五年级数学知识点整理
五年级数学知识点总结大全

五年级数学知识点总结大全知识点一:小数的加减运算小数的加减运算是五年级数学的基础知识之一。
首先需要了解小数的概念和表达方式,接着根据小数加减法的运算规则进行计算。
需要注意小数点对齐和进位借位的方法。
举个例子:0.15 + 0.38 = 0.530.83 - 0.12 = 0.71知识点二:长方形的面积和周长长方形是五年级数学中需要掌握的图形之一。
学生需要知道长方形的定义、性质以及计算长方形的面积和周长的公式。
长方形的面积等于长乘以宽,周长等于长和宽的两倍之和。
例如:长方形长为6cm,宽为4cm,面积为24cm²,周长为20cm。
知识点三:数字的整数、分数和小数表示数字的表示方式有三种:整数、分数和小数。
学生需要掌握不同数字表示方式之间的转换方法,如把分数化成小数或整数,将小数和整数化成分数等。
例如:将分数3/5化成小数,得到0.6。
将小数0.25化成分数,得到1/4。
知识点四:分数的加减运算分数的加减运算是五年级的难点之一。
学生需要了解分数加减法的基本运算规则,化简分数的方法,以及约分、通分的方法。
例如:3/4 + 2/5 = 23/207/12 - 1/3 = 1/4知识点五:正方形的面积和周长正方形是一个边长相等的四边形,其特殊性质是面积和周长相等。
学生需要了解正方形的定义和性质,掌握计算正方形面积和周长的方法。
例如:正方形边长为4cm,面积为16cm²,周长为16cm。
知识点六:单位换算单位换算是五年级数学中需要掌握的知识点之一。
学生需要了解长度、面积、体积等不同量纲之间的换算关系,例如米和厘米、平方米和平方厘米、立方米和立方厘米等。
例如:10米 = 1000厘米1平方米 = 10000平方厘米1立方米 = 1000000立方厘米知识点七:图形的分类和性质五年级学生需要掌握各种图形的分类和性质,如三角形、四边形、圆形等。
他们需要知道不同形状的图形的特点、特殊性质和面积、周长的计算方法。
五年级数学知识点归纳整理

五年级数学知识点归纳整理小学五年级上册数学《简易方程》知识点1、方程的意义含有未知数的等式,叫做方程。
2、方程和等式的关系3、方程的解和解方程的区别使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式加数= 和-另一个加数减数= 被减数–差被减数= 差+减数因数= 积另一个因数除数= 被除数商被除数= 商除数小学五年级数学学习指导:分数一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,是这个分数的分数单位。
二、两个数相除,它们的商可以用分数表示。
即:a÷b= b/a(b≠0)三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
四、分数可以分为真分数和假分数。
五、分子小于分母的分数叫做真分数。
真分数小于1。
六、分子大于或等于分母的分数叫做假分数。
假分数大于或等于1。
七、分子和分母只有公因数1的分数叫做最简分数。
八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。
分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
小学五年级数学学习方法第一,树立自信,培养毅力。
小学数学特别是高年级小学数学练习常有繁杂的计算,比较难懂和不易推理的证明,学生对此应有充足的信心,顽强的毅力和认真仔细的良好习惯,做到善始善终。
五年级数学必背知识点

1.数的认识和运算:
-自然数和整数的概念
-加法和减法的基本计算技巧
-乘法和除法的基本计算技巧
-倍数和约数的概念
-分数的概念和简单的分数运算
2.数的比较和顺序:
-数的比较大小和顺序关系
-小数的概念和发展
-小数之间的比较和顺序关系
-分数和小数之间的转换
3.数的整体转化:
-分数和百分数之间的转换
-分数和小数之间的转换
-百分数和小数之间的转换
-分数、百分数和小数之间的综合转换
4.有关平方、立方和算数平方根:
-平方数的概念和性质
-平方根的概念和运算
-立方数的概念和性质
-立方根的概念和运算
-算数平方根的概念和运算5.有关量的估测和计算:
-长度、质量和容量的换算-长度、质量和容量的估测-有时间的估测和计算
-有金额的估测和计算
6.有关图形的认识和分析:-二维图形的辨认和分类
-二维图形的属性和性质
-二维图形的面积和周长计算-三维图形的辨认和分类
-三维图形的属性和性质
7.有关数据的整理和图表:-数据的收集和整理
-数据的统计和图表
-数据的分析和解读
-图表之间的比较和关系
8.有关时间和日历的认识:
-时间的概念和单位
-日期和星期的表达
-闰年和平年的区别
-节假日和纪念日的认识
9.有关变量和代数式的认识:
-变量和常数的概念
-代数式的表示和计算
-一次方程式的解和应用
-简单的变量与代数式之间的转换。
五年级数学必考知识点梳理

五年级数学必考知识点梳理五年级数学必考知识点第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:积中小数末尾有0的乘法。
先计算出小数乘整数的乘积后,积的小数末尾出现0,要再根据小数的性质去掉小数末尾的0。
