电波传播理论基础概述.

合集下载

电波传播概论

电波传播概论

衰 减 因 F子
2 1.8 1.6 1.4 1.2
1 0.8 0.6 0.4 0.2
0 1 2 3 4 5 6 7 8 9 10 / m
图 6 – 8 接收点场强随工作波长λ的变化曲线
6.3
天波传播通常是指自发射天线发出的电波在高空被电离层反射后到达接收点的 传播方式, 有时也称电离层电波传播, 主要用于中波和短波波段。
(6-1-4)
如果接收天线的增益系数为GR, 有效接收面积为Ae, 则在距离发射天线r处的接收 天线所接收的功率为
pR
S0
Ae
piGi
4r2
2GR 4
(6-1-5)
将输入功率与接收功率之比定义为自由空间的基本传输损耗:
Lbf
Pi pR
4r
1 GiGR
(6-1-6)
将上式取对数得
Lbf
10 lg
对于视距通信
F 1 e jk 2h1h2 / d 2 sin( 2h1h2 ) d
(6-2-10)
由上式可得到下列结论:
① 当工作波长和收、发天线间距不变时, 接收点场强随天线高度h1和h2的变化 而在零值与最大值之间波动,如图 6-6 所示。
② 当工作波长λ和两天线高度h1和h2都不变时, 接收点场强随两天线间距的增 大而呈波动变化, 间距减小,波动范围减小, 如图6-7所示。
E=Eθ1+Eθ2
(6-2-4)
Eθ1=E 0 f(θ) Eθ2=RE0f(θ′)
e jkr r e jkr r
(6-2-5)
式中, R为反射点处的反射系数, R=|R|e jφ, f(θ)为天线方向函数。
如果两天线间距离d>>h1, h2, 则有

第1章-电波传播的基础知识

第1章-电波传播的基础知识

波段名称
Ka Q U M E F G R
频率范围(GHz)
26.5——40 33——50 40——60 50——75 60——90 90——140 140——220 220——325
表1-2 最常用微波频段划分
波段符号 UHF L S C X Ku K Ka
频率(GHz)
0.3-1 1-2 2-4 4-8 8-12 12-18 18-26 26-40
合成孔径天线
水平交叉长线阵
圆极化天线(如螺旋天线)
表面波天线(如介质棒天线)
有源天线
超导天线
微带天线
自适应天线
常用频段
超短波、短波
超短波至超长波 中波至超长波 短波至超长波 超短波至中波 超短波至极长波
微波
超短波至短波
微波至超短波 极长波
微波至超短波 短波至超长波
微波 超短波至短波
第1章 电波传播的基础知识
2. 天波传播(电离层反射传播)
• 经电离层连续折射而返回地面到达接收点 • 频率范围:中波、短波(短波为主) • 优点:能以较小的功率进行可达数千千米的远距传播 • 缺点:受电离层影响衰落现象严重
2
电波传播与散射
第1章 电波传播的基础知识
3. 视距传播
• 发射天线与接收天线之间的直视的传播方式 • 频率范围:超短波、微波 • 优点:可传送宽带大容量数据 • 缺点:传输距离短
前言
表1-3 主要的天线类型和常用频段
形式
水平半波天线
折合阵子
对称阵子
八木天线 笼形天线
角形天线
锥形天线
鞭天线
单极子天线
加顶天线
铁塔天线
框形天线
环天线

