七年级数学下册第五章_相交线与平行线_复习课件(1)人教版.ppt

合集下载

七年级下数学第五章相交线与平行线复习课件1人教版ppt

七年级下数学第五章相交线与平行线复习课件1人教版ppt

∠ A和哪个角是同旁内角? A
B
(∠B 、 ∠AOB、 ∠AOE)
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
一、判断题
概念辨析
1、有公共顶点且相等的两个角是对顶角。(
×

2、两条直线相交,有两组对顶角。
(√ )
3、两条直线相交所构成的四个角中有一个角是直角,
1、定义:
(二)、垂直:
两条直线相交所形成的四个角中有 A
一个是直角时叫两条直线互相垂直。
C
B O
2、画法: 过一点画一条直线的垂线。
D
p
3、性质:
c
b
Q
a
b
AB C
DE
P
(2)、 垂线段最短。
(1)、过一点有且只有一条直 线垂直于已知直线。
点到直线的距离:
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
直线AB,CD相交于点O,OM⊥AB于O, 且 ∠D1 OM= ∠COM,求∠AOD 的度数3.
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
线段、射线的垂线应怎么画呢?
P
Q
A
B
垂线性质一
O
A
过一点有且只有一条直线与已知直线垂直.
垂线段是垂线上的一部分,它是线段, 一端是一个点,另一端是垂足。
P
A
B
D
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

七年级数学下册第五章相交线与平行线复习(共14张PPT)

七年级数学下册第五章相交线与平行线复习(共14张PPT)
第1页,共14页。
知识系统
对顶角相等
一般情况
3 12
4

条 直
邻补角互补
对顶角和邻补角的存在前 提是两条直线相交
线


过一点有且只有一条直线与已知直线垂直

特殊情况

垂线段最短 点到直线的距离
第2页,共14页。
E
三线八角 A
34
21
B
65
D
C
78
F
同位角是: ∠1和∠8; ∠2和∠7;
∠3和∠6; ∠4和∠5.
第4页,共14页。
一、知识回顾
平行线的性质:
1、两直线平行,同位角相等。
2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补。
第5页,共14页。
中考题我能行!
(1).
年东莞〕能由△AOB平移而得的图
形是哪个?
A
F
A
B
B
E
O
E
C
D
C
D
(2)( 年四川省广安市〕如图,AB ∥CD,
假设∠ABE=120o ∠DCE=35o,那么 ∠ BEC =___
第12页,共14页。
10.如图,已知DE、BF分别平分∠ADC 和∠ABC, ∠1 =∠2, ∠ADC= ∠ABC 说明AB∥CD的理由。
第13页,共14页。
11. 如图,直线EF过点A, D是BA延长线上的点 , 具备什么条件时,可以判定EF BC ? 为什么 ?
D
E
ቤተ መጻሕፍቲ ባይዱ
A
F
B
C
第14页,共14页。
内错角是: ∠1和∠6; ∠2和∠5.

人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共15张PPT)

人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共15张PPT)

如图:三条直线AB、CD、EF。如果AB//EF ,CD//EF, 那么直线AB与CD可能相交吗?假设AB与CD相交, A NhomakorabeaB
设AB与CD相交于P
C
P D
E
F
因为AB//EF,CD//EF
于是过点P就有两条直线AB
CD都与EF平行。
根据平行公理,这是不可能的
也就是说,AB与CD不能相交,
只能平行。
五、平行公理的推论
A、B、C三点 在同一直线上 ;
( 经过直线外一点,有且只有一条直线与这条直线平行)
A··B C·
D
E
随堂即练
(2)如图,因为AB // CD,CD // EF(已知), 所以___A_B____ // ____E_F____.
( 如果两条直线都和第三条直线平行,那么这两条直 线也互相平行)
A
B
C
1、下列说法正确的个数是( B ) (1)两条直线不相交就平行。 (2)在同一平面内,两条平行的直线有且只有一个交点 (3)过一点有且只有一条直线与已知直线平行 (4)平行于同一直线的两条直线互相平行 (5)两直线的位置关系只有相交与平行
A、0 B、1 C、2 D、4
2、下列推理正确的是( C )
(如果两条直线都与第三条直线平行,那么这 两条直线互相平行).
因为 c∥d,所以 a ∥d
(如果两条直线都与第三条直线平行,那么这两 条直线互相平行).
本节课你的收获是什么?
(1) 平行线的定义; (2)平行线的表示方法; (3)平行线的画法。 (4)平行线公理 (5)平行线公理的推论。
温故而知新
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行.

