基于Multisim 12.0仿真能电压放大10倍的运放电路应用
模电电路设计题及multisim仿真

电路设计一、设计I/V变换电路,实现2mA的电流信号转换为5V的电压信号。
1、电路图与仿真结果:如图一,2、电路说明:电路中使用了最简单常见的运放LM324系列,电路结构简单,可以广泛应用,如果对精度要求更高,可以选用精密运放,如OPA系列的运放。
电路原理简单,由理想运放的虚断特性,】广广2mA,由虚短特性u二u二0,所以u=-i X R=-5V,从而实现了将2mA的电流信号转换为5V NPof2的电压信号。
3、参数确定方法:根据u=-i X R,要求输入2m A的电流输出5V的电压,可以确定oi2R=2.5k0。
24、分析总结:由于输出电压仅与i和R有关,改变R电路就可以实现不同电流型号转化i22为要求的电压信号。
同时由于不同场合条件不同,对电路稳定性的要求不同,可以根据实际条件改变运放型号,使电路可以在更广泛的范围里应用。
二、设计精密放大电路,其放大倍数为100倍。
1、电路图与仿真结果:如图二、图三,2、电路说明:电路用OPA系列精密运放实现精密放大,仿真结果如图三,电路为两级放大电路,每级的放大倍数为10。
则经两级放大后放大100倍。
而如果仅用一个运放完成100倍放大,仿真结果如图四,从示波器读数上可以看出放大结果为:A =982.55=98.3并不精密,而两级放大,放大倍数为A =999.3=99.99,精密u 9.997u 9.994程度大大提高,因此选用两级放大电路。
电路图:图二3、参数确定方法:1、电路图与仿真结果:电路图:如图五,各放大电路的放大倍数分别为A 二1+R=10,R1u1RA 二1+負二10,所以只要 R5u2三、设计信号处理电路,完成如下运算Uo=2.5+u : i仿真结图图四仿真结果:如图六,图六其中通过信号源输入一个峰值为I V,频率为1k Hz正弦波,示波器的通道A 接信号源,通道B接信号处理电路输出端。
示波器上的输出波形如图,根据从读数上可以看出,输出电压U 的最大值与最小值分别为3.499V 和1.502V ,满足o设计要求:u =2.5+u 。
放大电路multisim实验报告

放大电路multisim实验报告1. 实验目的通过实验,熟悉和掌握放大电路的基本原理和放大倍数的计算方法。
2. 实验原理放大电路是指用于增大输入信号的电压、电流或功率的电路。
常用的放大电路有共射放大电路、共集放大电路和共基放大电路等。
本实验以共射放大电路为例进行研究。
共射放大电路是一种常见的放大电路,其特点是输入信号加在基极上,输出信号从集电极取出。
放大电路的放大倍数可通过直流负载线和交流负载线的交点来确定。
3. 实验器材和仪器- Multisim电路仿真软件- 电脑4. 实验步骤4.1 搭建电路在Multisim电路仿真软件中,选择适当的元件并搭建共射放大电路。
4.2 设置输入信号为电路添加一个函数信号发生器,设置输入信号的振幅和频率。
4.3 测量输出信号连接示波器,测量输出信号的波形。
4.4 计算放大倍数根据示波器上的波形,测量输入信号和输出信号的幅值,然后计算放大倍数。
5. 实验结果将示波器上测得的信号波形截图作为实验结果。
6. 实验讨论分析实验结果,讨论放大倍数是否符合预期,有无改进的空间。
7. 实验结论通过实验,我们成功搭建了共射放大电路,并计算出放大倍数。
实验结果和预期的结果相符。
通过这次实验,我们对放大电路的原理和计算方法有了更深入的了解。
8. 实验总结本次实验通过Multisim电路仿真软件,从搭建电路到测量输出信号,并计算出放大倍数。
实验过程中我们掌握了放大电路的基本原理和计算方法。
通过实验,我们发现实际电路中可能存在误差,因此在实际应用中应对放大电路进行优化和调整,以获得理想的放大效果。
基于Mulitisim的集成运算放大器应用电路仿真

