汽车设计悬架系统

合集下载

悬架设计优秀课件

悬架设计优秀课件
26
《汽车设计》电子教案
8.5 独立悬架导向机构设计
➢8.5.2 独立悬架导向机构的布置参数
1.侧倾中心 侧倾中心的位置随导向机构的型式而不同。可用图解法或实验法 求得。如图所示。
(a) 单横臂式
(b) 单纵臂式
(c) 双横臂式
27
《汽车设计》电子教案
8.5 独立悬架导向机构设计
➢8.5.2 独立悬架导向机构的布置参数
30
《汽车设计》电子教案
8.5 独立悬架导向机构设计
➢8.5.3 双横臂悬架导向机构设计
1.前轮定位参数的变化 前轮定位参数随车轮上下跳动的变化特性,通常是指从满载静平 衡位置到车轮跳动±40mm范围内的特性。
a) 主销长度不变且等于0.6倍下臂长 ; b) 上臂长不变且等于0.6倍下臂长
31
《汽车设计》电子教案
8.5 独立悬架导向机构设计
➢8.5.3 双横臂悬架导向机构设计
1.前轮定位参数的变化 表中列出了几种国外乘用车双横臂式独立悬架的一些参数,供设
计时参考。
车牌名称
上臂长A(mm)
下臂长r(mm)
球销距B(mm)
A/r
A/B
奔驰600(德)
330
479
256
0.702
1.29
伏尔加(俄)
200
445
250
根据气囊结构型式不同,空气弹簧可分为囊式、膜式和复合式三 种。囊式又分为单曲式、双曲式和多曲式;与膜式相比,囊式寿命较 长、制造方便,刚度较大,故常用于商用车。
23
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.4 空气弹簧和油气弹簧的计算
2. 油气弹簧 油气弹簧是空气弹簧的一种特例,它以气体作为弹性元件,在气 体与活塞之间引入油液作为中间介质。油气弹簧的工作缸由气室和浸 在油液中的阻尼阀组成。 油气弹簧有双气室和两级压力式。

