解偶联剂

合集下载

生物化学试题及答案(6)

生物化学试题及答案(6)

生物化学试题及答案(6)第六章生物氧化【测试题】一、名词解释1.生物氧化2.呼吸链3。

氧化磷酸化4。

P/O比值5.解偶联剂6.高能化合物7。

细胞色素8.混合功能氧化酶二、填空题9.琥珀酸呼吸链的组成成分有____、____、____、____、____.10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。

11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼吸链,可分别产生____分子ATP或____分子ATP。

12.ATP生成的主要方式有____和____.13.体内可消除过氧化氢的酶有____、____和____。

14.胞液中α—磷酸甘油脱氢酶的辅酶是____,线粒体中α—磷酸甘油脱氢酶的辅基是____。

15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。

16.呼吸链中未参与形成复合体的两种游离成分是____和____。

17.FMN或FAD作为递氢体,其发挥功能的结构是____.18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。

19.呼吸链中含有铜原子的细胞色素是____.20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。

21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。

22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色素c氧化酶的物质有____、____、____。

23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的____.24.微粒体中的氧化酶类主要有____和____。

证明线粒体的电子传递和氧化磷酸化是由两2个不同的结构.

证明线粒体的电子传递和氧化磷酸化是由两2个不同的结构.
生物工程学院021班 向生光
前言
三羧酸循环等呼吸代谢过程中脱下的氢被NAD+或FAD所接受。 细胞内的辅酶或辅基数量是有限的,它们必须将氢交给其它受 体之后,才能再次接受氢。在需氧生物中,氧气便是这些氢的 最终受体。这种有机物在生物活细胞中所进行的一系列传递氢 和 电 子 的 氧 化 还 原 过 程 , 称 为 生 物 氧 化 ( biological oxidation)。生物氧化与非生物氧化的化学本质是相同的,都 是脱氢、失去电子或与氧直接化合,并产生能量。然而生物氧 化与非生物氧化不同,它是在生活细胞内,在常温、常压、接 近中性的pH和有水的环境下,在一系列的酶以及中间传递体的 共同作用下逐步地完成的,而且能量是逐步释放的。生物氧化 过程中释放的能量可被偶联的磷酸化反应所利用,贮存在高能 磷酸化合物(如ATP、GTP等)中,以满足需能生理过程的需要。
2.抑制剂(depressant)
抑制剂与解偶联剂的区别在于,这类试剂不仅抑
制ATP的形成,还同时抑制O2的消耗。这是因 为像寡霉素(oligomycin)这一类的化学物质可以 阻止膜间空间中的H+通过ATP合成酶的Fo进入 线粒体基质,这样不仅会阻止ATP生成,还会 维持和加强质子动力势,对电子传递产生反馈抑 制,O2的消耗就会相应减少。
泛醌︰线粒体复合物Ⅲ(细胞色素c 氧化还原酶)的假想构成和膜局部构造
4.复合体Ⅳ
又称Cyt c∶细胞色素氧化酶(Cyt c∶cytochrome oxidase)分 子量约 160 ~ 170 × 10 3 ,含有多种不同的蛋白质,主要成分是 Cyta和 Cyta3 及2个铜原子,组成两个氧化还原中心即 Cyta CuA 和Cyta3 CuB,第一个中心是接受来自Cyt c 的电子受体,第二 个中心是氧还原的位置。它们通过Cu+ Cu2+ 的变化,在Cyta 和Cyta3间传递电子。其功能是将 Cyt c中的电子传递给分子氧, 氧分子被 Cyta3、CuB 还原至过氧化物水平;然后接受第三个电 子,O-O键断裂,其中一个氧原子还原成 H2O;在另一步中接受 第四个电子,第二个氧原子进一步还原。也可能在这一电子传 递过程中将线粒体基质中的 2个H+转运到膜间空间。CO、氰化 物(cyanide,CN-)、叠氮化物(azide,N3-)同 O2 竞争与 Cytaa3 中 Fe的结合,可抑制从Cytaa3到O2的电子传递。

第十二章__生物氧化--王镜岩《生物化学》第三版笔记(完美打印版)