电子课程实验报告题目:基于Mulitisim的集成运算放大器应用电路仿真设计目的1、集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。
2、本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PC板图形式。
二、电路的理论知识1.反相放大器图1中所示的电路是最常见的运放电路,它显示出了如何在牺牲增益的条件下获得稳定,线性的放大器。
标号为R f的反馈电阻用于将输出信号反馈作用于输入端,反馈电阻连接到负输入端表示电路为负反馈连接。
输入电压V1通过输入电阻R1产生了一个输入电路i1。
电压差△V加载在+、—输入端之间,放大器的正输入端接地。
图1利用回路公式计算传输特性:输入回路:V R i V ∆+=111 (2)反馈回路:V R i V f f out ∆+-= (3)求和节点in f i i i +-=1 (4)增益公式:V A V out ∆•-= (5)由以上4个式子可以得到输出:Z R V Z i V in out /)/(/11-= (6)式中,闭环阻抗Z=1/R f +1/AR f +1/R f 。
反馈电阻和输入电阻通常都较大)(Ωk 级,并且A 很大(大于100000),因此Z=1/R f 。
更进一步,△V 通常很小(几微伏)且放大器的输入阻抗Z in 很大(大约ΩM 10),那么输入输入电流(I in =△V/Z in )非常小,可以认为为零。
则传输曲线变为:111)()/(V G V R R V f out -=-= (7)式中,R f /R 1的比值称为闭环增益G ,负号表示输出反向。
闭环增益可以通过选择两个电阻R f 和R 1来设定。
基于Multisim的集成运放应用电路仿真分析

www�ele169�com | 75电子基础集成运算放大器简称集成运放,是集成电路中应用极为广泛的一种。
由于这种放大器早期是在模拟计算机中实现数学运算,故名运算放大器。
现在它的应用已远远超出了模拟计算的范畴,在信号处理、在信号运算以及在振荡电路中都得到了十分广泛的应用。
无论对于哪种应用电路,用传统方法精确分析都是十分困难的,而用Multisim 软件则可灵活方便的进行仿真分析。
下面用Multisim 仿真软件对由集成运放构成的应用电路进行仿真分析。
1 RC 正弦波振荡电路图1是RC 正弦波振荡电路,当接通振荡电路的电源时,在电路中会激起一个微小的扰动信号,这是起始信号。
它是个非正弦信号,含有一系列频率不同的正弦分量,为了得到单一频率的正弦输出信号,电路中必须有选频环节;为了让它幅值增大,振荡电路中必须有放大和正反馈环节;为了不让它无限增长而逐渐趋于稳定,电路中还必须有稳幅环节。
因此,正弦波振荡电路需包含放大、正反馈、选频和稳幅四个主要部分。
从1u >F A 到1u =F A ,这就是自激振荡的建立过程。
欲使振荡电路能自行建立振荡,就必须使电路满足1u >F A 的条件。
这样,在接通电源后,振荡电路才有可能自行起振,并经过稳幅最后趋于稳定持续振荡状态。
稳幅环节利用前面学过的二极管,如果振幅相对较小时,说明两个二极管都处在截止状态,此时二极管将会呈现出非常大的电阻,电路起振后,由于正反馈的作用,增幅振荡便开始在电路中产生,随着振荡幅度的逐步增加,二极管流过的电流也会随之增加,当二极管逐渐开始导通之后,等效电阻也会逐渐减少,那么A 也会跟着自动减少,从而生产自动稳幅的效果。
输出正弦波形如图2所示。
当电阻1122 3.2R R k ==Ω,1122100C C nF ==时,根据公式12f RCπ=,理论计算值498f Hz =,实测频率483f Hz =,分析产生误差的原因,在计算中 3.14π=,搭建实际电路时,选取的电阻也存在误差。
四 Multisim仿真实例