车辆悬挂系统的优化设计

车辆悬挂系统的优化设计

车辆悬挂系统的优化设计车辆悬挂系统作为汽车重要的组成部分,直接关系到车辆行驶的平稳性、舒适性和安全性。

优化悬挂系统设计能够提高车辆性能和乘坐体验,本文将围绕车辆悬挂系统的优化设计展开论述。

一、悬挂系统的基本原理与作用车辆悬挂系统通过悬挂弹簧、减震器和悬挂支架等部件,连接车身和车轮,起到支撑和缓冲作用。

悬挂系统能够吸收路面不平,减少车身的颠簸,保证驾乘的舒适性和稳定性。

同时,悬挂系统还能够保护车身、发动机和传动系统等重要部件,延长其使用寿命。

二、悬挂系统的优化设计目标1. 提高车辆的行驶稳定性。

悬挂系统的优化设计需要考虑车辆在高速行驶、转弯、制动等情况下的稳定性,减少侧翻和摇晃。

2. 提升乘坐的舒适性。

通过减震器的优化设计,降低车辆受到的颠簸和震动,提供舒适的驾乘环境。

3. 提高悬挂系统的可靠性和耐久性。

悬挂系统需要在各种复杂的路况下保持良好的工作状况,提升其使用寿命和可靠性。

4. 降低车辆的燃油消耗。

通过优化悬挂系统的设计,减少不必要的能量损耗,提高车辆的燃油利用效率。

三、悬挂系统的优化设计方法1. 材料选择与强度分析。

选用高强度、耐疲劳的材料,同时进行强度分析和优化设计,确保悬挂系统在受力情况下不会发生变形或破裂。

2. 建立悬挂系统的数学模型。

通过建立悬挂系统的数学模型,包括弹簧刚度、减震器参数等,进行仿真分析和优化设计。

3. 减震器的优化设计。

减震器的合理设计能够有效抑制车身的振动,提供更好的驾乘体验。

优化设计减震器的阻尼特性和刚度,以满足车辆不同行驶状态下的需求。

4. 悬挂系统的悬架结构优化。

悬挂系统的悬架结构也会影响整个系统的性能。

通过优化悬挂支架等部件的结构,降低重量,提高刚度和强度,进一步改善悬挂系统的性能。

5. 考虑多种路况和行驶状态。

在悬挂系统的优化设计中,需要考虑不同的路况和行驶状态,如高速行驶、弯道行驶、起步和制动等情况,以确保悬挂系统在各种条件下都能提供最佳的性能和驾乘体验。

汽车底盘的悬挂系统全解

汽车底盘的悬挂系统全解
汽车底盘
——悬挂系统
常见汽车悬挂解析
汽车教研室
2/43
现代汽车的悬挂
• 支持车身,改善乘坐的感觉。 • 外表看似简单的悬挂系统综合多种作用力,决定着
轿车的稳定性、舒适性和安全性,是现代轿车十分 关键的部件之一。
汽车教研室
3/43
汽车教研室
4/43
汽车教研室
5/43
飞度麦弗逊式前悬架
汽车教研室
汽车教研室
44/43
悬挂系统的介绍
纵臂式独立悬挂系统
单纵臂式悬挂系统当车轮上下跳动时会使主销后倾角产生
较大的变化,因此单纵臂式悬挂系统不用在转向轮上。这种
单臂式悬挂系统已经很少在现代轿车上使用了。
汽车教研室
45/43
悬挂系统的介绍
多连杆式独立悬挂系统
多连杆独立悬挂,可分为多连杆前悬挂和多连杆后悬挂系统。
• 在汽车高速行驶中转向时,车身会产生很 大的横向倾斜和横向角振动。
• 为减少这种横向倾斜,常在悬架中加设横 向稳定器。
• 应用得最多的是杆式横向稳定器。
2019/9/9
汽车教研室
30/43
工作原理
2019/9/9
汽车教研室
31/43
悬挂系统的介绍
麦弗逊式独立悬挂系统
螺旋弹簧套在减震器上组成,减震器可以避免螺旋弹簧受力
麦弗逊式独立悬挂系统
麦弗逊式悬挂是当今世界用的最广泛的轿车前悬挂之一。 麦弗逊式悬挂由螺旋弹簧、减震器、三角形下摆臂组成, 绝大部分车型还会加上横向稳定杆。
汽车教研室
26/43
汽车教研室
27/43
汽车教研室
28/43
汽车教研室
29/43
横向稳定器

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析随着汽车工业的飞速发展,汽车底盘悬架结构的设计也成为汽车工程师们关注的重点之一。

底盘悬架是汽车重要的组成部分之一,直接关系到车辆的操控性、舒适性和安全性。

本文将对汽车底盘悬架结构设计的要点进行详细分析。

1. 悬架结构的类型要点分析的第一步就是悬架结构的类型。

常见的悬架结构包括双叉臂式、麦弗逊式、复合式、多连杆式等。

每种类型的悬架结构都有各自的优缺点,需要根据车型和用途来选择合适的悬架结构。

双叉臂式悬架适合高性能及大功率车型,麦弗逊式悬架适合一般家用车,复合式悬架适合跨界车型,多连杆式悬架适合豪华车型。

在选择悬架结构类型时,需要考虑到车辆的整体性能需求、成本、制造难易度以及可维修性等因素。

2. 悬架构件的材料悬架构件的材料是影响悬架结构性能的重要因素。

常见的材料有钢材、铝合金、碳纤维等。

钢材强度高、价格低,是汽车悬架结构最常用的材料。

但随着汽车轻量化、节能化及安全性要求的提高,铝合金和碳纤维等新材料被越来越多的应用在悬架结构中。

这些新材料在提高整车轻量化的同时还能提高车辆的操控性能和减少燃油消耗。

在选择悬架材料时,需考虑到材料的强度、刚度、耐久性以及成本等因素。

3. 悬架减震器的选型悬架减震器是影响汽车乘坐舒适性和操控性的关键部件,其选型直接影响到车辆的驾驶品质。

常见的悬架减震器包括气压式、液压式、电子控制式等。

不同类型的减震器具有不同的减震特性,如气压式减震器可以根据路况和行驶速度自动调整减震力,提高车辆的操控性和稳定性;电子控制式减震器可以根据驾驶者的驾驶习惯和路况实时调整减震力,提高车辆的操控性和舒适性。