第十二章__生物氧化--王镜岩《生物化学》第三版笔记(完美打印版)
细胞色素类 都以血红素为辅基,红色或褐色。将电子从辅酶Q传递到氧。根据吸收光谱,可分为三类:a,b,c。呼吸链中至少有5种:b、c1、c、a、a3(按电子传递顺序)。细胞色素aa3以复合物形式存在,又称细胞色素氧化酶,是最后一个载体,将电子直接传递给氧。从a传递到a3的是两个铜原子,有价态变化。
复合体IV:细胞色素C氧化酶复合体。将电子传递给氧。
三、偶联的调控
(一)呼吸控制
电子传递与ATP形成在正常细胞内总是相偶联的,二者缺一不可。ATP与ADP浓度之比对电子传递速度和还原型辅酶的积累与氧化起着重要的调节作用。ADP作为关键物质对氧化磷酸化的调节作用称为呼吸控制。呼吸控制值是有ADP时氧的利用速度与没有时的速度之比。完整线粒体呼吸控制值在10以上,损伤或衰老线粒体可为1,即失去偶联,没有磷酸化。
在葡萄糖的分解代谢中,一分子葡萄糖共生成10个NADH和2个FADH2,其标准生成自由能是613千卡,而在燃烧时可放出686千卡热量,即90%贮存在还原型辅酶中。呼吸链使这些能量逐步释放,有利于形成ATP和维持跨膜电势。
原核细胞的呼吸链位于质膜上,真核细胞则位于线粒体内膜上。
二、构成
呼吸链包含15种以上组分,主要由4种酶复合体和2种可移动电子载体构成。其中复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ、辅酶Q和细胞色素C的数量比为1:2:3:7:63:9。
三、抑制剂
1.鱼藤酮、安密妥、杀粉蝶菌素:阻断电子从NADH到辅酶Q的传递。鱼藤酮是极毒的植抗生素,抑制从细胞色素b到c1的传递。
3.氰化物、叠氮化物、CO、H2S等,阻断由细胞色素aa3到氧的传递。
第二节 氧化磷酸化
一、定义
与生物氧化相偶联的磷酸化作用称为氧化磷酸化作用。其作用是利用生物氧化放出的能量合成ATP:

生化名词解释 (2)

生化名词解释 (2)

糖类:是一类多羟基醛或多羟基酮类化合物或聚合物。

单糖:是指最简单的糖,即在温和条件下不能再分解成更小的单体糖,如葡萄糖、果糖等。

按碳原子的数目单糖又可分为三碳(丙)糖、四碳(丁)糖、五碳(戊)糖、六碳(已)糖、七碳(庚)糖等1基序:又称超二级结构,模体,指在多肽内顺序上相邻的二级结构常常在空间折叠中靠近,彼此相互作用,形成有规则的,在空间上能够辨认的二级结构聚合体。

2结构域:是在蛋白质的三级结构内的独立折叠单元,通常都是几个基序结构的单元的组合,是三级结构的一部分。

3蛋白质的三级结构:具有二级结构,基序或结构域的一条多肽链,由于氨基酸残基侧链的相互作用而进行范围更广泛的盘曲与折叠,这种在一条多肽链中所有原子或集团在三维空间的整体排布称为三级结构。

4亚基:又称亚单位,原聚体或单体。

亚基一般由一条多肽链组成具有一二三级结构。

5寡聚体:由2~10个亚基组成具有四级结构的蛋白质。

6蛋白质的四级结构:由两个或两个以上的亚基之间相互作用,彼此以非共价键相连而形成更复杂的构象7蛋白质的变构效应:一些蛋白质由于受某些因素的影响,其一级结构不变而空间构象发生一定的改变,导致其生物学功能的改变,称为蛋白质的变构效应。

8蛋白质构象病:因蛋白质折叠错误或折叠导致构象异常变化引起的疾病。

9蛋白质的变性作用:由于某些物理的和化学的因素使蛋白质分子的空间构象发生改变或破坏,导致其生物活性的丧失和一些物理性质的改变。

这种现象称为蛋白质的变性作用。

10等电点:蛋白质的带电情况主要取决于溶液的PH。

使蛋白质所带正负电荷相等,净电荷为零时溶液的PH,称为蛋白质的等电点。

11蛋白质的互补作用:几种营养价值低的蛋白质混合使用,互相补充必需氨基酸的种类和数量,从而提高蛋白质在体内的利用率,称为蛋白质的互补作用。

12酶:酶是生物体内一类具有催化活性的和特定空间构象的生物大分子,包括蛋白质和核酸等。

13酶原:某些酶在细胞内合成或初分泌时没有活性,这些无活性的酶的前身称为酶原。

FCCP

FCCP

FCCP Mitochondrial oxidative phosphorylation inhibitorPurity: >99% 通过消耗细胞内的ATP而成为线粒体呼吸链的解偶联剂。

