Multisim模拟电路仿真实例

合集下载

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

(a )
( b)
(c )
图 19.17 去掉 RE1 将 RE2 改为 1. 2kΩ输出电压幅频特性
(a)
(b)
图 19.18 “加压求流法”测输入电阻
输出电压和输入电压反相(如图 19.17(a) ), 测得的电压放大倍数 AU=-94.8454/1 = - 94.8454 上限截止频率为 fL=117.4096Hz, 下限截止频率为 fH=16.9446MHz,带宽Δf=fH - fL =16.9445MHz 如图 19.18 所示,计算得输入电阻 ri = 707.106/377.948k Ω=1.8709 kΩ 列表如下: 电压放大倍 数 AU 有 RE1 去掉 RE1 -13.8449 -94.8452 上限截止频 率 fL/Hz 17.6833 117.4096 下限截止频 率 fH/MHz 18.1202 16.9446 通带带宽Δ f /M Hz 18.120 16.9445 输入电阻 ri/ k Ω 6.7859 1.8709
图 19.20 “交流分析”测通带电压放大倍数和截止频率
通带电压放大倍数为 AU=0.9976829,截止频率 f=102.3791Hz 两种测量方法获得的数据与理论值比较如下表: 通带电压放大倍数 AU 理论值 波特图示仪法 交流分析法 1 0.9974322 0.9976829 截止频率 f/Hz 102.4312 101.952 102.3791
(a)
( b)
图 19.6 文氏桥电路和文氏桥正弦波发生器电路图
4.实验数据分析和总结
实验 19-1 基本单管放大电路的仿真研究
(2) “直流工作点分析” 测量静态工作点如图 19.7,其中 IC= I(RC) = 0.9863mA,UCE = V(4)-V(3) = 7.54514V。Ibe=300 Ω+(1+60)×

multisim电路仿真图

multisim电路仿真图

一.直流叠加定理仿真图1.1图1.2图1.3结果分析:从上面仿真结果可以看出,V1和I1共同作用时R3两端的电压为36.666V;V1和I1单独工作时R3两端的电压分别为3.333V和33.333V,这两个数值之和等于前者,符合叠加定理。

二.戴维南定理仿真戴维南定理是指一个具有直流源的线性电路,不管它如何复杂,都可以用一个电压源UTH与电阻RTH串联的简单电路来代替,就它们的性能而言,两者是相同的。

图2.1如上图2.1电路所示,可以看出在XMM1和XMM2的两个万用表的面板上显示出电流和电压值为:IRL=16.667mA,URL=3.333V。

图2.2如上图2.2所示电路中断开负载R4,用电压档测量原来R4两端的电压,记该电压为UTH,从万用表的面板上显示出来的电压为UTH=6V。

图2.3在图2.2所测量的基础之上,将直流电源V1用导线替换掉,测量R4两端的的电阻,将其记为RTH,测量结果为RTH=160Ω。

图2.4在R4和RTH 之间串联一个万用表,在R4上并接一个万用表,这时可以读出XMM1和XMM2上读数分别为:IRL1=16.667mA ,URL1=3.333V 。

结果分析:从图2.1的测试结果和图2.4的测试结果可以看出两组的数据基本一样,从而验证了戴维南定理。

三.动态电路的仿真1、一阶动态电路:V1 1 VR110kΩC110uF12图3.12、二阶动态电路分析:图3.2 2、二阶动态电路:V110 VC11uFR12kΩL11H123图3.3一阶动态电路中V2随时间的变化可以看出,在0~500ms之间随时间的增大而非线性增大,大于500ms后趋于稳定。

图3.4当R1电位器阻值分别为500Ω,2000Ω,4700Ω时,输出瞬态波形的变化如上图所示。

四.交流波形叠加仿真图4.1图4.2结果分析:在信号分析中,一个周期的波形只要满足狄利克雷条件,该波形就可以分解为傅里叶级数。

图4.1为波形叠加仿真电路,将1kHz 15V,3kHz 5V和5kHz 3V的3路正弦信号通过电阻网络予以叠加,从图4.2可以看出示波器D通道的波形正好是示波器A,B,C通道波形的叠加,满足交流波形叠加。

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验1.实验目的用Multisim 的仿真软件对数字电路进行仿真研究。