在选型时需要考虑到车辆的用途和价格。

4. 悬架系统的调校悬架系统的调校是悬架设计的重要环节之一。

悬架系统的调校包括悬架几何参数的设计和悬架部件的强度设计。

悬架几何参数的设计直接关系到车辆的操控性和舒适性,如悬架几何参数的合理设计可以改善车辆的操控性和降低车辆的侧倾,提高车辆的行驶稳定性。

汽车底盘悬架系统的动力学建模与优化设计

汽车底盘悬架系统的动力学建模与优化设计

汽车底盘悬架系统的动力学建模与优化设计作为汽车底盘中重要的一部分,悬架系统承担着车身支撑以及减震的重要功能。

一个优秀的悬架系统可以提供良好的操控性和驾驶舒适性,对汽车的性能和安全性有着至关重要的影响。

本文将探讨汽车底盘悬架系统的动力学建模与优化设计,旨在提升汽车悬架系统的性能。

一、悬架系统动力学建模悬架系统的动力学建模是优化设计的基础。

动力学建模的目的是描述悬架系统在不同工况下的运动规律和力学特性。

常用的悬架系统动力学模型包括质点模型、弹簧-阻尼-质量模型以及多体动力学模型等。

质点模型是最简单的悬架系统动力学模型,它基于质点运动学和动力学原理来描述悬架系统的运动规律。

质点模型可以用来分析悬架系统的振动特性和悬架与车身的相对运动。

弹簧-阻尼-质量模型是一种常用的悬架系统动力学模型,它把悬架系统看作是由弹簧、减震器和质量单元组成的动力学系统。

这种模型能够更加准确地描述悬架系统的力学特性,包括悬架系统的减震性能和下垂量等。

多体动力学模型是最复杂的悬架系统动力学模型,它考虑了悬架系统的多个部件之间的相互作用。

多体动力学模型可以有效地预测悬架系统在复杂路况下的运动规律和力学响应。

二、悬架系统优化设计基于悬架系统的动力学模型,可以进行悬架系统的优化设计。

悬架系统的优化设计旨在提升汽车的操控性、驾驶舒适性和安全性。

1. 悬架系统刚度与减震器调校悬架系统刚度对汽车的操控性和驾驶舒适性有着重要的影响。

较高的悬架系统刚度可以提高车辆的操控性能,但对驾驶舒适性会产生不利影响。

因此,在悬架系统的优化设计中,需要根据车辆的使用环境和性能要求来选择合适的悬架系统刚度。

减震器是悬架系统中起到减震功能的重要部件。

通过对减震器的调校,可以改善车辆在不同路况下的驾驶舒适性和操控性能。

减震器调校需要考虑悬架系统的刚度、减震器特性以及车辆的动力学特性等因素。

2. 悬架系统动态特性与操控性优化悬架系统的动态特性对车辆的操控性能有着重要的影响。

汽车设计(悬架部分)

汽车设计(悬架部分)