R0kΩ
Rc2 10kΩ
T1
T2
Rb2 1kΩ
Io
190μA
T3
Rc3 5kΩ
图 7-1
+15V
T4 VO
Re4 -15V
例 2 电路如图 7-2 所示。求电路的闭环电压增益 Avf、输入电阻 Rif ,并与 手算闭环电压增益结果比较。
(仿真文档在光盘“feedback/ 2”文件夹中。)
例 3 电路如图 4-1(a)所示。设 BJT 的型号为 2N3904,β=50,rbb′=100Ω,
4
其他参数与例 1 相同。试分析 Ce 在 1μF 到 100μF 之间变化时,下限频率 fL 的变 化范围(Ce 为与 Re 并联的电容)。
(仿真文档在光盘“BJT/3”文件夹中。)
五、差分式放大电路仿真实例
IR
R
IO(IL)
+
+ VR −
IZ
+
VI
DZ
VO
RL
−
−
图 2-3
三、MOSFET 放大电路仿真实例
例 1 电路如图 3-1 所示。设 NMOS 管 T 的参数为 VT = 0.8V,Kn = 1mA/V2。 电路其他参数为 V DD= V SS= 5V,I = 0.5mA,R d = 7kΩ,R g = 200kΩ,Cs = 47μF, 输入信号采用振幅为 10mV,频率为 1kHz 的正弦波。试画出输出电压的波形。
(仿真文档在光盘“actual op-amp/1”文件夹中。)
+VCC
vi
R1
R
-
Rf
C1
vp
A +
R
C2
基于Multisim的集成运算放大器的应用_王建国

来稿日期:2015 10 21 基金项目:河北省科技厅项目(14277778D) 作者简介:王建国(1972-),男,河北赤城人,张家口学院教授。
基于Multisim的集成运算放大器的应用王建国1,薛昭星2(1.张家口学院,河北张家口075000;2.河南理工大学电气学院,河南焦作454000) 摘要:Multisim电路仿真软件仪器丰富、器件齐全,利用Multisim仿真软件,对集成运算放大器构成的多种模拟运算电路进行仿真,研究其如何实现信号的比例、加法、减法和积分运算,仿真结果与理论分析计算相一致。
应用仿真系统,可以改革传统实验设计模式,提高效率,启发和拓宽实验人员及设计开发者的思路。
关键词:Multisim;运算放大电路;虚拟仿真中图分类号:F 721.7 文献标识码:A DOI:10.3969/j.issn.1673-1492.2016.01.002Applications of Integrated Operational Amplifier Based on MultisimWANG Jian-guo1,XUE Zhao-xing2(1.Zhangjiakou University,Zhangjiakou,Hebei 075000,China;2.School of Electrical Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)Abstract:Multisim simulation software is rich in electrical apparatus and electronic components.Byusing Multisim simulation software,some operational circuits such as proportion,addition,subtractionand infinitesimal calculus of signal were simulated.The simulation results were consistent with the theo-retical analysis.The application of the simulation system can reform the traditional experimental designmode,improve efficiency,inspire and broaden the ideas of the experimental persons and design developers.Key words:Multisim;operational amplifier;virtual simulation 集成运算放大器是一种具有高电压放大倍数的直接耦合放大电路,当外部接入不同的线性与非线性元件,组成不同反馈电路时,电路可灵活地实现输出电压与输入电压之间的各种特定的函数关系[1]。
multisim放大电路设计

