生活中的几何图形
生活中的数学图形

生活中的数学图形
生活中,我们处处可见数学图形的存在,它们不仅存在于数学课本中,更深刻地融入到我们的日常生活中。
从简单的圆形、正方形到复杂的椭圆、多边形,数学图形无处不在,给我们的生活带来了美丽和秩序。
首先,让我们来看看圆形。
圆形是最简单的几何图形之一,它代表着完美和无限。
在我们的日常生活中,圆形无处不在。
从日出日落的太阳,到我们使用的餐具和饮料杯,都是圆形的。
圆形给人一种和谐、完整的感觉,让人心情愉悦。
其次,正方形也是我们生活中常见的数学图形。
正方形的四条边长度相等,四个角都是90度,给人一种稳固和有序的感觉。
我们的房屋、书桌、电视机等家居用品,很多都是正方形的,这种形状的设计让我们的生活更加有条不紊。
除此之外,椭圆和多边形也是我们生活中常见的数学图形。
椭圆的优雅曲线常常出现在建筑物的设计中,给人一种优美和舒适的感觉。
而多边形则常常出现在花园的设计、装饰品的图案中,给人一种丰富多彩的感觉。
总的来说,生活中的数学图形不仅仅是一种几何形状,更是一种美的表达和秩序的体现。
它们让我们的生活更加丰富多彩,更加有条不紊。
让我们珍惜生活中的每一个数学图形,因为它们不仅美丽,更是生活的一部分。
认识生活中的几何图形

认识生活中的几何图形生活中的几何图形随处可见,它们不仅存在于我们周围的自然环境中,还出现在人工构建的建筑、家具、艺术品等各个领域中。
几何图形不仅美观,而且在实际应用中起到了重要的作用。
本文将介绍生活中常见的几何图形,并分析它们在实际应用中的价值。
一、圆形圆形是我们生活中最常见的几何图形之一。
它具有无限多个对称轴,且任何一点到圆心的距离都相等。
在自然界中,很多事物都具有圆形的特征,如太阳、月亮、水滴等。
此外,圆形还广泛应用于建筑设计中,例如圆形的窗户、圆形的露天花园等,不仅增加了建筑的美观性,还提供了良好的采光和通风效果。
二、矩形矩形是一个有四条边和四个角的四边形,它的对边相等且平行。
在生活中,家具、电视机、书桌等很多物品都是矩形的形状。
这是因为矩形具有结构稳定、易于制作等特点,使得它成为了很多物品的理想形状。
此外,在建筑设计中,矩形也经常被用来构建建筑物的平面布局,因为它能够提供较大的使用面积。
三、三角形三角形是一个有三条边和三个角的多边形。
它的特点是任意两条边之和大于第三边,并且三个内角之和为180度。
在生活中,很多事物都具有三角形的形状,例如山峰、公园中的帐篷、船的桅杆等。
此外,在建筑设计中,三角形也经常被用来构建具有稳定结构的建筑物,例如桥梁、塔楼等。
四、正方形正方形是一个有四条边和四个角的四边形,它的四条边相等且四个角都是直角。
在生活中,很多东西都具有正方形的形状,如书本、画框、电视屏幕等。
正方形的形状规则且稳定,使得它在建筑设计中被广泛应用,例如造型简洁的建筑立面、餐桌等。
五、多边形多边形是一个有多条边和多个角的几何图形。
根据边的数量和长度,多边形可以分为三角形、四边形、五边形等。
在生活中,多边形的形状也随处可见。
例如蜂窝状的蜂巢、各种各样的建筑物外形等。
多边形具有丰富的形状,可以满足不同需求的设计和结构。
总结起来,几何图形在生活中无处不在,它们不仅美观,而且在实际应用中也发挥着重要的作用。
图形与几何 在生活中的实际应用

图形与几何在生活中的实际应用一、梯形。
我国三峡大坝是当今世界最大的水力发电工程,具有防洪抗旱、发电、航运、养殖等多重效益,而三峡大坝的横截面就是一个梯形,那你知道为什么大坝的横截面要建成梯形吗?原来,从水面开始,越往下水的压力就越大,大坝的底部修筑得越宽,那大坝上部受到的压力就会逐渐减少,从而使上部可以修得窄一点,这样既可以节约建筑的成本,又可以使坝体的重心下移,使大坝更加稳固。