《电波传播》PPT课件

《电波传播》PPT课件

0.2
0 0 10 20 30 40 50 60 70 80 90
/ (°)
200 180 160 140 120 100 80 60 40 20
0 0
H3.0
V3.0
10 20 30 40 50 60 70 80 90
/ (°)
(a)
(b)
干土的反射系数
精选课件ppt
25
当Δ很小时,将 r 2H1H2 代入下式
F02
1 3
F12
(5)
,根据定义,有
F00.577F10.577
d1d2
d
(6)
由上式可见,当距离d一定时,波长愈小,则传播主区
的半径愈小,菲涅耳椭球区也就愈长,最后蜕化为一直线,
这就是几何光学中“光线沿直线传播”的证明
精选课件ppt
1144
地面对电波传播的影响
地质的电特性:介电常数,电导率,磁导率 地球表面的物理结构:地形起伏、植物以及人为建
(12)
精选课件ppt
28
【例】 某通信线路,工作波长λ=0.05m,通信距离 d=50km,发射天线架高H1=100m。若选接收天线架 高H2=100m,在地面可视为光滑平面地的条件下, 接收点的E/E1=?今欲使接收点场强为最大值,调整 后的接收天线高度是多少(应使调整范围最小)?
解 地面反射波与直接波之间的相位差为
| E/ E1 | | E/ E1 |
2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4
0 0.5 1 1.5 2 2.5 3 d/ 104 m
(a)
1.8 1.6
1.4 1.2
1
0.8
0.6
0.4

电波传播理论复习资料(整理后)

电波传播理论复习资料(整理后)

第一章绪论1.掌握正常的和反常的两种类型传播模式的基本概念;正常的传播机制总是存在,如图1.1所示:反常的传播机制偶然存在,如图1.2所示:2.掌握超短波和微波的主要传播效应。

1、晴空条件下的视距传播——在晴朗天气的情况下,当传播路径两端点之间没有障碍阻挡或者障碍阻挡可以忽略时,超短波和微波按照视距传播。

【视距传播不仅仅是自由空间的传播(即空间扩散损耗);还要计及大气气体对无线电波的吸收损耗(水汽和氧气对电波的吸收损耗)。

晴空大气中,还存在许多其他复杂的重要的视距传播现象(晴空大气中的层结以及湍流不均匀体对无线电波的反射、折射、多径传播、散射、散焦和聚焦效应等等)。

)】2、绕射传播——当传播路径两端点之间的传播余隙小于第一费涅尔半径时,即波传播的空间受到地面地物某种程度的阻挡时,就会产生绕射损耗。

【对于非视距和超视距传播的情况,绕射损耗可以是很严重的。

绕射损耗的大小与频率、余隙、障碍的位置和形状等因素有关。

为了计算因地面地物障碍阻挡引起的对无线电波的绕射损耗,首先必须制作准确的电路地形剖面图,定义和计算相关的几何参数。

在出现负折射的情况下,绕射损耗尤其严重;在超折射条件下绕射损耗则变小。

所以,当气象条件不稳定时,容易出现绕射衰落。

】3、地形、地物的散射和反射4、雨、水凝体和沙尘对电波的散射和衰减5、多径传播和聚焦效应:【多径传播——大气层结的反射和折射以及地面地物的反射和散射使得在接收点所接收到的信号是多条射线合成的总效果。

这些多径射线具有各自不同的相位和幅度,所以多径射线的合成是向量的合成。

并且由于各条射线幅度和相位的随机变化,最终产生所谓的多径衰落现象,这是对无线电通信的质量水平具有非常重要的影响。

聚焦效应——当射线在对流层中传播时,由于大气折射指数的不均匀性会产生聚焦和散焦效应。

聚焦会使信号大大增强,相反散焦会使信号减弱。

聚焦、散焦何时出现和强度如何均与气象条件有关,而气象变化也是随机的。

电波传播基础知识

电波传播基础知识

电波传播基础知识无线电波传播(radio wave propagation)频率从几十赫(甚至更低)到30000千兆赫左右(波长从几万千米到0.1毫米左右)整个频谱范围内的电磁波,称为无线电波。