生成ATP的氧化与磷酸化之间起偶联作用的因素是H+的跨膜梯度。

即在微生物体内,氧化过程中释放的能量不断地将细,胞内的H+逆浓度梯度泵出细胞膜;而由于细胞膜的选择性,H+不能自由透过细胞膜,于是在细胞膜两侧形成一个质子跨膜梯度。

细胞膜外的H+只有通过一个特异的质子通道才能顺着H+浓度梯度进入细胞内,H+顺浓度梯度方向运动所释放的自由能使ADP和PO43-结合生成ATP,所以说,生成ATP的氧化与磷酸化之间起偶联作用的因素是H+的跨膜梯度。

而解偶联剂可以增强细胞膜对H+的通透性,促进H+被动扩散通过细胞膜,消除细胞两侧的质子梯度,所以不能再合成ATP。

即氧化和磷酸化之间存在的偶联关系,可以通过投加解偶联剂使其脱偶联,氧化反应(3)仍可以进行,而磷酸化反应(4)不能进行,Biological DescriptionA potent reversible inhibitor of mitochondrial oxidative phosphorylation. Depolarisesmitochondrial membrane potential and induces apoptosis.Useful ReferencesBenz (1983) The molecular mechanism of action of the proton ionophore FCCP(carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J. 41:381-98 abstractCollins et al (2000) Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited bymitochondrial depolarization. Biochem J. 347:593-600 abstractGautier et al (2000) A moderate but not total decrease of mitochondrial membranepotential triggers apoptosis in neuron-like cells. Neuroreport. 11:2953-6. abstractChemical InformationCarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazoneo Desiccate at +4°Co MW 254.17o Soluble to 100 mM in DMSOo C10H5F3N4O o370-86-5。

生物化学名词解释

生物化学名词解释

生物化学1. 蛋白质折叠:蛋白质由所含氨基酸残基的亲水性、疏水性、带正电、带负电等特性通过残基间的相互作用而折叠成一个立体的三级结构。

2. 锌指结构:许多转录因子所共有的DNA结合结构域,具有很强的保守性。

它由4个氨基酸(4个Cys残基,或2个Cys残基和2和His残基)和一个锌原子组成一个形似指状的三级结构。

3. 冈崎片段:复制叉上新合成的短的DNA片段,即DNA不连续合成的产物。

细菌的冈崎片段约为1000~2000个核苷酸,真核细胞的约为100~200个核苷酸。

4. 尿素循环:又称“鸟氨酸循环”。

机体对氨的一种解毒方式。

肝脏是鸟氨酸循环的重要器官。

包括三个阶段,①氨、二氧化碳和鸟氨酸缩合生成瓜氨酸;②瓜氨酸再与一分子氨结合脱去水,生成精氨酸;③精氨酸在肝脏精氨酸酶的催化下,水解生成尿素,并重新变为鸟氨酸。

5. 柠檬酸-丙酮酸穿梭系统:线粒体内产生的乙酰 CoA,与草酰乙酸缩合生成柠檬酸,穿过线粒体内膜进入胞液,裂解后重新生成乙酰 CoA,产生的草酰乙酸转变为丙酮酸后重新进入线粒体。

6. 别构效应:一种分子可以通过分子内某一部分的结构改变,而导致激活部分活性改变的现象,即别构效应,也可称为变构效应。

经常研究的例子是酶的别构效应,然而除了酶以外,如血红蛋白等也有别构效应。

7. 氧化磷酸化:指在代谢物脱氢氧化经呼吸链传递给氧生成水的过程中,既消耗了氧,消耗了无机磷酸,使ADP磷酸化生成ATP的过程,称为电子传递水平磷酸化,通常称之氧化磷酸化。