前言本小组程设计的课题是悬架的设计。

在选择车型时我们参考以下几个要求:可靠,巩固,耐用,使用本钱较低,油耗处于国内中等水平,为当前主流技术水平,车型新颖等等。

所以,悬架的设计宜选用成熟技术,零部件,彻底的贯彻“三化〞原那么,较为合理的本钱控制。

选择参考车型为日产NV200。

悬架是现代汽车的重要组成局部之一。

因而悬架设计成功与否,极大的影响汽车的操纵稳定性和平顺性,对整车性能有着重要的影响。

在汽车市场竞争日益加剧的今天,人们对汽车的性能的认识更多的靠更为直接的感观感受,而这种感官感受都是由汽车悬架传递给驾驶者的,人们对汽车悬架的设计也是越来越重视。

因此,对汽车操纵稳定性﹑平顺性的提升成为了各大汽车厂商的共识。

与此关系密切的悬架系统也被不断改良,主动半主动悬架等具有反应的电控系统在高端车辆上的应用日趋广泛。

无论定位高端市场,还是普通家庭的经济型轿车,没有哪个厂家敢无视悬架系统与其在整车中的作用。

这一切,都是因为悬架系统对乘员的主观感受密切联系。

悬架系统的优劣,乘员在车上可以马上感受到。

现在悬架的设计也是国内汽车厂商一个重要提升的方向。

以前对汽车的要求相对较低,国人更注重外观和汽车配置方面的要求,因此对汽车悬架的概念与要求并没有很高的要求。

随着现在人们对汽车操纵稳定性﹑平顺性越来越重视,人们不仅需要一辆好看配置高的车,更需要一辆好开乘坐舒适的车。

因此现在国内出现很多汽车厂商将新汽车的悬架设计与调校交给国外一些有实力汽车厂商,这也实实在在的提升了自身车型的市场竞争力,不过从另一方面也反映出国内悬架设计与调校所存在的问题,也使我们知道悬架设计的重要性,从而让我们对汽车悬架设计更加重视。

悬架从无到有,是人们对汽车稳定性﹑平顺性不断追求下诞生。

悬架从简单到复杂,是人们对更高的汽车稳定性﹑平顺性和操纵稳定性的不断追求。

所以对悬架设计的重视,就能使整车性能得以提升,从而提高车型的竞争力,赢得更好的表现。

而悬架设计涉与到部件与整体的关系。

悬架系统设计计算报告

悬架系统设计计算报告

悬架系统设计计算报告一、引言悬架系统作为汽车底盘的重要组成部分,对车辆的行驶稳定性、乘坐舒适性和操控性能等方面有着重要影响。

因此,在汽车设计和制造过程中,悬架系统的设计十分关键。

本报告将介绍悬架系统设计过程中的计算方法和依据,并对其进行详细说明。

二、悬架系统设计计算方法1.载荷计算:首先需要计算车辆在不同行驶条件下的载荷。

通过分析车辆的使用环境和客户需求,确定悬架系统的额定载荷。

然后,根据车辆自重、乘员重量、行李重量、荷载等因素,计算出车辆的总载荷。

2.载荷分配计算:在计算悬架系统的载荷分配时,需要考虑车辆的静态和动态载荷。

静载荷主要指车辆停靠时的重力,而动载荷主要指车辆行驶过程中因加速度、制动力和路面不平均性等引起的载荷。

通过对车辆不同部位的载荷进行测量和分析,确定每个车轮的载荷。

3.悬架系统刚度计算:悬架系统的刚度对车辆的操控性和乘坐舒适性有着直接影响。

悬架系统的刚度可以分为纵向刚度、横向刚度和垂向刚度等。

在设计悬架系统的过程中,需要根据车辆的使用环境和性能需求,计算悬架系统的刚度。

4.悬架系统减振器计算:悬架系统的减振器的设计和选型是悬架系统设计的重要环节。

减振器可以减少车辆在行驶过程中的震动,提高乘坐舒适性和行驶稳定性。

根据悬架系统的刚度和载荷等因素,计算减振器的选择和设计参数。

5.悬架系统运动学计算:悬架系统的运动学计算是为了确定悬架系统在不同行驶状态下的主要参数,以便进行悬架系统的设计和调整。

通过对车辆的几何尺寸、运动学参数和悬架结构的分析和计算,确定悬架系统的工作范围和参数。

三、计算依据在悬架系统设计计算中,需要依据以下相关标准和原则进行设计:2.汽车悬架系统设计手册:根据汽车制造商提供的相关手册和技术资料,对悬架系统设计进行指导和计算。