发射天线或自然源辐射的无线电波,通过介质或受到介质分界面的影响,而到达接收天线的过程,称为无线电波传播。

无线电波在介质或介质分界面的影响下,有被折射、反射、散射、绕射和吸收等现象。

接收点的无线电信号,也有衰减和干扰出现。

为了确定无线电系统的频率、功率、增益、灵敏度、信号噪声比和工作方式等,都需要对无线电波传播特性有所了解。

根据何种介质或何种介质分界面对电波传播产生主要的影响,可将常遇到的电波传播方式分为:(1)地波传播(电波传播主要受地球表面的影响)。

(2)对流层电波传播(电波传播主要受对流层影响)。

(3)电离层电波传播(电波传播主要受电离层影响)。

(4)地—电离层波导电波传播(电波传播主要受电离层下缘和地面的影响,此外还有埋地天线、地壳中电波传播、火箭喷焰、再入等离子体鞘套和核爆炸等影响)。

各种频段的无线电波的传播方式和特点及其应用,可见各有关词汇。

地波传播(propagation of ground wave)沿地球表面的无线电波的传播,称为地波传播。

其特点是信号比较稳定。

在讨论地波传播问题时,一般是将对流层视为均匀介质(有时认为对流层的折射指数垂直梯度为常数),电离层的影响不予考虑,而主要考虑地球表面对电波传播的影响。

半导电性地球表面的影响,一方面使地波的垂直方向电场强度远大于水平方向电场强度,并因在地面上产生感应电流,使地波有较大的衰减;另一方面,由于地球是椭球形,在视线距离以外,地波传播可以认为是围绕弧形地球面的绕射传播。

垂直偶极子所产生的地波垂直电场E通常表示为E=E0ν其中:E0为理想导电地面上的垂直电场,ν称为衰减因子,它是频率、距离和地面电参数的复杂函数。

一般说来,频率愈高,地面电导率愈低,地波随距离衰减就愈快。

无线电波传播理论

无线电波传播理论
02
电离层传播模型需要考虑电离层 的结构、成分、电子密度等参数 ,以及电离层对电波的吸收和反 射等作用。
地面对无线电波的吸收
地面对无线电波的吸收是指电波在传 播过程中,由于地面物质的吸收作用 而导致的能量损耗。
VS
地面对无线电波的吸收与地面的物质 成分、湿度、温度等因素有关,不同 的地面类型对电波的吸收程度不同。
对流层传播模型
对流层传播模型适用于电波在对流层中的传播,由于对流层的气象条件复杂多变,电波传播受到大气 折射、散射、吸收等因素影响。
对流层传播模型需要考虑大气温度、湿度、气压等参数,以及气象条件对电波传播的影响。
电离层传播模型
01
电离层传播模型适用于电波在电 离层中的传播,电离层对电波的 折射、反射、散射等作用会影响 电波的传播路径和强度。
、雷达等领域。
无线电波的产生与传播
产生
无线电波可以通过电子运动、振荡器 、天线等设备产生。
传播
无线电波在传播过程中会受到多种因 素的影响,如大气、地形、建筑物等 ,其传播方式和距离也会因此而有所 不同。
02 无线电波传播方式
直射传播
直射传播是指无线电波直接从发射天线沿直线到达接收设备 ,不经过其他介质或物体的反射、折射或散射。直射传播的 路径损耗较小,信号质量较好,但受地形、建筑物等遮挡物 的影响较大。
自由空间传播模型
自由空间传播模型适用于电波在自由 空间中的传播,其假设电波在均匀介 质中沿直线传播,不受地球曲率、大 气折射等因素影响。
自由空间传播模型的公式为:$d = frac{c}{2pi f sqrt{epsilon}}$,其中 $d$为电波传播距离,$c$为光速,$f$ 为电波频率,$epsilon$为介电常数。