二、三角形。
众所周知,三角形具有稳定性,这使其不易变形,有着稳固、坚定、耐压的特点。
在我们的生活中常常运用三角形的这种特点来固定物体,例如自行车架、篮球架、三角形的别墅屋顶、高压电线杆的支架等,世界著名的埃菲尔铁塔、埃及金字塔等也是三角形的结构呢。
三、平行四边形。
和三角形的稳定性不同,平行四边形则具有不稳定性的特点,它的边长确定,但是形状和大小则不能完全固定下来,且受力容易变形。
但是你可别小瞧平行四边形的不稳定性,它在我们生活中的应用可是很广泛的,仔细观察一下我们会发现一些小区门口的电动伸缩门、升降晾衣架的伸缩部分、竹篱笆、消防云梯、折叠椅等就是运用了平行四边形不稳定的特点。
四、圆形。
圆形既是轴对称图形,也是中心对称图形,周长相同时,几何图形中圆形的面积最大,所以在日常生活中,很多物品被制成圆形、圆柱形,如圆形的碗、盘、桶、圆形的窨井盖、帽子等,既节省材料又美观大方。
圆形从力学角度来讲四周受力是一样的,所以草原上蒙古包的顶是天穹式,呈圆形,立在草原上,大风雪中阻力最小且不易变形。
圆形的圆心到圆周的每个点距离是一样的,在机械中又是磨损最小、阻力最小的,所以车轮做成圆形既容易克服地面阻力,又能够平稳行驶。
我们的生活中也处处可见圆形,方向盘、帽子、风扇、杯子、自来水管等都是圆形的妙用。
生活中常见的立体图形及其特征

生活中常见的立体图形及其特征立体图形是我们日常生活中的常见事物,它们不仅令我们生活更美好,还有很多有趣的特征和用途。
本文将从常见的立体图形入手,探讨它们的特征和应用,让我们了解到立体图形的奥秘。
一、正方体正方体是一种常见的正交多面体,它有六个平面、八个顶点和12条边。
正方体是最稳定的立方体,因为它的6个面都是相等的,也就是说,正方体所承受的压力和重力是相等的。
正方体在我们的日常生活中广泛应用,例如玩具、箱子和建筑等领域。
二、圆柱体圆柱体是一种由一个圆和与其垂直的柱面组成的几何体。
它有两个平面、一个侧面、两个底面和一个轴线,圆柱体也是我们日常生活中的一种常见事物,比如可乐瓶、水管、笔筒等。
三、圆锥体圆锥体是一种由一个圆锥和一个底面组成的几何体,它有一个平面、一个侧面、一个底面和一个轴线。
圆锥体与圆柱体类似,但它的形状更加特殊,因此它有着更广泛的应用,例如圆锥机、储物柜、喇叭等。
四、棱柱棱柱是一个由两个平行的底面和由这些底面到每个底面所垂直的平面面组成的多面体。
棱柱的特征是它的“棱”,也就是说它是由多个长方形组成的,正方形是最常见的。
棱柱在我们的日常生活中也有着广泛的应用,例如铅笔盒、棉花糖、灯罩等。
五、棱锥棱锥是一个由一个多边形和所有连接多边形到一个点的线段组成的几何体。
棱锥的特征是它的“锥”,也就是说它的形状呈尖锐的角度。
棱锥也有广泛的应用,例如灯泡、安全帽等。
六、球体球体是一个由一条半径为r的球面和半径为r的半球组成的三维形体。
球体的特征是它的完美圆形,这种形状在我们的日常生活中也随处可见,例如足球、篮球、地球仪等。
七、金字塔金字塔是一个由一个多边形底面和一个顶点连接底面每个角的三角形组成的几何体。
金字塔的特征是它的形状,它的形状特殊,所以它也有很多特殊的用途,如建筑、博物馆等。
总结立体图形在我们的日常生活中随处可见,它们的特征各不相同,在不同的应用领域也有不同的用途,例如在建筑领域中,我们会用金字塔和棱锥来烘托建筑的氛围;在玩具制作领域中,我们常见到的正方体和球体;在工程制造领域中,我们可以看到的是圆柱体和圆锥体。
生活中利用几何的例子

生活中利用几何的例子1、摄影中的运用几何图形在摄影中的运用是和拍摄者的视角以及想法息息相关。
规则几何图案往往在图案形状、颜色及线条上明显重复,呈现某种规律变化的花纹效果。