2.实验内容实验19.1 交通灯报警电路仿真交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。

出故障时报警灯亮。

设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。

字母Z 表示报警灯,高电平表示报警。

则真值表如表 19.1所示。

逻辑表达式为:RY RG G Y R Z ++=若用与非门实现,则表达式可化为:RY RG G Y R Z ⋅⋅= Multisim 仿真设计图如图19.1所示:图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。

用发光二极管LED1的亮暗模拟报警灯的亮暗。

另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500表19.1LED_redLED1图19.1欧姆电阻。

在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。

实验19.2数字频率计电路仿真数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。

如果用2位数码管,则测量的最大频率是99Hz。

数字频率计电路Multisim仿真设计图如图19.2所示。

其电路结构是:用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。

四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。

信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。

multisim仿真教程 案例模拟

multisim仿真教程 案例模拟

III 增加接地
图6 电路组件就位
8. 要添加的最后一个组件是接地。 您无法在没有接地的情况下对电路进行仿 真,因为SPICE(基础仿真引擎)使用节点分析来求解电路。 节点分析的第一 步是选择一个接地节点。 电路在何处接地无关紧要,但是为了保持一致性,让 我们选择电路底部的节点作为接地。
9.
单击电源组件菜单中的接地工具。将地拖到电路的底部,结果显示在下图中
图26 模拟结果
MultiSim的最强大功能之一就是其交互性。 通过按“ A”或Shift + A来更改电 位计的电阻,并注意万用表读数如何变化(您可能需要等待几秒钟,万用表 才能记录该变化)。 始终将电位计电阻更改为1kΩ(100%)。 输出电压是 多少? 这是否符合您的直觉? 提示:考虑当R1 = R2时分压器公式会发生什 么。
MultiSim 教程
1. 引言 蜂窝电话和计算机只能算是当今复杂电子系统的两个典型示例。这种设备通常包含 了数百万个电路组件,普通的重复试验并不能保证最终产品的有效性。所以,设计 人员在制造之前经常需要使用电路模拟器来验证电路的性能。 目前常用的组件级电路仿真器称为SPICE(带有集成电路重点的仿真程序),它是 在1970年代由佩德森教授在加利福尼亚大学伯克利分校开发的。市场上有许多不 同版本的SPICE,它们的主要区别在于用户界面,但内部结构与早期的 Berkeley SPICE没有太大区别。 本教程主要介绍SPICE的0XOWL6LP版本。 用MultiSim模拟电路主要涉及两个步骤:
8. 使用面包板工具
如果您在实验室中将电路图映射到无焊面包板时遇到麻烦,则本节适合您。 面包 板工具使您可以看到自己的电路,就像在实验室中实际构建电路一样。 对于大型 电路(例如您的项目),此工具非常有用,因为它可以帮助您在实际构建电路之前 规划组件的有组织的布局。 但是,与使用MultiSim的仿真仪器类似,此过程往往很 耗时。 因此,一旦您熟悉了原理图,就应该放弃使用模拟面包板工具。

Multisim模拟电路仿真实例

Multisim模拟电路仿真实例
同时R3还将Vo反馈到运放U1的同相输入端,作为滞回比较器的 输入, 构成闭环。
滞回比较器
UREF 为参考电压;输 出电压 uO 为 +UZ 或 -UZ;uI 为输入电压。
当 u+ = u- 时,输出电压 的状态发生跳变。
u
RF R2 RF
U REF
R2 R2 RF
uO
UT-
比较器有两个不同的门限电平,
故传输特性呈滞回形状。
uO
+UZ
UT+
O
uI
-UZ
若 uO = UZ ,当 uI 逐渐增大时,使 uO 由 +UZ 跳变为
-UZ 所需的门限电平 UT+
UT
Байду номын сангаас
RF R2 RF
U REF
R2 R2 RF
UZ
若 uO= UZ ,当 uI 逐渐减小时,使 uO 由 UZ 跳变 为 UZ 所需的门限电平 UT
图5-25 乙类互补对称功放电路
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
当输入信号较小时,达不到三极 管的开启电压,三极管不导电。
因此在正、负半周交替过零处会出 现非线性失真,即交越失真。
输入波形
输出波形
其失真范围如何呢? 下面进行直流扫描分析,以便确定其交越失真的范围。
图5-24 波特图仪显示结果
若将信号源的频率分别修改为200Hz 和1MHz ,再次启动仿真,其输出电 压有何变化?
200Hz
1KHz
适当修改参数R1、R2、R3、R4和C1、C2,观察通带电压放大倍数和通带
截止频率的变化?
增如大果RR11输太出大波, 形输幅出度会增?大