初中数学人教版七年级下册第五章 相交线与平行线5.1.1相交课件(共25张PPT)

初中数学人教版七年级下册第五章 相交线与平行线5.1.1相交课件(共25张PPT)

1.如图,直线AB,CD相交于点O,∠1+∠2=120°,∠3=
125°,则∠2的度数是(
D )
(第3题)
A.37.5°
B.75°
C.50°
D.65°
【点拨】
因为∠3=125°,所以∠1=180°-125°=55°,因为∠1
+∠2=120°,所以∠2=120°-55°=65°,故选D.
2.如图,已知直线AB,CD相交于点O,且OE平分∠BOC.
6.下列说法正确的是(
B )
A.相等的角是对顶角
B.邻补角一定互补
C.互补的两个角一定是邻补角
D.两个角不是对顶角,则这两个角不相等
利用邻补角的定义求角度
9.[母题:教材P8习题T2]如图,O是直线AB上一点,OD平分
∠AOC,OE平分∠BOC.
(1)图中∠BOD的邻补角为 ∠AOD
∠AOE的邻补角为 ∠BOE
【点拨】
因为∠AOD=∠1=80°,所以∠AOE=
∠AOD-∠2=80°-30°=50°.
故选B.
(第6题)
5.如图,直线AB,CD相交于点O,OE是∠BOD内的一条射线.
(1)∠DOE的邻补角是 ∠COE
的邻补角是 ∠BOD和∠AOC
,∠AOD


(2)写出图中的对顶角.
【解】对顶角有∠AOD和∠BOC,∠AOC和∠BOD.
于点O.
(1)写出∠COE的邻补角;
【解】∠COE的邻补角为∠COF和∠EOD.
(2)分别写出∠COE和∠BOE的对顶角;
【解】∠COE和∠BOE的对顶角分别为
∠DOF和∠AOF.
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度

(精选幻灯片)人教版七年级下册数学期末总复习课件 (1)

(精选幻灯片)人教版七年级下册数学期末总复习课件 (1)

象限,点(0,3)在( )上,点(-2,0)在( )上
2、点(4,-3)到x轴的距离是( ),到y轴的距离
是( )
3、过点(4,-2)和(4,6)两点的直线一定平行( )
过点(4,-1)和(2,-1)两点的直线一定垂直于( )
4、已知线段AB=3,且AB∥x轴,点A的坐标为(1,-2),
则点B的坐标是( )
131 、
7 27 、 0.2、 6.1010010001
11
中,无理数的个数是( B )
(A) 2 ( B) 3 (C) 4 (D) 5
29
三、知识点应用
选择题: 6、已知一个正方形的边长为a,面积为S, 则( C )
(A) S a (B) S的平方根是a (C) a是S的平方根
(D) a S
第三象限( , );第四象限( , )
5、利用平面直角坐标系表示地理位置有三个步骤:
(1)建立平面直角坐标系;
(2)确定单位长度;
(3)描出点,写出坐标
6、P(x,y)向左平移a个单位长度之后坐标变为( ),
向右平移a个单位长度之后坐标变为( ),向上平移b
个单位长度之后坐标变为( ),向下平移b个单位长度
(3)已知3 5.25 1.738, 3 52.5 3.744,
则3 5250的值是 17.38
35
三、知识点应用
探索题:
(1) 2 2 2 2, (2) 3 3 3 3, (3) 4 4 4 4
33
88
15 15
LLLL
根据规律请写出 5 5 ; 24
再写出两个等式?
36
之后坐标变为( )
2020/2/5
41