常发生在线粒体内膜上。

8. 分子杂交:不同来源或不同种类生物分子间相互特异识别而发生的结合。

如核酸(DNA、RNA)之间、蛋白质分子之间、核酸与蛋白质分子之间、以及自组装单分子膜之间的特异性结合。

9. 结构域:也指功能域,在较大的蛋白质分子或亚基中,多肽链往往由两个或两个以上相对独立的三维实体,缔合而成三级结构,三维实体之间靠松散的肽链连接,这种相对独立的三维实体称为结构域。

氧化磷酸化名词解释生物化学

氧化磷酸化名词解释生物化学

氧化磷酸化名词解释生物化学一、氧化磷酸化名词解释呼吸链的主要功能是产生能量货币ATP。

当电子沿着呼吸链向下游传递的时候总伴随着自由能的释放,释放的自由能有很大一部分用来驱动ATP的合成,这种与电子传递偶联在一起的合成ATP方式被称为氧化磷酸化(OxP)。

二、氧化磷酸化的偶联机制1、化学渗透学说该学说由Peter Mitchell于1961年提出,其核心内容是电子在沿着呼吸链向下游传递的时候,释放的自由能转化为跨线粒体内膜(或跨细菌质膜)的质子梯度,质子梯度中蕴藏的电化学势能直接用来驱动ATP的合成。

驱动ATP合成的质子梯度通常被称为质子驱动力(pmf),它由化学势能(质子的浓度差)和电势能(内负外正)两部分组成。

支持化学渗透学说的主要证据:•氧化磷酸化的进行需要完整的线粒体内膜的存在。

•使用精确的pH计可以检测到跨线粒体内膜的质子梯度存在。

据测定,一个呼吸活跃的线粒体的膜间隙的pH要比其基质的pH 低0.75个单位。

•破坏质子驱动力的化学试剂能够抑制ATP的合成。

•从线粒体内膜纯化得到一种酶能够直接利用质子梯度合成ATP,此酶称为F1F0-ATP合酶。

•人工建立的跨线粒体内膜的质子梯度也可驱动ATP的合成2、结合变化学说1977年Paul D. Boyer提出的结合变化学说能正确地解释F1F0-ATP 合酶的作用机理。

结合变化学说可简化为:质子流动→驱动C单位转动→带动γ亚基转动→诱导β亚基构象变化→ATP释放和重新合成。

支持结合变化学说的证据:•18O同位素交换实验•John Walker获得的F1的晶体结构清楚地表明,3个β亚基处于不同的构象并和不同的核苷酸配体结合•日本科学家采取特别的手段直接观察到F1的旋转催化三、氧化磷酸化的解偶联氧化磷酸化与呼吸链通常是紧密偶联的,但是,低水平的质子泄漏时刻发生在线粒体内膜上,因此,确切地说,线粒体通常是部分解偶联的。

解偶联一般是受解偶联剂作用所致。

解偶联剂的作用机制在于它们能够快速地消耗跨膜的质子梯度,使得质子难以通过F1F0-ATP合酶上的质子通道来合成ATP,从而将贮存在质子梯度之中的电化学势能转变成热。

《生物化学》常用名词解释(九)

《生物化学》常用名词解释(九)

《生物化学》常用名词解释(九)1.标准自由能变化(ΔG°)(standardfree-energychange):在一系列标准条件(温度:298K;压力:1个大气压;所有溶质的浓度都是1M)下发生的反应的自由能变化。

ΔG°ˊ表示pH7.0条件下的标准自由能变化。

2.标准还原电位(E°ˊ)(standardreductionpotential):25℃和pH7.0条件下一个还原剂和它的氧化形式在1M浓度下表现出的电动势。

3.酵解(glycolysis):一个由10步酶促反应组成的糖分解代谢途径,通过该途径,一分子葡萄糖转换为两分子丙酮酸,同时净生成两分子ATP和两分子NADH。

4.发酵(fermentation):营养分子(例如葡萄糖)产能的厌氧降解,在乙醇发酵中,丙酮酸转化为乙醇和CO2。

5.巴斯德效应(Pasteureffect):氧存在下,酵解速度放慢的现象。

6.底物水平磷酸化(substratephosphorylation):ADP或某些其它的核苷-5ˊ-二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。