模拟电子电路multisim仿真实例大全

模拟电子电路multisim仿真实例大全

模拟电子电路multisim仿真1.1 晶体管基本放大电路1.1.1 共射极基本放大电路按下图搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。

1. 静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。

2. 动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。

由波形图可观察到电路的输入,输出电压信号反相位关系。

再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。

3. 参数扫描分析在上图所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC 的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。

选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100k,终值为900k,扫描方式为线性,步长增量为400k,输出节点5,扫描用于暂态分析。

4.频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。

由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。

Multisim模拟电路仿真实例

Multisim模拟电路仿真实例

二、 RC - 型滤波电路
输出直流电压为:
U O(AV)

RL R RL
UO (AV)
脉动系数 S 约为:
S
1
S
C2 (R // RL )
适用于负载电流较小的场合。
三、电感滤波电路和 LC 滤波电路
一、电感滤波器
二、LC 滤波器
图 10.3.5
适用于负载电流比较 大的场合。
图 10.3.6
图5-2 瞬态分析结果
输出波形 已经失真
2)如何改善波形失真? ??
图5-3 加入反馈电阻R6
如何确定反馈电阻R6的阻值? 可对R6进行参数扫描分析
图5-4 参数扫描设置对话框
图5-5 参数扫描结果
比较输出波 形,选择 R6为400欧
R6=400
3)如何测试fL和fH?
加上电阻R6前后分别进行交流分析,测试节点为 2,其他设置默认,可分别得幅频和相频特性曲线如 图;
图5-30 例5.10输出波形
判断其最大电压输出范围:
Simulate/Analysis/DCSweep,直流扫描设置:设置Start value和Stop value 的值分别为-10V和10V,设置Increment为0.1V,在Output variables标签页, 选定节点5作为测试点,其他项默认。
输出直流电压为:
UO(AV) UO (AV) 0.9U 2
脉动系数 S :
S

1
2 LC
S
适用于各种场合。
5.1.5.4 串联型直流稳压电路
一、电路组成和工作原理
采样电路:R1、 R2、 R3 ; 基准电压:由 VDZ 提供; 稳压过程:

Multisim仿真实例电路

Multisim仿真实例电路

+ 3V -
4V I1
+
1
I2
I3
1 +
U3
- 5V 1
ቤተ መጻሕፍቲ ባይዱ
求:I1、I2 、I3、U3
h
7
2.2 仿真电路的创建
该电路需要调用电压源和电阻元件, 为了测量电流和电压,需要调用万用表。
+ 3V -
4V I1
+
1
I2
I3
1 +
U3
- 5V 1
h
8
2.2 仿真电路的创建
1.添加元件
1)点击用户界面中元件库的电源库按钮 , 或者选择菜单栏的Place/ComPonent,将会出现
保存的路径
默认的电路保存的路径是:
C:\Documents and Settings\Administrator\My
Documents\National Instruments\Circuit Design Suite
10.0\
h
2
2.1 设置Multisim10的界面
设定元器件的 放置方式:连 续/单个。选择 连续放置模式。
了测试仪器,部分连线需要重新连接。
也可以添加好元件之后,同时将需要的测试仪器一 同添加,统一连线。
h
23
5.添加测试仪器
连接好的电路如图所示:
注意:
连接好的电路中,如果元件位置不合适,可以用
鼠标选中元件,然后用上下左右键移动,或者直接用左键
拖移调整元件位置。
h
24
5.添加测试仪器
设置测试仪器参数
设定符号标准:美国标 准(ANSI)和欧洲标准 (DIN)。我国的元件符 号与DIN模式相同
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果将电阻R3换成一个变阻器,则可调整其周期!
第4章 Multisim8应用实例
矩形波发生电路仿真分析举例
第4章 Multisim8应用实例
三角波发生电路仿真分析举例
第4章 Multisim8应用实例
仿真分析结果
第4章 Multisim8应用实例
例5.8 设计一个通带截止频率为100Hz的二阶低通有源滤 波电路。
例5.6 如图5-17,是一个方波和锯齿波产生电路。 测试其周期,如果使其周期可调,该如何处理?
图5-17 例5.6电路原理图
第4章 Multisim8应用实例
分析:
在该电路中,运放U1和电阻R1、R3、R5等构成了一 个滞回比较器;
其中R3、R5将Vo1反馈到运放U1的同相输入端,与 零电位比较,实现状态的转换。
第4章 Multisim8应用实例
图5-13 例5.4电路原理图
由电路可估算:
第4章 Multisim8应用实例
通过瞬态分析仿真,得到输出波形如图5-14所示。通过 测试可以发现Vo=0.2Vi。
输出波形
图5-14 例5.4仿真结果
第4章 Multisim8应用实例
5.1.3 信号产生和处理电路分析
理论分析: 仿真分析:
V0
R2 R1
(V
2
V 1)
2k 1k
(1.5
0.5)
2.0
输出波形, 幅值为2V
第4章 Multisim8应用实例
5.1.2 模拟信号运算电路分析
例5.4 用集成运放设计一个实现Vo=0.2Vi的电路。
分析:按照设计要求, Vo=0.2Vi,因此可采用两级反 相比例运放电路, 第一级实现Auf1=-0.2, 第二级实现Auf2=-1, 从而实现Auf=0.2。设计电路如图5-13所示。
仿真分析
仍然观察其输出波形,并判断其最大电压输出范围。
观察输出波形,如图所示, 可以发现已经没有交越失真
图5-30 例5.10输出波形
第4章 Multisim8应用实例
判断其最大电压输出范围:
Simulate/Analysis/DCSweep,直流扫描设置:设置Start value和Stop value 的值分别为-10V和10V,设置Increment为0.1V,在Output variables标签页, 选定节点5作为测试点,其他项默认。
为使输出功率大, 功率放大器采用的三极管均应工作在大信号状 态下。由于三极管是非线性器件, 在大信号工作状态下, 器件本身 的非线性问题十分突出, 因此, 输出信号不可避免地会产生一定的 非线性失真。
第4章 Multisim8应用实例
功率放大电路有三种工作状态 iC
(1) 甲类工作状态
iC Q
静态工作点 Q 大致在负载
uO
UT-
比较器有两个不同的门限电平,
故传输特性呈滞回形状。
uO
+UZ
UT+
O
uI
-UZ
第4章 Multisim8应用实例
若 uO = UZ ,当 uI 逐渐增大时,使 uO 由 +UZ 跳变
为 -UZ 所需的门限电平 UT+
UT
RF R2 RF
U REF
R2 R2 RF
UZ
若 uO= UZ ,当 uI 逐渐减小时,使 uO 由 UZ 跳 变为 UZ 所需的门限电平 UT
线的中点。三极管的工作角度
为360度。
O
tO
uCE
(1) 甲类工作状态
这种工作状态下,放大电路的最高效率为 50%。
第4章 Multisim8应用实例
(2) 甲乙类工作状态
iC
静态工作点 Q 沿负载
线下移,静态管耗减小,
但产生了失真。三极管的
导通角度大于180度小于
360度。 iC
iC
ቤተ መጻሕፍቲ ባይዱ
O
iC tO
第4章 Multisim8应用实例 图5-5 参数扫描结果
比较输出波 形,选择 R6为400欧