3.数学和工程力学原理:在悬架系统设计计算过程中,需要运用数学和工程力学的相关原理和方法,如力学平衡、弹性力学、振动理论等,进行悬架系统的计算。

4.仿真和试验数据:通过对悬架系统的仿真分析和试验测试,获取悬架系统的相关参数和性能数据,为悬架系统的设计计算提供依据。

汽车悬架和转向系统设计

汽车悬架和转向系统设计

汽车悬架和转向系统设计1. 概述汽车悬架和转向系统是汽车中至关重要的部分,对汽车的操控性、行驶稳定性和乘坐舒适性有着重要的影响。

悬架系统负责支撑汽车车身,保证车轮与地面的接触,同时吸收来自路面的冲击力;而转向系统则负责使车辆按照驾驶员的指令实现转向操作。

在汽车设计中,悬架和转向系统的设计需要综合考虑多种因素,包括车辆的用途、性能需求、成本以及使用环境等。

本文将介绍汽车悬架和转向系统设计中的关键要点,并探讨一些常见的设计策略和优化方法。

2. 悬架系统设计2.1. 悬架类型常见的汽车悬架类型包括独立悬架和非独立悬架。

独立悬架指的是四个车轮各自独立悬挂,相互之间没有连接,可以独立运动。

非独立悬架指的是四个车轮之间通过悬架系统相连接,受到相互影响。

独立悬架相较于非独立悬架具有更好的悬挂效果,能够提供更好的操控性和乘坐舒适性。

常见的独立悬架类型包括麦弗逊悬架、多连杆悬架和双叉臂悬架等。

2.2. 悬架参数设计悬架系统的参数设计对于汽车的行驶稳定性、乘坐舒适性和操控性都有重要影响。

其中一些关键的参数包括减振器刚度、悬架弹簧刚度、悬架几何参数等。

减振器刚度决定了汽车在受到冲击力时的反应速度,过大或过小的减振器刚度都会影响汽车的乘坐舒适性。

悬架弹簧刚度则负责车身的支撑和回弹,也对乘坐舒适性有重要影响。

悬架几何参数则涉及到悬架的运动轨迹和相对位置,对悬架系统的整体性能起着决定性作用。

2.3. 悬架系统优化悬架系统的优化设计旨在提升汽车的行驶性能和乘坐舒适性。

在悬架系统设计中,常见的优化手段包括材料选择、刚度调整、阻尼控制和减重等。

材料选择是悬架系统设计中的一个重要环节。

采用合适的材料可以提高悬架系统的刚度,同时减轻悬架组件的重量。

刚度调整可以通过调整减振器和弹簧的硬度来实现,以获得更好的悬架效果。

阻尼控制则可以通过控制减振器的阻尼力来实现,以提升汽车的稳定性和乘坐舒适性。

减重是悬架系统设计中的一个重要目标,通过使用轻量化材料和结构设计优化来减轻悬架组件的重量,从而提高汽车的燃油经济性和操控性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车设计悬架系统目录第一章悬架的结构形式的选择第一节悬架的构成和类型第二节独立悬架结构形式分析第三节前后悬架的选择第二章悬架主要参数的选择第一节悬架性能参数的选择第二节悬架的自振频率第三节侧倾角刚度第四节悬架的静动挠度的选择第三章弹性元件的设计分析及计算第一节前悬架弹簧第二节后悬架弹簧第四章独立悬架导向机构的设计分析及计算第一节导向机构设计要求第二节麦弗逊独立悬架示意图第三节导向机构受力分析第四节横臂轴线布置方式第五节导向机构的布置参数第五章减震器的设计分析及计算第一节第一章悬架的结构形式的选择1.1悬架的构成和类型1.1.1 构成(1)弹性元件具有传递垂直力和缓和冲击的作用。