如:3.60“0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。
如0.02×2= 0.04知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。
)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算三、积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。
如6.597保留两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。
先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
五、简便运算整数乘法的交换律、结合律和分配律,对于小数乘法也适用计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。
五年级数学的知识点总结

自我介绍例文参考自我介绍样本一:我是一个对理想有着执着追求的人,坚信是金子总会发光。
大学毕业后的工作,让我在文案筹划方面有了很大的进步,文笔流畅,熟悉传媒工作、广告学制作与设计等工作方面。
为人热情,活泼,大方,本人好学上进,诚信、敬业、责任心强,有强烈的团体精神,对工作认真积极,严谨负责。
本人性格内外结合,适应才能强,为人老实,有良好的人际交往才能,具备相关的专业知识和认真。
细心、耐心的工作态度及良好的职业道德修养。
相信团体精神的我对工作认真负责,总希望能把事情做得更好!性格开朗,对文字语言和数字敏感,对生活充满希望,对工作充满热情! 能在短期间内适应新环境,有强烈的品质意识;对工作认真负责,上进心强!懂电脑根本操作,纯熟小键盘操作!我的理念是:在年轻的季节我甘愿吃苦受累,只愿通过自己富有激情、积极主动的努力实现自身价值并在工作中做出最大的奉献:作为初学者,我具备出色的学习才能并且乐于学习、敢于创新,不断追求卓越;作为参与者,我具备老实可信的品格、富有团队合作精神;作为指导者,我具备做事干练、果断的风格,良好的沟通和人际协调才能。
受过系统的经济文化相关专业知识训练,有很强的忍受力、意志力和吃苦耐劳的品质,对工作认真负责,积极进取,个性乐观执着,敢于面对困难与挑战。
为了企业公司的利益而早想,为了在企业公司付出个人的思想文化才能程度,尽心尽力的忠诚于企业公司,企业公司这样才有利于我的开展目的,去脚踏实地奋斗实现我的梦想,追求一些生活物资财富等。
努力的为企业公司渐渐的壮观强大的开展起来,成功的阶段渐渐的有所进步,在社会上可以抬得起头,在社会上知名知名度和良好的方面。
在企业公司上奉献我的人生价值和风度才能程度,在社会上全方面的体会出来。
看过了我的个人简历自我介绍信息的企业公司指导人们,请合格同意批准我进入企业公司的工作方面,积极面对企业公司的工作,合适企业公司环境的范围,投入企业公司工作方面的用处和理解,渐渐的习惯起来这企业公司的这一工程职业道路的开展空间。
小学数学五年级知识点

小学数学五年级知识点一、分数和小数1. 分数的基本概念- 理解分数表示的是整体的一部分。
- 掌握分数的读法和写法。
- 识别真分数和假分数。
2. 分数的运算- 分数的加减法,特别是同分母分数的计算。
- 分数与整数的乘法。
- 初步了解分数的乘法和除法。
3. 小数的基本概念- 理解小数表示的是整数的十分之一、百分之一、千分之一等。
- 掌握小数的读法和写法。
4. 小数的运算- 小数的加法和减法。
- 小数与整数的乘法。
- 初步了解小数的乘法和除法。
二、几何图形1. 平面图形- 认识正方形、长方形、三角形、圆等基本图形。
- 理解图形的对称性。
- 掌握计算平面图形面积的基本方法。
2. 立体图形- 认识立方体、长方体、圆柱、圆锥等基本立体图形。
- 理解立体图形的表面积和体积的计算方法。
三、数与式1. 整数和四则运算- 掌握多位数的乘法和除法。
- 理解正负数的概念。
- 学习简单的整数运算技巧。
2. 代数初步- 理解用字母表示数的概念。
- 初步学习简单的一元一次方程。
四、数据处理1. 统计与概率- 收集、整理和分析数据。
- 制作和解读简单的统计图表。
- 初步了解概率的概念。
2. 应用题- 解决涉及分数、小数、整数运算的实际问题。
- 学会列方程解决实际问题。
五、数学思维与问题解决1. 逻辑推理- 培养逻辑思维能力。
- 学习通过分析和归纳解决问题。
2. 问题解决策略- 学习使用不同的方法解决数学问题。
- 培养独立思考和创新的能力。
六、数学应用1. 生活中的数学- 理解数学在日常生活中的应用。
- 学习使用数学解决实际问题。
2. 数学与其他学科的联系- 探索数学与科学、艺术等其他学科的关联。
七、复习与测试1. 定期复习- 定期复习所学知识点,巩固记忆。
2. 模拟测试- 通过模拟测试检验学习效果,查漏补缺。
请注意,以上内容仅为五年级数学知识点的概览,具体的教学计划和课程内容应根据学校的教学大纲和学生的实际情况进行调整。
教师和家长应鼓励学生通过实践活动和探究学习来深化对数学知识的理解。
五年级数学一到四单元的知识点总结