第13章__电波传播

第13章__电波传播

电道的传输损耗:
发射天线输入功率与接收天线输出功率(满足 匹配条件)之比,即
Pin 4 r 2 1 L ( ) 2 PL A Gr G L L L0 LF Gr GL dB
在路径传输损耗 Lb 为客观存在的前提下,降 低传输损耗L的重要措施就是提高收、发天线的增 益系数。
因此,频率越低,绕射能力越强。
衰减损耗、衰落 媒质效应 反射、折射、散射 极化偏转 干扰和噪声 时域、频域畸变 这些媒质效应对信息传输的质量和可靠性常常产 生严重影响,因此各种媒质中各频段电磁波的传播效 应是电波传播研究的主要对象。
电波
电波传播的基本特性
电波传播的基本特性即移动信道的基本特性 ——衰落特性
D=1的无方向性接收天线的有效接收面积为
Ae 4
2
所以该接收天线的接收功率为
2 PL Sav Ae ( ) Pr 4 r
于是自由空间传播损耗为
Pr 4 r L0 10lg 20lg dB PL
或 L0 32.45 20lg f ( MHz ) 20lg r( km)
划分菲涅尔半波带的球面是任意选取的,因此 当球面半径R变化时,尽管各菲涅尔区的尺寸也在 变化,但是它们的几何定义不变。而它们的几何定 义恰恰就是以A、P两点为焦点的椭圆定义。
如果考虑到以传播路径为轴线的旋转对称性, 不同位置的同一菲涅尔半波带的外围轮廓线应是一
个以收、发两点为焦点的旋转椭球。
A
2F1
A与工作频率、传播距离、媒质电参数、地貌 地物、传播方式等因素有关。
基本传输损耗:Lb L0 LF 自由空间传播损耗
dB
衰减损耗
如果发射天线的输入功率为Pin,增益系数为 Gr,接收天线的增益系数为GL,则相应的功率密 度和最佳接收功率分别为

电波传播原理资料

电波传播原理资料

电波传播原理资料电波传播原理(英文:Propagation of radio waves)是指电磁波在空间中的传播过程,是无线通信的基础。

电波是一种电磁波,由振动的电场和磁场组成,可以在空气和其他介质中传播。

电波的传播原理包括发射、传播和接收三个主要环节。

本文将详细介绍电波传播的原理及相关知识。

首先,电波的发射是指将电信号转化为电磁波的过程。

电磁波的频率范围很宽,从低频的几赫兹到高频的几百千兆赫兹不等。

不同频率的电磁波在空间中的传播特性也有所不同。

发射源可以是无线电台、移动通信基站、卫星等。

无线电台是指专门发射和接收电波的设备,它可以将电信号转化为电磁波并向四面八方传播。

其次,电波传播是指电磁波在空间中的传播过程。

电波在空气中的传播速度非常快,约为每秒3×10^8米。

电磁波在空间中的传播是个复杂的过程,受到多种因素的影响,包括频率、天线高度、地形、大气状况等。

以无线电通信为例,低频电波的传播距离远,但传输速率低;高频电波的传播距离近,但传输速率高。

地形和大气状况也会影响电波的传播,如山脉和建筑物会造成衰减和阻挡,大气遇到不稳定层时会发生折返传播现象。

最后,电波的接收是指将传播中的电磁波转化为电信号的过程。

接收设备一般包括天线和接收器。

天线是接收电磁波的装置,它能够将电磁波转化为电信号。

不同类型的天线适用于不同频率的电磁波。

接收器是将接收到的电信号转化为可被手机、电视等设备处理的信号。

接收到的电信号可能受到干扰,如多径效应和杂散电波。

为了提高接收质量,常常需要进行信号处理和解调过程。

总结来说,电波传播原理涉及到发射、传播和接收三个环节。

电波发射将电信号转化为电磁波,电波传播是电磁波在空间中的传播过程,电波接收将传播中的电磁波转化为电信号。

电波的传播受到频率、地形、大气状况等因素的影响,也受到技术和设备的限制。

深入了解电波传播原理对于无线通信的设计和优化非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


B E t

D H dl (J ) dS c S t

D H σE t
D dS dV
S V
D = B = 0
3
B dS 0
S
2017/9/20
詹姆斯· 麦克斯韦(1831--1879) ,伟大的英国
球坐标系
2 1 1 1 2 2 (r 2 ) 2 (sin ) 2 2 r r r r sin r sin 2
2017/9/20 12
散度
F (a x ay a z ) (a x Fx a y Fy a z Fz ) x y z
旋度
Fx Fy x y ax F x Fx