常见的弹性元件有:钢板弹簧、螺旋弹簧、扭杆弹簧、空气弹簧、油气弹簧、橡胶弹簧等。

(2)导向装置其作用是传递除弹性元件传递的垂直力以外的各种力和力矩。

常见的导向装置有:斜置单臂式、单横臂式、双横臂式、双纵臂式、麦弗逊式等。

(3)减震器具有衰减振动的作用。

常见的减震器有:简式减震器、充气式减震器、阻力可调式减震器等。

(4)缓冲块其作用是减轻车轴对车架的直接冲撞,防止弹性元件产生过大的变形。

(5)横向稳定器其作用是减少转弯行驶时车身的侧倾角和横向角振动。

1.1.2 类型悬架可分为非独立悬架和独立悬架。

(1)非独立悬架非独立悬架的特点是:左、右车轮用一根整体轴连接,再经过悬架与车架连接。

优点是:结构简单、制造容易、维修方便、工作可靠。

缺点是:①由于整车布置上的限制,钢板弹簧不可能有足够的长度(特别是前悬架),使之刚度较大,所以汽车平顺性较差。

②簧下质量较大。

③在不平路面上行驶时,左、右车轮相互影响,并使车轴和车身倾斜。

④当两侧车轮不同步跳动,车轮会左、右摇摆,使前轮容易产生摆振。

⑤前轮跳动时,悬架易与转向传动机构产生运动干涉。

⑥汽车转弯行驶时,离心力也会产生不利的轴转向特性。

⑦车轴上方要求有与弹簧行程相适应的空间。

然而由于非独立悬架结构简单、易于维护以及可以使用多种类型的弹性元件等优点,非独立悬架多用于载货汽车和大客车的前、后悬架。

(2)独立悬架独立悬架的特点是:左、右车轮通过各自的悬架与车架连接。

优点是:①簧下质量小。

②悬架占用的空间小③弹性元件只承受垂直力,所以可以用刚度小的弹簧,使车身振动频率降低,改善了汽车行驶的平顺性。

④由于采用了断开式车轴,所以能降低发动机的位置高度,使整车的质心高度下降,改善了汽车行驶的稳定性。

⑤左、右车轮各自独立运动互不影响,可减少车身的倾斜和振动,同时在好的路面上能获得良好的地面附着能力。

缺点是:结构复杂、成本较高、维修困难然而由于独立悬架具有以上优点,因此现代轿车多采用独立悬架。

1.2 独立悬架结构形式分析独立悬架又可以分为双横臂式、单横臂式、双纵臂式、单纵臂式、单斜臂式、麦弗逊式和扭转梁随动臂式等。

对于不同形式的独立悬架,不仅结构特点不同,而且许多基本特性也有较大区别。

评价时常从以下几个方面进行:①侧倾中心高度②车轮定位参数的变化③悬架倾角刚度④横向刚度不同形式悬架的特点导向机构形式特性双横臂式单横臂式单纵臂式单斜臂式麦弗逊式扭转梁随动臂式侧倾中心高度比较低比较高比较低居单横臂和单纵臂之间比较高比较高车轮相对车身跳动时车轮定位参数变化车轮外倾角与主销内倾角均有变化车轮外倾角与主销内倾角变化大主销内倾角变化大有变化变化小左右轮同时跳动时不变轮距变化小,故轮胎磨损速度慢变化大,故轮胎磨损速度快不变变化不大变化很小不变悬架侧倾角刚度较小,需要有横向稳定器较大,可不装横向稳定器较小,需要用横向稳定器居单横臂式和单纵臂式之间较大,可不装横向稳定器横向刚度横向刚度大横向刚度小横向刚度较小横向刚度大占用的空间尺寸占用较多的空间占用较少的空间几乎不占用高度空间占用的空间小1.3 前后悬架的选择目前汽车的前后悬架采用的方案有:前轮和后轮均采用非独立悬架;前轮采用独立悬架,后轮采用非独立悬架;前轮和后轮均采用独立悬架。

由于麦弗逊独立悬架具有以下特性:车轮相对车身跳动时车轮定位参数变化小;轮距变化很小;悬架侧倾角刚度较大,可不装横向稳定器;横向刚度大;占用空间小。

故此次设计前后轮均采用麦弗逊独立悬架。

第二章悬架主要参数的选择2.1 悬架性能参数的选择悬架设计可大致分为结构型式及主要参数选择和详细设计两个阶段,有时还要反复交叉进行。

由于悬架的参数影响到许多整车特性,并且涉及其他总成的布置,因而一般要与总布置共同协商确定。

2.2 悬架的自振频率悬架设计的主要目的之一是确保汽车有良好的行驶平顺性。

汽车行驶时振动越剧烈,则平顺性越差。

由于个体对振动的反应千差万别,人们提出了各种各样的平顺性评价指标。

n=Mg//2πK//2π=fn------悬架的频率M-----簧载质量K------悬架的刚度悬架频率n随簧载质量的变化而变化,人体最舒适的频率范围为1.6Hz,如果要将汽车行驶过程中的频率保持在1~1.6Hz内。

依据ISO2631《人体承受全身振动的评价指南》,轿车的自振频率范围为0.7~1.6Hz,对于簧载质量大的车型取偏小的方向,(大致为1Hz或更低)本设计选的范围是0.7~1.6Hz。