在现实场景中拍摄这样的几何素材时,可就依其像花纹的特性,让图样占满画面,制造无限延伸的感觉。
2、产品设计中的运用(几何图形-圆形)在建筑上,从建筑学的角度来说,圆形的建筑物更有利于减小风的阻力,从而减小了高楼风的形成的概率,即使形成高楼风,一般强度也要比普通建筑物小很多。
另外,圆形建筑物的地基更稳固。
圆形在传热学上讲,更能节省能源,因为圆形是放热最少的形状,为什么保温杯通常都是圆形的就是这个道理,天气很冷的时候猫科动物比如猫和老虎都喜欢将自己的身体蜷缩起来也是这个道理。
圆是轴对称图形,也是中心对称图形。
周长相同时,几何形中面积最大。
在机械中,磨损最小,阻力最小而且美观,经济也很实用。
因此,由于圆的种种优点,它被广泛应用在生活的方方面面,例如,井盖、水杯、车轮、方向盘、帽子、电风扇、家具、电灯等等。
3、创意家居中的运用(三角形)三角几何图形所具有的独特线条美感被广泛运用于家居领域。
4、传统编织中的应用英国设计师Jo Elbourne 使用传统的编织工艺,探索看似简单但有无限可能的几何设计,手工编织出现代风格的编织凳子、家居用品与艺术装饰品。
通过不同色彩的对比,透过色彩与形式的碰撞,简单的编织制品变成现代风格的美丽家居用品,而风格鲜明的几何图案,更让编织制品变成美观的艺术摆设。
因为独特的创意与优秀的设计,并让古老技艺焕发新生,Jo Elbourne获得2017年度ELLE装饰设计奖(Elle Decoration British Design Award)。
5、数学教学中的应用(动态几何图形)动态几何是在现近代数学思想的基础上发展起来的一种几何思想,它起源于上世纪80年代,最初的目的是利用相应的计算机软件代替圆规和直尺画直线、圆及其交点等几何图形。
生活中的数学——生活中的几何图形

生活中的几何图形提到生活中的数学,几何图形就是最直观的体现。
日常生活中,我们接触的东西都有自己的形状,有些是规则的几何体,有些则是不规则的。
下面我们归归类,看看日常的几何图形都有哪些。
一、长方体与正方体长方体与正方体是日常生活中最常见的几何图形,正方体是长方体的特殊情况。
长方体的物品很多。
生活用品:电视机、电冰箱、电脑、衣柜、纸箱、箱包等等;刊物:教科书、练习册、杂志、报纸等等。
长方形叫做矩形,生活中的一些特殊的矩形常见的有五种:第一种:4:3矩形,长宽比例约为1.333.这种矩形的实例在生活中比较常见,一般的电脑显示器和电视机显示屏都是这种矩形,还有大多数数码照片也是这个比例.第二种:对折相似矩形,长宽比例约是1.414近似服从这个比例.它有一个特点:对折之后得到的矩形和原来的矩形是相似的(即对应的长宽比相等).大家可以测量一下自己的课本,验证一下.第三种:3:2矩形,长宽比例为1.5.这是大多数传统照片的长宽比例,这种比例是最中庸、最简单的,而且也比较符合人的眼睛的欣赏习惯.第四种:黄金矩形,长宽比例是1.632.这种矩形的特点是:(长+宽)/长=长/宽,这种矩形不仅在数学和艺术构图中应用广泛,而且我们生活中所用的银行卡、电话卡、饭卡等等,都是这种黄金矩形,可见其用途还是很广泛的.第五种:16:9矩形,长宽比例约为1.778.据文章中描述,这种矩形的主要用途就是宽屏彩电和宽屏液晶显示器.这是一种长宽比例比较大的矩形,适合欣赏一些优美的画面.二、球体球体也是日常生活中最常见的几何体,大大小小的物品更多了。
篮球、足球、排球、台球等球类运动的球大多是球体,橄榄球可不是哦,橄榄球可以看作是球体的一个变形体。
很多食品与药品都是球体的,如麻团、元宵、四喜丸子、药丸、苹果、桃子、李子等等三、线线是组成几何图形的最基本的要素之一,点成线,线成面。