五年级数学一到四单元的知识点总结一、整数1. 正整数和负整数五年级数学的第一单元主要介绍了整数的概念,包括正整数和负整数。
正整数是大于零的整数,负整数是小于零的整数。
在实际生活中,整数可以用来表示温度、海拔等概念。
2. 整数的比较和大小关系整数的大小比较是五年级数学的重要知识点之一。
通过比较整数的大小,可以进行加减法运算以及解决实际问题。
3. 整数的加法和减法五年级数学还涉及了整数的加法和减法。
在加法中,同号相加得正,异号相加得负;在减法中,减去一个负数相当于加上它的绝对值。
4. 整数的乘法和除法整数的乘法和除法也是五年级数学的内容之一。
在乘法中,同号相乘得正,异号相乘得负;在除法中,除以一个负数相当于乘以它的倒数。
二、小数1. 小数的认识小数是五年级数学的另一个重要知识点,它是整数和分数之间的数。
小数可以表示实数,它在日常生活中广泛应用于货币、计量单位等方面。
2. 小数的运算五年级数学还包括了小数的加减乘除运算。
在小数的加减运算中,需要对齐小数点;在乘除运算中,可以先化为分数进行运算,再将结果转化为小数。
3. 小数的比较与大小关系比较小数的大小是五年级数学的必备技能之一。
通过比较小数的大小,可以进行大小比较,解决实际生活中的问题。
4. 小数和分数的关系五年级数学还介绍了小数和分数的相互转化。
可以将小数化为分数,也可以将分数化为小数,在实际生活和学习中都能起到重要作用。
三、图形1. 图形的种类与性质五年级数学的第三单元主要介绍了各种不同形状的图形,包括三角形、四边形、五边形等。
还需要了解各种图形的性质。
2. 图形的周长和面积计算图形的周长和面积是五年级数学的重点内容。
在计算周长时,需要将图形的边长相加;在计算面积时,需要根据图形的不同形状选择合适的计算公式。
3. 图形的位置关系图形的位置关系也是五年级数学的重要内容之一。
需要了解平行、垂直、相交等概念,能够准确描述和判断图形的位置关系。
四、倍数和约数1. 整数的倍数五年级数学还介绍了整数的倍数概念。
数学五年级知识点人教版
数学五年级知识点人教版数学五年级是小学数学教育中的一个重要阶段,这个阶段的学习内容对于学生理解数学概念和培养数学思维至关重要。
根据人教版(人民教育出版社出版)的教材,以下是五年级数学的主要知识点:一、数与代数1. 整数和小数:学习整数的加减乘除运算,以及小数的加减法运算。
2. 分数:理解分数的意义,掌握分数的加减法。
3. 代数初步:引入字母表示数,学习简单的代数表达式,理解等式和方程的基本概念。
二、几何1. 图形的认识:认识长方形、正方形、三角形等基本图形,理解图形的周长和面积。
2. 图形的变换:学习图形的对称、旋转和缩放等变换。
3. 图形的组合:理解图形的组合和分解,学习如何计算组合图形的面积。
三、统计与概率1. 数据的收集与整理:学习如何收集数据,制作简单的统计图表,如条形图、折线图等。
2. 概率的初步:理解概率的基本概念,通过简单的实验来理解事件发生的可能性。
四、实践与综合应用1. 问题解决:学习如何将数学知识应用到实际问题中,提高解决问题的能力。
2. 数学思维训练:通过数学游戏和数学故事,培养学生的数学思维和逻辑推理能力。
五、数学文化1. 数学史:了解数学的发展史,认识一些著名的数学家和他们的贡献。
2. 数学与生活:探讨数学在日常生活中的应用,提高学生对数学的兴趣。
六、数学思维与方法1. 逻辑推理:培养严密的逻辑推理能力,学习如何通过推理解决问题。
2. 数学建模:初步了解数学建模的概念,学习如何将现实问题转化为数学问题。
通过这些知识点的学习,学生不仅能够掌握数学的基础知识,还能够培养良好的数学思维和解决问题的能力。
教师在教学过程中应注重引导学生理解数学概念的本质,鼓励学生通过实践来巩固所学知识,并激发他们对数学的兴趣。
同时,教师还应关注学生个体差异,因材施教,确保每个学生都能在数学学习中取得进步。
小学生五年级数学重点知识点整理
小学生五年级数学重点知识点整理(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!小学生五年级数学重点知识点整理小学生五年级数学重点知识点整理(8篇)五年级哪些才是我们真正需要的数学知识点呢?在平时的学习中,说到知识点,大家是不是都习惯性的重视?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
五年级数学必考知识点归纳
五年级数学必考知识点归纳五年级数学必考知识点1、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分母:表示平均分的份数。
分子:表示取出的份数。
3、分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
表示其中的一份的数,叫做这个分数的分数单位。
4、真分数:分子小于分母的分数叫做真分数。
真分数小于1。
5、假分数:分子大于或等于分母的分数,叫做假分数。
假分数都大于或等于1。
6、带分数:由整数和真分数组成的分数叫做带分数。
7、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
8、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