取n1=1.2Hz;悬架n1/n2=0.9所以n2=1.3Hz悬架的刚度Ka+b=1.25+1.35=2.6m前:a/a+b=1.25/2.6=0.48后:b/a+b=1.35/2.6=0.52m1=1650*0.52=856.7Kgm2=1650*0.48=793.3Kgm s1=856.7 – 50=801.7Kgm s2=793.3 – 65=728.3Kg依据悬架刚度公式可得:ω=(K / M)ω-------悬架的角速度K--------悬架的刚度m--------簧上质量即K = ω2m2.3侧倾角刚度随着汽车车速的不断提高,所设计的悬架不仅应该保持良好的行驶稳定性,还应该保证良好的操作稳定性。

在悬架的性能参数中,以前后悬架的侧倾角刚度的分配以及侧倾中心高度值对操作稳定有较大的影响。

所以选择悬架的主要参数时还要加以考虑。

在汽车转弯时,为了使车身的侧倾角不超过规定值(按规定总体设计要求,当侧向惯性力不超过车重的1/4时,车身的侧倾角不大于6度~7度)。

悬架应该有足够的侧倾角刚度。

所谓的侧倾角刚度的侧倾力矩。

侧倾角刚度不足会使汽车转弯时由于侧倾角过大使乘客有不稳定的感觉。

侧倾角过大,会有减轻驾驶员的路感,防害他正确的掌握车速。

所以,对侧倾角刚度要选择适当。

从《汽车理论》中知,为了保证良好的操作稳定性,希望汽车有一些不足的转向,而不希望有过多的转向。

而悬架的侧倾角刚度会影响到车轮的侧倾角,前后悬架的侧倾角刚度值的不同匹配就会改变前后轮的侧倾角的比值,从而改变转向特性。

则前后悬架的单个弹簧的侧倾角刚度值为:n1=1kf/4π⇒kf=(n1*2π)2 * m s1 /2=(1.2*6.28)2 *801.7/2=22765N/m /msn2=1kv/4π⇒kv=(n2*2π)2 * m s1 /2=(1.3*6.28)2 *728.3/2=24271N/m /ms2.4 悬架的静动挠度的选择悬架的静挠度f c是汽车满载静止时悬架的载荷F w与此时的悬架的刚度之比,即f c=F w/c。

汽车前后悬架与其簧上质量组成的振动系统的固有频率,是影响汽车的行驶平顺性的主要参数之一。

因现代汽车的质量参数分配系数ε近似等于1,于是汽车前后轴上方车身两点的振动不存在联系。

对于刚度为常数的悬架,静挠度f c 完全由所选择的自振频率所决定:f c=g/(2πn)2由上式可知道,悬架的静挠度f c直接影响车身的偏振n。

因此,欲保证汽车的良好的行驶平顺性,必须正确的选择悬架的静挠度。

在选择前后悬架的静挠度时,应使之接近,并希望后悬架的静挠度f c2比前悬架的静挠度f c1小些,这有利于防止车身产生较大的纵向角摆动。

理论分析证明:若汽车以较高的车速行驶过单个路障,n1/n2<1时的车身纵向角振动要比n1/n2>1时小故取值为 f c1=g/(2πn1)2=9.8/(2π*1.2)2=172.57≈173f c2=g/(2πn2)2=9.8/(2π*1.3)2=147.88≈148轿车的静挠度取值范围如下:f c=100~300mm ,所以我的选择满足条件。