人教版数学七下第五章《相交线与平行线》ppt复习课件

人教版数学七下第五章《相交线与平行线》ppt复习课件
垂线段的长度,叫做这点到这条直线的距离.
判断:
1、画出点A到直线BC的距离。( )
B
2、画出点A到直线BC的垂线段。( )
A DC
3、量出点A到直线BC的距离。 ( )
4、垂线最短。
()
(三)、三线八角:
A
同位角: ∠1与∠5; ∠4与∠8;
∠2与∠6; ∠3与∠7.
内错角: ∠4与∠6; ∠3与∠5. C
则∠3=
40º
A
B
1
32
C
D
2
11、如图:
∠CDF= 2
AB∥CD ,∠ABF= 3
∠CDE,则∠E︰∠F=
∠ABE, 3:2
3
(提示: ∠E=∠ABE+ ∠CDE C
D FE
∠F= ∠ABF+ ∠CDF)
A
B
ba
1
2
∴ ∠1=90 (垂直定义)
又∵ b∥c (已知)
∴ ∠2= ∠1=90 (两直线平行,同位角相等)
∴ a ⊥c. (垂直定义)
二、平行线
E
(一)、定义:
A
21
B
在同一平面内,不相交的两 条直线叫做平行线。
34 65
(二)、判定:
1、定义。
C7 8
D
F
2、同位角相等,两直线平行。
E
G
B
C1
D
6、下列命题正确的是(A )
A、垂直于同一条直线的两条直线平行(在同一平面内)
B、两条直线被第三条直线所截,同位角相等
C、相等的两个角是对顶角
D、点到直线间的距离,垂线段最短
7、三条直线相交一点,对顶角的对数是( B )

人教版七年级下册第五章 相交线与平行线PPT课件


C
A
12 3O
B
D
二、对顶角的概念
对顶角:如果两个角有一个公共定点,并且其中 一个角的两边是另一个角的两边的 反向延长线, 那么这两个角互为对顶角.图中∠1的对顶角是 _∠__2___.
C
A
1
B
O2
D
典例精析 例1 下列各图中,∠1与∠2是对顶角的是( D )
1 2
A
12
B
2 1
2 1
C
D
方法总结:对顶角是由两条相交直线构成的,
A
C
∠AOC和∠AOD有一条公共边 AO,且∠AOC的另一边是∠AOD
另一边的反向延长线.
O
∠AOC和∠BOD有公共顶点,
且∠AOC的两边分别是∠BOD两
D
B 边的反向延长线.
一、邻补角的概念
邻补角:如果两个角有一条公共边,它们的另 一边互为_反__向__延__长__线___,那么这两个角互为邻 补角.图中∠1的邻补角有__∠__2_,_∠__3___.
不是
2.下列各图中, ∠1 ,∠2是邻补角吗?
1 (2
不是
12

12
不是
3.找出图中∠AOE的邻补角及对顶角,若没有请画出.
A
解:邻补角是∠EOB和∠AOF; 对顶角是∠BOF.
C
E D
O B
F
4.如图,直线AB,CD,EF相交于点O. (1)写出∠AOC, ∠BOE的邻补角; (2)写出∠DOA, ∠EOC的对顶角; (3)如果∠AOC =50°,求∠BOD ,∠COB的度数.
解:∵∠BOE=∠NOE, ∴∠BON=2∠EON=40°, ∴∠NOC=180°-∠BON

人教版七年级数学下册 第五章相交线与平行线单元复习 (共44张ppt)


四、平行线的判定与性质
平行线的性质: 1.两直线平行,同位角相等 . 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补.

条件

线
的 性 两直线平 行

性质
线的关系
平 行
同位角相等
线

内错角相等
判 定 同旁内角互补
判定
角的关系
结论 同位角相 等
内错角相等
同旁内角互补
角的关系
两直线平行
线的关系
C
H
D
F
F 形模式
同位角
Z 形模式
内错角
U 形模式
同旁内角
四、平行线的判定与性质
判定两条直线是否平行的方法有:
1.同位角相等, 两直线平行. 2.内错角相等, 两直线平行. 3.同旁内角互补, 两直线平行. 4.平行于同一直线的两直线平行. 5.同一平面内, 垂直于同一直线的两直线平行. 6.平行线的定义.
C
A
1
O
B
2D E
解: ∵∠1=35°,∠2=55°(已知)
∴ ∠AOE=180°-∠1-∠2 = 180°-35°-55° =90°
∴OE⊥AB (垂直的定义)
5.如图,直线AD、BE、CF相交于O,OG⊥AD, 且∠BOC = 35°,∠FOG = 30°,求DOE的度数。
∵OG⊥AD, ∴∠GOD=90°, ∵∠BOC=35°, ∴∠FOE=∠BOC=35°, 又∵∠GOD=∠GOF+∠FOE+∠DOE=90°, ∵∠FOG=30°, ∴∠DOE=∠GOD-∠FOE-∠GOF=90°-35°-30°=25°.
2. 垂线的性质 (1)在同一平面内,过一点有且只有一条直