Fx z ay y Fy
矢量场的散度运算
az z Fz
矢量场的旋度运算
Fz Fy Fx Fz Fy Fx ax ( ) ay ( ) az ( ) y z z x x y
磁通量的时间变化率的负值。 动生电动势:回路切割磁力线,磁场不变。(注 :发电机工作原理) 感生电动势:回路不变,磁场随时间变化
2017/9/20 14
法拉第(1791-1867) ,英国物理学家、化学家,也是著名的自学成才的
科学家。法拉第于1831年发现了电磁感应定律。这一划时代的伟大发现, 使人类掌握了电磁运动相互转变以及机械能和电能相互转变的方法,成为 现代发电机、电动机、变压器技术的基础。 法拉第于1833-1834年连续发现电解第一和第二定律,为现代电化学工业 奠定了基础。 1845年发现磁致旋光效应(法拉第效应)。 法拉第名言:希望你们年青的一代,也能象蜡烛为人照明那样,有一分热 ,发一分光,忠诚而踏实地为人类伟大的事业贡献自己的力量。
1、电磁场与Maxwell方程
电磁场的数学描述——亥姆霍兹定理:矢量
场由散度、旋度和边界条件唯一确定。
矢量A的散 度源 已知 矢量A的旋 度源 边界条件
2017/9/20
电荷密度
在电磁场中
电流密度J 边界条件
电 磁 场 唯 一 地 确 定
5
电磁场中的基本物理量
电场强度E 电位移矢量D
2017/9/20 7
2、矢量运算基础
基本概念
标量、矢量和场
常用正交坐标系
直角(笛卡儿)坐标系 圆柱坐标系
球坐标系
2017/9/20
8
2017/9/20
9
矢量加、减
A+B A
B
矢量乘
内积:结果为标量
A
A B = A B cos AB

B
= AxBx + AyBy +AzBz
dF E (V/m ) dq
D εE
介电常数:将物质置于电场中,物质将被极化,
用介电常数ε描述。 磁导率常数:将物质置于磁场B中,物质将被磁 化,用磁导率常数μ描述。 B μH 磁场强度H d F d qv B(T) 磁感应强度B 电荷Q、电荷密度ρ、电流I与电流密度J
2017/9/20 6
物理学家、数学家。麦克斯韦主要从事电磁理论 、分子物理学、统计物理学、光学、力学、弹性 理论方面的研究。 麦克斯韦在前人成就的基础上,对整个电磁现象 作了系统、全面的研究,将电磁场理论用简洁、 对称、完美数学形式表示出来,经后人整理和改 写,成为经典电动力学主要基础的麦克斯韦方程 组。据此,1865年他预言了电磁波的存在,并计 算了电磁波的传播速度等于光速,同时得出结论 :光是电磁波的一种形式,揭示了光现象和电磁 现象之间的联系。麦克斯韦于1873年出版了科学 名著《电磁理论》。系统、全面、完美地阐述了 电磁场理论。这一理论成为经典物理学的重要支 柱之一。建立的电磁场理论,将电学、磁学、光 学统一起来,是19世纪物理学发展的最光辉的成 果,是科学史上最伟大的综合之一。
梯度
grad f f
2017/9/20
f f f ax a y az x y z
13
3、电磁场基本定理的数学表述
法拉第电磁感应定律——Maxwell第一方程
B c E dl S t dS
H E t
导体回路l中的感应电动势等于该回路所围面积的
电磁场本构关系
D εE
B μH
J σE
为介电常数: r 0 ,其中
1 0 10 9 F/m 8.854 10 12 F/m 36 为磁导率: r 0 ,其中 0 4π 107 H / m
为电导率: 绝缘体 103 S / m 金属 107 S / m
外积:结果为矢量
A B | A || B | sin AB
2017/9/20
ax Ax Bx
ay Ay By
az Az Bz
C=A×B
B

Bsin
A
10
汉密顿算符
直角坐标系 ax ay az x y z
柱坐标系
1 论基础
2017/9/20
1
第1节 Maxwell方程组
1.麦克斯韦方程组是电磁现象的基础,可以用来解 释所有的微观电磁现象
2.麦克斯韦方程组用三维空间中矢量的某种数学运 算来描述——场论和矢量运算
2017/9/20 2
积分形式
微分形式

B E dl dS c S t
1 1 ar a a r r r sin
2017/9/20 11
拉普拉斯算符
直角坐标系
2
2 2 2 2 2 2 2 x y z
柱坐标系
2 2 1 1 2 ( ) 2 2 2 z
相关文档
最新文档