R6=400
第4章 Multisim8应用实例
3)如何测试fL和fH?
加上电阻R6前后分别进行交流分析,测试节点为 2,其他设置默认,可分别得幅频和相频特性曲线如 图;
可对比加电阻R6前后的幅频和相频特性曲线,看 出其通频带的变化;
第4章 Multisim8应用实例
二、Multisim11 应用实例
1 在模拟电子技术中的应用 2 在数字电子技术中的应用
第4章 Multisim8应用实例
5.1 在模拟电子技术中的应用
5.1.1 放大电路设计与分析 例5.1 共射晶体管放大电路,如图5-1所示,要求: 1)判断输出波形是否失真? 2)如何改善波形失真? 3)测试其fL和fH。
第4章 Multisim8应用实例
可以发现其失真范围为 -775.0000mV~666.6667mV。
图5-27 例5.9直流扫描分析结果
第4章 Multisim8应用实例
如何判断其最大电压输出范围? 打开直流扫描分析设置窗口,设置其Start value和 Stop value的值分别为-20V和20V,然后进行直流扫描 分析,结果如图5-28所示;
通过对Vo1的积分运算,输出三角波。 其周期T为:T=4R1*R3*C/R4=0.4ms
改变它,可调整输出 信号频率
第4章 Multisim8应用实例
仿真分析:检查电路无误后,启动仿真,双击示波器,
打开其显示窗口。结果如图5-18所示。
输出波形 测得周期为
4ms
图5-18 例5.6结果(左图为Vo1,右图为Vo)
Q uCE
(2) 甲乙类工作状态
Q
(3) 乙类工作状态
O
tO
(3) 乙类工作状态
uCE
静态工作点下移到
IC 0 处 ,管耗更小, 但输出波形只剩半波了。
第4章 Multisim8应用实例
功放电路仿真分析
例5.9 乙类互补对称功放电路如图5-25所示。要求观 察其输出波形,并判断其最大电压输出范围。
其失真范围如何呢? 下面进行直流扫描分析,以便确定其交越失真的范围。 直流扫描分析: Simulate/Analysis/DC Sweep
设置StartValue和Stop value的值分别为-5V和5V 设置Increment为0.1V 在Output variables标签中,选定节点1作为测试节 点,其他项默认。
其最大电压输出范围为 -11.5000V~12.5000V。
图5-28 例5.9最大输出电压测试结果
第4章 Multisim8应用实例
例5.10 针对上例中乙类互补对称功放电路的交越失 真问题,如何对电路进行改进?
电路原理分析
图5-29改进后的电路 甲乙类互补对称功放电路
第4章 Multisim8应用实例
第4章 Multisim8应用实例
进行交流频率分析
图5-10 例5.2交流频率分析
可得其fL的值约为13Hz、fH的值约为19KHz
第4章 Multisim8应用实例
例5.3 如图5.11是一个运放构成的差动放大器,分析其功能。
图5-11 例5.3差动放大电路
第4章 Multisim8应用实例
UT
RF R2 RF
U REF
R2 R2 RF
UZ
回差(门限宽度)UT :
UT
UT
UT
2R2 R2 RF
U
Z
第4章 Multisim8应用实例
作用:产生矩形波、三角波和锯齿波,或用于波形 变换。抗干扰能力强。
第4章 Multisim8应用实例
分析:运放U2和电阻R4、电容C1等构成反相积分电路,
输入电阻Ri=20k
第4章 Multisim8应用实例
通频带△f=fH-fL,设其中:fL≤20Hz,fH≥10kHz 据此可估算出电路中C1、C2、C3的取值
取标称值,C1=C2=1 、C3=5.7
第4章 Multisim8应用实例
启动仿真:得输入输出的信号,可估算出放大倍数约为1000倍
图5-9 例5.2示波器窗口
工作原理?
图5-25 乙类互补对称功放电路
第4章 Multisim8应用实例
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
输入波形
输出波形
当输入信号较小时,达 不到三极管的开启电压,三 极管不导电。
因此在正、负半周交替 过零处会出现非线性失真, 即交越失真。
第4章 Multisim8应用实例
同时R3还将Vo反馈到运放U1的同相输入端,作为滞 回比较器的 输入,构成闭环。
第4章 Multisim8应用实例
滞回比较器
UREF 为参考电压; 输出电压 uO 为 +UZ 或 -UZ;uI 为输入电压。
当 u+ = u- 时,输出电压 的状态发生跳变。
u
RF R2 RF
U REF
R2 R2 RF
图5-24 波特图仪显示结果
第4章 Multisim8应用实例
若将信号源的频率分别修改为200Hz 和1MHz ,再次 启动仿真,其输出电压有何变化?
200Hz
1KHz
第4章 Multisim8应用实例
适当修改参数R1、R2、R3、R4和C1、C2,观察通带电
压放大倍数和通带截止频率的变化?
增如大果RR11输太出大波, 形输幅出度会增?大
其最大电压输出范围为 -5V~+5V。
第4章 Multisim8应用实例
5.1.5 直流电源分析
5.1.5.1 直流电源的组成
电网 电压
电源 变压器
相关文档
最新文档