悬架的动挠度f d是指悬架从满载静止平衡位置开始压缩到结构容许的最大变形时,车轮中心相对于车架的垂直位移。

要求悬架有足够大挠度,以防止在坏路面上行驶时经常碰到缓冲块。

对于轿车悬架的动挠度f d可按下列范围选取:f d=(0.5~0.7)f c所以我的选取为:f d1=0.6*173=104mmf d2=0.6*149=89mm动挠度与静挠度的总和为:f c1+ f d1=173+104=277f c2+ f d2=149+89=238第三章弹性元件的设计计算3.1 前悬架弹簧(1)弹簧中经、钢丝直径、及结构形式定弹簧中经D m=90mm 钢丝直径d=10mm结构形式:端部并紧、不磨平、支撑圈为1圈所选用的材料为硅锰弹簧钢,查《机械设计手册》得[σ]=1600MpaG=80Gpa则[τ]=0.625[σ]=0.625*1600=1000Mpa(2)弹簧圈数由前知f c1=0.174m单侧螺旋弹簧所受轴向载荷P为P=m⨯cosα=400.8⨯cos12°⨯9.8 =3925N其中m----前悬架单侧弹簧质量(400.8Kg)α-----前悬架减震器安装角(12°)螺旋弹簧在P下的变形f为f=f c/ cosα=0.174/ cos12°≈0.177螺旋弹簧的刚度C=P/f=3952/0.177≈22557N/m由C=P/f=Gd4 /8D m3i得弹簧工作圈数ii= Gd4 /8D m3C=8⨯1010⨯(10/1000)4/[8⨯(90/1000)3⨯22557]≈5.86 取i=6又弹簧总圈数n与有效圈数i关系为n=i+2则弹簧总圈数n=8(3)弹簧完全并紧时的高度弹簧总圈数n与有效圈数i以及弹簧完全并紧时的高度H s间的关系如下: H s≈1.01d(n-1)+2t=1.01⨯10⨯(8-1)+6≈76.7则H s+ f c+ f d=76.7+173.6+80=330mm则取弹簧的总高度H=300mm(4)应力校核所选螺旋弹簧的剪应力为:τ=8PCK/πd2又C=D m/d=90/10=9K=(4C-1)/(4C-4)+0.615/C=(4⨯10-1)/(4⨯10-4)+0.615/10≈1.16 则τ=8PCK/πd2=8⨯3925⨯9⨯1.16/[3.14⨯(10/1000)2]≈879Mpa<[τ]=1000Mpa 式中K---曲度系数C---弹簧指数3.2 后悬架弹簧(1)弹簧中经、钢丝直径、及结构形式定弹簧中经D m=100mm 钢丝直径d=11mm结构形式:端部并紧、不磨平、支撑圈为1圈所选用的材料为硅锰弹簧钢,查《机械设计手册》得[σ]=1600MpaG=80Gpa则[τ]=0.625[σ]=0.625*1600=1000Mpa(2)弹簧圈数由前知f c2=0.147m单侧螺旋弹簧所受轴向载荷P为P=m⨯cosα=364⨯cos5°⨯9.8 =3553N其中m----前悬架单侧弹簧质量(364Kg)α-----前悬架减震器安装角(5°)螺旋弹簧在P下的变形f为f=f c/ cosα=0.147/ cos5°≈0.148螺旋弹簧的刚度C=P/f=3553/0.148≈24006N/m由C=P/f=Gd4 /8D m3i得弹簧工作圈数ii= Gd4 /8D m3C=8⨯1010⨯(10/1000)4/[8⨯(90/1000)3⨯24006]≈6.7 取i=7又弹簧总圈数n与有效圈数i关系为n=i+2则弹簧总圈数n=9(3)弹簧完全并紧时的高度弹簧总圈数n与有效圈数i以及弹簧完全并紧时的高度H s间的关系如下: H s≈1.01d(n-1)+2t=1.01⨯11⨯(9-1)+6≈94.88则H s+ f c+ f d=94.88+1148+80=3323mm则取弹簧的总高度H=323mm(4)应力校核所选螺旋弹簧的剪应力为:τ=8PCK/πd2又C=D m/d=100/11=9.09K=(4C-1)/(4C-4)+0.615/C=(4⨯10-1)/(4⨯10-4)+0.615/10≈1.16 则τ=8PCK/πd2=8⨯3553⨯10⨯1.16/[3.14⨯(11/1000)2]≈765Mpa<[τ]=1000Mpa 式中K---曲度系数C---弹簧指数第四章悬架导向机构的设计4.1 导向机构设计要求对前轮独立悬架导向机构的要求是:1.悬架上的载荷变化时,保证轮距变化不超过正负 4.0mm,轮距变化会引早期磨损。

相关文档
最新文档