日常生活中的电话线、筷子、竹竿等都可以看成线。
四、圆与球体不同,圆是平面图形,球体的截面都是圆。
【数学课件】生活中的几何图形

§2-3 垂直與平分
4.中點﹕將一線段平分為兩等長線段的點。
5.分角線(角平分線)﹕將一角平分為兩等角的直 線。 6.中垂線(垂直平分線)﹕過一線段中點而與此線 段垂直的直線。
上一章
上一頁
下一頁
下一章
本章教學
名詞解釋
從頭開始 回主目錄
正方體
上一章
上一頁
下一頁
下一章
本章教學
名詞解釋
從頭開始 回主目錄
§2-4 生活中的立體圖形
長方體
上一章
上一頁
下一頁
下一章
本章教學
名詞解釋
從頭開始 回主目錄
§2-4 生活中的立體圖形
三角柱
上一章
上一頁
下一頁
下一章
本章教學
名詞解釋
從頭開始 回主目錄
§2-4 生活中的立體圖形
角錐
上一章
上一頁
下一頁
下一章
6.圓﹕在平面上與一固定點的距離等於一固定長度
的所有點所組成的圖形。固定點叫做圓心,固定 長度叫做半徑。圓心與圓上任意點所連的線段也 叫做半徑。 7.弦﹕圓上任意兩點所連的線段。如果一弦恰好 通 過圓心,它就是直徑,所以直徑也是一弦。
上一章 上一頁 下一頁 下一章 本章教學 名詞解釋 從頭開始 回主目錄
兩角度數之和為180時,稱做兩角互補,而 其中一角就稱做另一角的補角。
4.尺規作圖作出﹕(1) 等線段
(2)等角
上一章
上一頁
下一頁
下一章
本章教學
名詞解釋
從頭開始 回主目錄
§2-3 垂與平分
1.垂直﹕ 如果兩直線或線段相交成直角,
三角形和平行四边形在生活中的应用

三角形和平行四边形在生活中的应用三角形和平行四边形是我们日常生活中经常出现的几何图形,它们在各个领域都有着广泛的应用。
一、三角形的应用1.建筑设计在建筑设计中,三角形经常被用来确定建筑物的结构和稳定性。
例如,在建造桥梁时,需要使用三角形来计算桥梁的强度和稳定性。
同样,在设计房屋时,也需要使用三角形来确定墙壁、屋顶和地基等部分的大小和位置。
2.地理测量地理测量中也广泛使用了三角形。
通过测量不同位置之间的距离和角度,可以计算出地球上任意两点之间的距离。
这个过程就需要使用到三角形。
3.航空航天在航空航天领域,三角形被用来计算飞机或火箭发射时所需的速度、高度和方向等参数。
这些参数对于飞行器起飞、飞行和降落都至关重要。
4.数学教育在数学教育中,三角形是基础知识之一。
学生们需要了解不同类型的三角形及其特征,并掌握如何计算它们的周长、面积和角度等参数。
这些知识对于学生们未来学习数学和其他科学领域都是非常重要的。
二、平行四边形的应用1.建筑设计平行四边形在建筑设计中也有着广泛的应用。
例如,在设计房屋或办公室内部时,可以使用平行四边形来确定墙壁、地板和天花板等部分的大小和位置。
2.制造业在制造业中,平行四边形被用来制造各种不同类型的零件和机器。
例如,在生产汽车或飞机零件时,需要使用平行四边形来确定零件的大小和形状。
3.绘画艺术在绘画艺术中,平行四边形也被广泛使用。
艺术家们可以使用平行四边形来创作各种不同类型的图案和设计。
这些图案可以应用于各种不同领域,如服装设计、家居装饰等。
4.数学教育与三角形一样,在数学教育中,平行四边形也是基础知识之一。
学生们需要了解不同类型的平行四边形及其特征,并掌握如何计算它们的周长、面积和角度等参数。
这些知识对于学生们未来学习数学和其他科学领域都是非常重要的。
总之,三角形和平行四边形在我们的日常生活中有着广泛的应用。
无论是建筑设计、地理测量、航空航天还是制造业和绘画艺术,它们都扮演着不可或缺的角色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肉松瓶
圆柱体.
