他研究数学,目的是想寻找一种能在一切领域里建立真理的方法。
他认为,逻辑本身对任何创造性的人类目标都贫乏而毫无用处;哲学、伦理学、道德学中的证明,与数学相比,花哨而虚假。
那么应当如何发现呢?这就是:通过“控制下的实验”并对实验结果应用严格的数学推理。
Descartes认为,以往的几何、代数研究都存在很大缺陷:欧氏几何中没有那种普遍适用的证明方法,几乎每一个证明都需要某种新的、技巧性很强的想法;代数的方法具有一般性,其推理程序也是机械化的,但它完全受法则和公式的控制,以至于“成为一种充满混杂与晦暗、故意用来阻碍思想的艺术,而不像用来改进思想的科学”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作为这个原理的一个例 子,庞斯列举了圆内相交弦的 截段之积相等的定理,当交点 位于圆的外部时,它就变成了 割线的截段之积的相等关系.
不过,将射影几何真正变革为具有自己独立的目 标与方法的学科的数学家,是曾受教于蒙日的庞斯列 (J-V.Poncelet,1788—1867).
庞斯列曾任拿破仑远征军的工兵中尉,1812年 莫斯科战役法军溃败后被俘,度过了两年铁窗生 活.
然而正是在这两年里,庞斯列不借助于任何 书本,以炭代笔,在俄国萨拉托夫监狱的墙壁上 谱写了射影几何的新篇章.
庞斯列获释后对自己在狱中的工作进行了修 订、扩充,于1822年出版了《论图形的射影性 质》,这部著作立即掀起了19世纪射影几何发展 的巨大波澜,带来了这门学科历史上的黄金时 期.
与德沙格和帕斯卡等不同,庞斯列并不限于考虑 特殊问题.
他探讨的是一般问题:图形在投射和截影下保持 不变的性质,这也成为他以后,射影几何研究的主 题.
支持庞斯列的数学家还有斯坦纳(J.Steiner)、沙 勒(M.Chasles)和施陶特(K.G.C.von Staudt)等,其中 施陶特的工作对于确立射影几何的特殊地位有决定性 的意义.
到1850年前后,数学家们对于射影几何与欧 氏几何在一般概念与方法上已作出了区别,但对 这两种几何的逻辑关系仍不甚了了.即使是综合 派的著作中也依然在使用长度的概念,例如作为 射影几何中心概念之一的交比,就一直是用长度 来定义的,但长度在射影变换下会发生改变,因 而不是射影概念.
施陶特在1847年出版的《位置几何学》中提出一套方案, 通过给每个点适当配定一个识别标记(也称作坐标)而给交比作 了重新定义.如果四点的“坐标”记为x1, x2 , x3 , x4 ,那么交 比就定义为
默比乌斯在《重心计算》(1827)一书中第一次引 进了齐次坐标,这种坐标后被普吕克发展为更一般的
形式,它相当于把笛卡儿坐标 x, y换成
x x1 , y x2
x3
x3
齐次坐标成为代数地推导包括对偶原理在内许多 射影几何基本结果的有效工具.但这种代数的方法遭 到了以庞斯列为首的综合派学者的反对,19世纪的射 影几何就是在综合的与代数的这两大派之间的激烈争 论中前进的.
庞斯列强调的另一个原理是对偶原理.射影几何 的研究者们曾经注意到,平面图形的“点”和“线” 之间存在着异乎寻常的对称性,如果在它所涉及的定 理中,将“点”换成“线”,同时将“线”换成 “点”,那么就可以得到一个新的定理.例如考虑著 名的帕斯卡定理:如果将一圆锥曲线的6个点看成是一 个六边形的顶点,那么相对的边的交点共线 。
而如果其中的一条割线 变成圆的切线,那么这个定 理仍然成立,只不过要把这 条割线的截段之积换成切线 的平方。
这个原理卡诺也曾用过,但庞斯列将它发展到 包括无穷远点的情形.因此,我们总可以说两条 直线是相交的,交点或者是一个普通的点,或者 是一个无穷远处的点(平行线的情形).
除了无穷远元素,庞斯列还利用连续性原理 来引入虚元素.例如两个相交的圆,其公共弦当 两圆逐渐分离并变得不再相交时,就成为虚 的.无穷远元素与虚元素在庞斯列为达到射影几 何的一般性工作中发挥了重要作用.
9.4 射影几何的繁荣
非欧几何揭示了空间的弯曲性质,将平直空间 的欧氏几何变成了某种特例.
实际上,如果将欧几里得几何限制于其原先的涵 义——三维、平直、刚性空间的几何学,那么19世 纪的几何学就可以理解为一场广义的“非欧”运动: 从三维到高维;从平直到弯曲;…而射影几何的发 展,又从另一个方向使“神圣”的欧氏几何再度 “降格”为其他几何的特例.
庞斯列射影几何工作中很重要的一部分,就是 为建立对偶原理而发展了配极的一般理论.他深入 研究了圆锥曲线的极点与极线的概念,给出了从极 点到极线和从极线到极点的变换的一般表述.
与庞斯列用综合的方法为射影几何奠基的同时, 德国数学家默比乌斯(A.P.Mobius,1790—1868)和 普吕克(J.Plucker,1801—1868)开创了射影几何研究 的解析(或代数)途径.
它的对偶形式则是:
如果将一圆锥曲线的6条切线 看成是一个六边形的边,那 么相对的顶点的连线共点。
帕斯卡定理的对偶形式是布里昂雄 (C.J.Brianchon)在1806年发现的,所以常被称为 布里昂雄定理,而这离帕斯卡ห้องสมุดไป่ตู้初陈述他的定理 已有近二百年的光景.
虽然布里昂雄发现了帕斯卡定理的对偶定理, 但包括他在内的许多数学家对于对偶原理为什么行 得通仍是不清楚,事实上,布里昂雄还曾怀疑过这 个原理.
在19世纪以前,射影几何一直是在欧氏几何的框 架下被研究的,其早期开拓者德沙格(法国)、帕 斯卡(法国)等主要是以欧氏几何的方法处理问题, 并且他们的工作由于18世纪解析几何与微积分发展 的洪流而被人遗忘.
到 18 世 纪 末 与 19 世 纪 初 , 蒙 日 ( 《 画 法 几 何 学)》等人的工作,重新激发了人们对综合射影几何 的兴趣.
第九章
几何学的变革
几何,就是研究空间结
构及性质的一门学科。它是 数学中最基本的研究内容之 一,与分析、代数等等具有 同样重要的地位,并且关系 极为密切。
几何学发展
• 几何学发展历史悠长,内容丰富。它和代数、分析、 数论等等关系极其密切。
• 几何思想是数学中最重要的一类思想。目前的数学各 分支发展都有几何化趋向,即用几何观点及思想方法 去探讨各数学理论。
由于距离和交角在投射和截影下会改变,庞斯列 选择并发展了对合与调和点列的理论而不是以交比的 概念为基础.
与他的老师蒙日也不同,庞斯列采用中心投影而 不是平行投影,并将其提高为研究问题的一种方 法.在庞斯列实现射影几何目标的一般研究中,有两 个基本原理扮演了重要角色.
首先是连续性原理,它涉及通过投影或其他方法