这种磷酸化与电子传递链无关。

7.柠檬酸循环(citricacidcycle):也称之三羧酸循环(tricarboxylicacidcycle),Krebs循环(Krebscycle)。

是用于乙酰CoA中的乙酰基氧化生成CO2的酶促反应的循环系统,该循环的第一步反应是由乙酰CoA和草酰乙酸缩合形成柠檬酸。

8.回补反应(anapleroticreaction):酶催化的补充柠檬酸循环中间代谢物的供给的反应,例如由丙酮酸羧化生成草酰乙酸的反应。

9.乙醛酸循环(glyoxylatecycle):是某些植物、细菌和酵母中柠檬酸循环的修改形式,通过该循环可以由乙酰CoA经草酰乙酸净生成葡萄糖。

乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤。

10.戊糖磷酸途径(pentosephosphatepathway):也称之磷酸己糖支路(hexosemonophosphateshunt)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于解偶联剂
何炜阳
❖呼吸链
❖ATP合成的化学渗透假说❖解偶联剂作用机理
❖解偶联剂的应用
当高能电子沿呼吸链传递时,所释放的能量将H+从线粒体基质侧泵到膜间隙,因为线粒体内膜本身对H+是不通透的,结果形成线粒体内膜两侧的H+浓度差,同时产生电位差,从而推动H+穿过ATP合成酶返回基质,并将电化学梯度蕴藏的能量转移至ATP中,形成ATP,这就是氧化与磷酸化的偶联。

解偶联剂可以以质子化的形式将膜间隙中的H+带回线粒体并释放到基质中,从而消除了线粒体内膜两侧的H+浓度梯度,使ATP合成酶丧失被激活的质子驱动力,不能合成ATP,从而解除了氧化与磷酸化的偶联。

DNP、FCCP 羰基-氰-对-三氟甲氧基苯肼,解偶联蛋白
应用减少污水处理时活性污泥产率
吡咯类杀虫剂(除尽)是呼吸作用抑制剂,作用于细胞内线粒体膜,是一个优良的氧化磷酸化解偶联剂。

该品种对鳞翅目和螨类有较高的活性.
诱导四倍体形成,除草剂
解偶联蛋白
❖ucp 线粒体内膜上调节质子梯度的蛋白,目前已经发现5种
调节ATP产出速速度
由于UCP质子漏的存在使ATP需求增加时,质子漏和ATP合成之间可以快速转换,而无需依赖于底物代谢和线粒体呼吸的增加,使ATP可以快速大量产生
产热调节
❖UCP1基因剔除的小鼠在寒冷中无法维持体温
❖寒冷短期反应可诱导交感神经系统释放去甲肾上腺素,然后通过褐色脂肪细胞上的β肾上腺素能受体(β-AR)刺激cAMP的产生,cAMP激活蛋白激酶A,蛋白激酶A 使解脂产生,释放出脂肪酸,脂肪酸进而促进UCP1对H+的运输;
❖长期反应中蛋白激酶A激活一系列级联反应,最终导致UCP1的表达增加、新线粒体的合成和褐色脂肪组织的增生。

控制活性氧的产生
实验表明,在UCP2或UCP3剔除的小鼠中,活性氧的产生增多。

而UCP对活性氧的抑制可能是一种反馈抑制机制。

研究发现,在肝细胞中活性氧增加时UCP2表达也增加。

Skulachev等、Klingenberg等证明在分离的线粒体中,超氧化物可激活UCP1、UCP2和UCP3的产生,而UCP可能反过来减少超氧化物的产生。

如果UCP可以抑制活性氧的产生,那它应在衰老和凋亡中起重要作用。

肥胖
瘦素是与肥胖有关的基因的表达产物,应用瘦素后,大鼠褐色脂肪组织中的UCP1 mRNA和UCP3 mRNA分别增加2倍和62%,瘦素可能通过上调UCP的表达,使机体产热增加,阻止能量贮存,维持机体的能量平衡研究发现,在UCP1基因的TATA上游3 826处的一个多态性位点与人类的脂肪积累、体质量指数以及高热量食物引起的体质量指数变化有关。

2型糖尿病
患糖尿病的鼠胰岛中的UCP2升高,胰岛素分泌受到抑制。

剔除了UCP2基因的鼠,高血糖降低,胰岛素分泌恢复,血液中胰岛素水平升高,这表明胰岛β细胞的功能得到了改善。

因此,调控UCP表达可能成为治疗糖尿病的新方法
❖肝移植
❖动脉粥样硬化。

相关文档
最新文档