桔子
球体.
棱柱
棱柱
棱锥
圆柱
圆锥
球
正方体
长方体
棱柱
棱锥
下列实物能想象出你熟悉的几何体吗?
长方体
正方体
下列实物能想象出你熟悉的几何体吗?
圆柱体
圆锥
球
请把下列物体和相应的图形连起来。
正方体
圆柱
长方体
圆锥
球体
棱柱
棱锥
这些几何体叫什么名称呢?
圆柱
圆锥
棱锥
棱柱
正方体
长方体
球
像长方体、正方体、球、圆柱、圆锥、 棱柱、棱锥等都是立体图形。
它们都有表面。包围着体的是面。
联系实际生活,想想面有哪些类型呢?
合作学习(1) 你看到了哪些面?哪些面是平
的?哪些面是曲的?
平面
平面
平静的湖面
黑板面
曲面
篮球
曲面
水桶
面 有 平 的 面 和 曲 的 面 两 种
合作学习 下列几何体的面哪些是平的?哪些 是曲的?
立方体 圆柱体 圆锥体 球体 长方体
六 个 平 面
在“线与线相交得到点”的基 础上,观察这个长方体的面,面与 面相交得到什么呢?你还能举出实 例吗?
线
在长方体中,体现了线线 相交成点,面面相交成线, 在圆柱体中呢?
点、线、面、体
点——
动 成
线与线相交而成
线———
动 成
面与面相交而成
面———
动 成
把体包围着的部分
体———
物体的图形 (立体图形 )
生活中的几何图形
栾城县窦妪 二中 刘茹
北京天坛
精巧绝伦的手工剪纸
• 我们周围的物体,如果只注意它们 的形状、大小和位置,而不考虑它 们的其它性质(颜色、重量、材料 等),就得到各种几何图形。这就 是几何研究的对象。
这些营养早餐让你想到哪些熟悉 的图形?六 个 平 面
一两 个个 曲平 面面
一一 个个 曲平 面面
一 个 曲 面
观察三幅运动的图片,分别可以看成什么几 何图形在运动? 它们的运动又形成了什么 几何图形呢?
线 体 点动成___ , 线动成___, 面动成____. 面
点,线,面是几何图形的基本要素。
观察这张地图,如果把每条路看成一条线, 那么线与线相交得到什么?你还能举例吗?
长方形 正方形 三角形
正五边形 正六边形 圆
你能说 出右边的 图形中, 哪些表示 立体图形, 哪些表示 平面图形 吗?
试一试
⑴
⑵
⑶
⑷
上面的平面图形绕轴旋转一周,可以得到下面的立 体图形,把有对应关系的平面图形与立体图形连接 起来.
思考探究:
你知道这些几何体是由什么围成的的吗? 它们有什么不同吗?
通过本节课的学习,你对几何图形 有了怎样的认识?
给我最大快乐的,
不是已懂的知识,
而是不断的学习. ----高斯
它们的各部分不都在同一平面内.
从上图所示的几何图形中,可以看到我们曾学过 的如下图形,请写出每个平面图形的名称。
长方形 正方形 三角形 六边形
圆
长方形、正方形、三角形、六边形、 圆等都是平面图形。. 它们的各部分都在同一平面内.
长方体 正方体 球 圆柱 棱柱 圆锥 棱锥
立体图形
几 何 图 形
平面图形