9、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
10、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
11、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
如12=2×2×312、几个数公有的因数叫做这几个数的公因数。
其中的一个,叫做它们的公因数。
13、互质:两个数的公因数只有1,这两个数叫做互质。
互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和9。
14、几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
15、求公因数,最小公倍数的方法关系公因数最小公倍数倍数关系16、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。
17、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。
计算结果通常用最简分数表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元小数除法1.小数除法的意义:与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另个因数的运算。
2.小数除法的计算法则:(1)除数是整数:①按照整数除法的法则去除;②商的小数点要和被除数的小数点对齐(重点!)③每一位商都要写在被除数相同数位的上面。
④如果除到末尾仍有余数,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。
⑤除得的商的哪一数位上不够商,就在那一位上写0占位。
(2)除数是小数:①先看除数中有几位小数,就把除数和被除数的小数点向右移动相同的位置,使除数变成整数,当被除数数位不够时,用0补足;②然后按照除数是整数的小数除法计算。
3、商不变的规律:被除数扩大a倍(或缩小),除数也扩大(或缩小)a倍,商不变。
简言之,被除数和除数同时扩大或者同时缩小相同的倍数,商不变。
4、被除数不变,除数扩大(或缩小)a倍,商缩小(或扩大)a倍。
被除数扩大(或缩小)a倍,除数不变,商扩大(或缩小)a倍。
5、被除数比除数大的,商大于1。
被除数比除数小的,商小于1。
6、一个数(0除外)除以1,商等于原来的数。
(一个数除以1,还等于这个数)一个数(0除外)除以大于1的数,商比原来的数小。
一个数(0除外)除以小于1的数,商比原来的数大。
0除以一个非零的数还得0 。
0不能作除数。
7、8、近似值相关知识点:(1)求商的近似值:计算时要比保留的小数多一位。
求积的近似值:计算出整个积的值后再去近似值。
(2)取商的近似值的方法:“四舍五入”法、“进一法”和“去尾法”在解决问题的时候,可以根据实际情况选择“进一法”和“去尾法”取商的近似值。
(3)保留商的近似值,小数末尾的0不能去掉。
9、循环小数相关知识点:(1)小数分类:可以分为无限小数和有限小数。
小数部分的位数是有限的小数,叫做有限小数。
小数部分是无限的小数叫做无限小数。
循环小数就是无限小数中的一种。
(2)循环小数的定义:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
(3)循环小数必须满足的条件:①必须是无限小数;②一个数字或者几个数字依次不断重复出现。
(4)循环节的定义:一个循环小数的小数部分,依次不断重复出现的一个数字或者几个数字,叫做这个循环小数的循环节。
如 5.33……循环节是3。
7.14545……的循环节是45。
(5)循环小数的记法:①省略后面的“……”号;②在第一个循环节首尾的数字上分别加点。
如:5.33……=5.3(3上面有一个点),读作五点三,三的循环7.14545……=7.145(4和5上面分别有一个点) ,读作七点一四五,四五的循环。
(6)循环小数一定是无限小数,无限小数不一定是循环小数。
10、竖式中的小数点和数位的对齐方式:在加法和减法中,必须小数点对齐;在乘法中,要末尾对齐;在除法时,商的小数点要和被除数的小数点对齐。
11、除法性质:推广:或第二单元轴对称和平移具体目标:(1)图形的平移①通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质。
②能按要求作出简单平面图形平移后的图形。
③利用平移进行图案设计,认识和欣赏平移在现实生活中的应用。
(2)图形的旋转①通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。
②了解平行四边形、圆是中心对称图形。
③能够按要求作出简单平面图形旋转后的图形。
④欣赏旋转在现实生活中的应用。
⑤探索图形之间的变换关系(轴对称、平移、旋转及其组合)。
⑥灵活运用轴对称、平移和旋转的组合进行图案设计。
(3)图形的轴对称①通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
②能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴。