人教版七年级下册第五章《相交线和平行线》复习课件(共17张PPT)

5的关系是______;
②∠3和∠5的关系是______;
内错角
③∠2和∠ __是直线______、______被直线______所截,形成的同位角。
同旁内角
7 EF
HE
CD
复习与回顾
(1)∵∠ 4 =∠ 2 , ∴ a∥b(同位角相等,两直线平行)
c
4
13
a
(2)∵∠ 1 =∠ 2 ,
M N
平行线 间与拐点,过拐点作平行线
课堂小结: 谈谈你本节课的收获。
课后作业
P35页—P36页 2、3、6、8题
不去耕耘,不去播种,再肥的沃土也长不出庄稼, 不去奋斗,不去创造,再美的青春也结不出硕果
重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的 综合应用 难点:垂直、平行的性质和判定的综合应用。
学法指导:
1.回想或查阅资料总结知识点; 2.独立完成,小组订正答案,解决过程中发现的问题。
复习与回顾
如图中的∠1和∠2是同位角吗? 为什么?
2 1 ∠1和∠2不是同位角
1
2
∠1和∠2是同位角,
学习目标
1、经历基础知识梳理的过程,进一步体会数学知识中数量关系的一个有效数学模型; 2、能够利用基础知识解答一些简单问题,帮助学生认识到运用基础知识解答一些简 单问题的关键是理解定义、定理蕴含的关系;并且能根据具体问题的实际意义检验结果 的合理性,进一步培养学生分析问题、解决问题的意识和能力; 3、了解一对顶角、邻补角及其相关概念,会用平行线的性质及判断解答简单的证明 题,并在证明的过程中体会转化等数学思想;
∴ ∠ 3 +∠ 2 =180°
(两直线平行,同旁内角互补)
学法指导: 1.根据总结知识,完成例题; 2.小组互学,交流经验,总结方法; 3.板演,与全班同学订正。

七年级数学下册第五章相交线与平行线复习课件(1)人教版

0A上的Q点反射后,反射光线40Q?R恰好与0B平行,则∠ QPB
的度数是( )
A.60° B.80° C.100 ° D.120°
Q
A
R
o
P
B
图13
四. 能力训练
(7①)公平理行二:线同.的复位判角习别相目(等判标,定两及)直知线识平要行 点.
②内错角相等,两直线平行 . ③同旁内角互补,两直线平行 . ④如果两条直线都和第三条直线平行,那么 这两条直线也互相平行 . (8)两条平行线间的距离及其应用 .
例1 (06大连西岗三).如典图型1,例直题线AB、CD相交于
(3)垂线的性质:① 经过直线外一点有且只有一 条直线与已知直线垂直 .②垂线段最短 .
(4)点到直线的距离:从直线外一点向已知直线 作垂线,这一点和垂足之间线段的长度叫做点到 直线的距离 .
(5)三二线.八复角习形成目的标相及关角知;识同要位角点、内
错角、同旁内角 . (6)平行线的性质(特征): ①公理:两直线平行,同位角相等 . ②两直线平行,内错角相等 . ③两直线平行,同旁内角互补 .
四. 能力训练
8.如图12,AB∥ CD ,直线EF分别交AB,CD于E, F两点,∠ BEF的平分线交CD于点G,若∠ EFG=72°, 则∠ EGF等于( )
A. 36°B. 54°C. 72 ° D. 108°
EAΒιβλιοθήκη BC FG
D
图12
四. 能力训练
9.已知:如图13,∠ A0B的两边 0A、0B均为平面反光 镜,∠ A0B= .在0B上有一点P, 从P点射出一束光线经
∠ BMF=65°.
2
方法二:(提示结合角平分线、平行线 的性质和三角形内角和的知识求得角的度数)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档