multisim放大电路设计
在 Multisim 中设计放大电路可以通过以下步骤实现:
1. 打开 Multisim 软件并创建一个新的电路设计文件。
2. 在元件库中选择放大器元件,例如通用运算放大器(Operational Amplifier)。
3. 将所选的运算放大器放置在电路设计区域中。
你可以使用拖放功能将其移动到合适的位置。
4. 连接放大器的输入和输出引脚。
根据你的设计需求,将输入信号源连接到放大器的输入引脚,将负载(例如电阻或电容)连接到放大器的输出引脚。
5. 设置放大器的增益。
在放大器的属性对话框中,可以设置增益值。
根据你的需求,选择合适的增益倍数。
6. 添加其他元件(如果需要)。
根据你的设计要求,可能需要添加其他元件,如电阻、电容、电源等,以实现所需的放大电路功能。
7. 连接电路的电源。
根据你的设计,连接适当的电源到电路中的元件。
8. 进行仿真。
在 Multisim 中,你可以运行仿真来测试放大电路的性能。
通过观察输入和输出信号的波形,可以评估电路的放大效果。
9. 调整和优化。
根据仿真结果,你可以调整电路中的元件值或增益设置,以优化放大电路的性能。
10. 保存并导出设计。
完成设计后,保存电路文件,并根据需要导出为图像或其他格式。
以上是在 Multisim 中设计放大电路的基本步骤。
具体的设计过程可能因具体需求和电路要求而有所不同。
你可以根据自己的设计目标进行相应的调整和优化。
MULTISIM仿真运放放大电路

MULTISIM仿真运放放大电路
一、3554BM参数:
VCC=18,VEE=-18,开环电压增益A=100000,
Ri=1e×10^+11Ω,Ro=20Ω。
在MULTISIM里,3554BM工作区只有线性区,而没有非线性区,电压放大无极限。
*只有线性区,无非线性区电路仿真如下:
直流扫描,v1参数变化范围0~5,则|V+ - V-|变化范围也是0~5。
仿真结果如下:
输出电压V2变化范围0~500000V。
很明显此放大器没有限幅。
二、同相放大电路仿真
multisim设计电路图:
输入电压v3=0.5v,闭环电压增益Au=1+R1/R2=100
仿真结果如下:
仿真结果显示:54.97V。
三、反相放大电路仿真
multisim设计电路图:
输入电压v3=0.5v,闭环电压增益Au=-R1/R2=50,仿真结果精确值应是25V。
由上图仿真结果可以看出,输出电压为-24.975v -25v。
四、求和电路
计算结果:输出电压V=-R1/R3×V2-R1/R2×V1=-7.5V, 由图知仿真结果:输出电压V=-7.497V。
五、电压跟随器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运放电路——电压放大10倍运放电路的应用
(用到一个“减法运算电路”和一个“同相比例运算器”)
这里以具体事例加以说明:
1.题目要求:要求在运放电路的在同相端输入端输入3V,在反相输入端输入
2.5V,最终,输出结果为0.5V,接着再通过运放电路将0.5V扩大10倍后输
出。
2.解题思路:既然放大器同相端、反相端都需要有输入值,且输出值变小,那
么会想到减法运算电路;接着又要将得到的值放大10倍进行输出,说明就要用到比例运算器,这里使用的是同相比例运算器。
3.验证仿真:这里使用LM324N芯片、Multisim 12.0软件进行画图与仿真验证
4.减法运算电路
原理图(如图1):
图1
仿真图(如图2):
图2
说明:R1=R2=R3=RF=10K
注意:注意:Ui输入端一定要选择直流DC_POWER模式,不能选VCC,这里对VCC 端的电压值要求不严格。
5.同相比例运算器
原理图(如图3):
图3
仿真图(如图4):
图4
说明:这里根据公式U0=(1+RF/R1)*Ui,在Ui一定的情况下,只需要满足RF/R1=9即可,所以,这里令RF=9K,R1=1K。
注意:LM324N供电电源不一样,测得的值也不一样,如VCC接5V,测得值为3.566V;接12V测得值为6.002V,Ui输入一定要选择直流DC_POWER模式,不能选VCC,一般情况下VCC所接电压要大于放大后的输出端电压U0的值
6.最终的电路及其仿真图(如图5所示):
图5
注意:LM324N供电电源不一样,测得的值也不一样,如VCC接5V,测得值为3.566V;接12V测得值为5.041V(上图标错了),Ui输入一定要选择直流DC_POWER 模式,不能选VCC,一般情况下VCC所接电压要大于放大后的输出端电压U0的值。
六号跑道
2015-7-20。