③探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质。
④欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计。
三、知识考点梳理知识点一、平移1、平移概念:把一个图形整体沿一方向移动,得到一个新的图形,图形的这种移动,叫做平移变换,简称平移。
2、平移变换的性质①对应线段平行(或共线)且相等;对应点所连结的线段平行且相等,因为经过平移,图形的每个点都沿同一个方向移动了相同的距离,平移变换前后的两条对应线段的四个端点所围成的四边形为平行四边形(四点共线除外).②对应角分别相等,且对应角的两边分别平行,方向一致.③平移后的图形与原图形全等,因为平移只改变图形位置,不改变图形的形状和大小.3、平移作图步骤①确定平移的方向和距离;②根据对应点的连线平行(或在一条直线上)且相等作出图形各关键点的对应点;③按原图形的连结方式顺次连结各点.知识点二、旋转1、旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角。
2、中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点。
中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.3、旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.4、旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.5、中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.知识点三、轴对称1、轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点。
轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2、轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3、轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点。
②按原图形的连结方式顺次连结对称点即得所作图形.综上:1、图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案。
2、平移、旋转和轴对称之间的联系一个图形沿两条平行直线翻折(轴对称)两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.第三单元倍数与因数1大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
找因数的方法:2、自然数按能不能被2整除来分:奇数、偶数奇数:不能被2整除的数。
偶数:能被2整除的数。
10.个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
90120。
3、自然数按因数的个数来分:质数、合数1:只有1最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 4、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。
两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
7、因数和倍数的关系例如:2х6=122和6是12的因数,12是2和6的倍数。
【知识点1】因数与倍数之间的关系是相互的,不能单独存在。
只能说谁是谁的因数,谁是谁的倍数。
不能说谁是因数,谁是倍数。
例如:2.5х6=152.5和6是15的因数,15是2.5和6的倍数。
( ╳)这句话是错误的。
【知识点2】在研究因数和倍数的时候,我们所说的数指的是非0的整数。
(不包括小数、分数)例如:36的因数有()。
【知识点3】确定一个数的所有因数,我们应该从1的乘法口诀依次找出。
如:1×36=36、2×18=36、3×12=36、4×9=36、6×6=36因此36的所有因数有:1、2、3、4、6、9、12、18、36。
【知识点4】重复的和相同的只算一个因数。
【知识点5】一个数的因数的个数是有限的,一个数的最小因数是1,最大的因数是它本身。
例如:7的倍数()。
【知识点6】确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……因此7的倍数有:7、14、21、28、35、42……【知识点7】一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
【知识点8】有前提条件的情况下确定倍数与因数第四单元多边形的面积1、长方形面积=长×宽字母公式:s=ab长方形周长=(长+宽)×2字母公式:c=(a+b)×2(长=周长÷2-宽;宽=周长÷2-长)★长方形中面积、周长与长和宽之间的变化关系:(1)长方形的长加宽等于长方形周长的一半。