正多边形和圆、弧长公式及有关计算

合集下载

圆的弧长及面积计算

圆的弧长及面积计算
弧形面积的计算通常可以通过扇形面积公式来实现。在半径为r的圆中,若圆心角为n°,则所对应的扇形面积S可以通过公式S=nπr²/360来计算。此外,如果已知弧长l,那么扇形面积S也可以表示为S=1/2lr。这些公式提供了计算弧形面积的基础,其中π代表圆周率,r代表半径,n代表圆心角的角度数,l代表弧长。通过这些公式,我们可以根据已知条件灵活选择适合的计算方法,从而求出弧形面积。需情况进行必要的单位换算。扇形面积公式的应用不仅限于纯数学计算,还广泛应用于工程、物理、经济等多个领域,是解决实际问题的有力工具。

正多边形和圆、弧长公式及有关计算

正多边形和圆、弧长公式及有关计算

【本讲教育信息】一. 教学内容:正多边形和圆、弧长公式及有关计算[学习目标]1. 正多边形的有关概念;正多边形、正多边形的中心、半径、边心距、中心角。

正n边形的半径,边心距把正n边形分成2n个全等的直角三角形。

2. 正多边形和圆的关系定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆,因此可采用作辅助圆的办法,解决一些问题。

3. 边数相同的正多边形是相似多边形,具有以下性质:(1)半径(或边心距)的比等于相似比。

(2)面积的比等于边心距(或半径)的比的平方,即相似比的平方。

4. 由于正n边形的n个顶点n等分它的外接圆,因此画正n边形实际就是等分圆周。

(1)画正n边形的步骤:将一个圆n等分,顺次连接各分点。

(2)用量角器等分圆先用量角器画一个等于360︒n的圆心角,这个角所对的弧就是圆的1n,然后在圆上依次截取这条弧的等弧,就得到圆的n等分点,连结各分点即得此圆的内接正n边形。

5. 对于一些特殊的正n边形,如正四边形、正八边形、正六边形、正三角形、正十二边形还可以用尺规作图。

6. 圆周长公式:C R=2π,其中C为圆周长,R为圆的半径,把圆周长与直径的比值π叫做圆周率。

7. n°的圆心角所对的弧的弧长:ln R =π180n表示1°的圆心角的度数,不带单位。

8. 正n边形的每个内角都等于()nn-︒2180,每个外角为360︒n,等于中心角。

二. 重点、难点:1. 学习重点:正多边形和圆关系,弧长公式及应用。

正多边形的计算可转化为解直角三角形的问题。

只有正五边形、正四边形对角线相等。

2. 学习难点:解决有关正多边形和圆的计算,应用弧长公式。

【典型例题】例1. 正六边形两条对边之间的距离是2,则它的边长是()A.33 B.233 C.23 D.223解:如图所示,BF=2,过点A作AG⊥BF于G,则FG=1D又∵∠FAG =60°∴=∠==AF FG FAG sin 132233故选B点拨:正六边形是正多边形中最重要的多边形,要注意正六边形的一些特殊性质。

数学公式:圆与弧的公式

数学公式:圆与弧的公式

数学公式:圆与弧的公式
要想能在综合性较强的题目中能灵活应用数学公式,就必须要熟记啦,下面由本店铺为大家介绍数学公式:圆与弧的公式,欢迎阅读。

数学公式:圆与弧的公式
正n边形的每个内角都等于(n-2)X180°/n
弧长计算公式:L=n兀R/180
扇形面积公式:S扇形=n兀R^2/360=LR/2
内公切线长=d-(R-r)外公切线长=d-(R+r)
①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(R>r)⑤两圆内含dr)
定理相交两圆的连心线垂直平分两圆的公共弦
定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此kX(n-2)180°/n=360°化为(n-2)(k-2)=4
弧长计算公式:L=n兀R/180
扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)
外公切线长=d-(R+r)
本店铺与大家分享数学公式:圆与弧的公式,数学公式目的是为了让同学们多了解数学,认识数学,希望大家在学习中得到提高。

正多边形与圆及弧长与扇形面积的计算【知识点清单】中考数学一轮复习精讲+热考题型(全国通用)

正多边形与圆及弧长与扇形面积的计算【知识点清单】中考数学一轮复习精讲+热考题型(全国通用)

B A O 专题27 正多边形与圆及弧长与扇形面积计算【知识要点】正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形。

正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。

正多边形的半径:正多边形外接圆的半径叫做正多边形的半径。

正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

【解题思路】1.正边形半径、边心距和12边长构成直角三角形。

2.已知其中两个值,第三个值可以借助勾股定理求解。

正多边形的对称性:1)正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

2)一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形.对称中心就是这个正多边的中心。

【小结】正n 变形的内角为(n−2)×180°n ,外角为3600n ,中心角为3600n 内角和为( n-2 )×180°。

【扩展】正多边形常见边心距与边长的比值第一种 正三角形 在⊙O 中△ABC 是正三角形,在Rt △BOD 中,OD:BD:OB=1: √3 : 2 (图一) 变式 正三角形内切圆与外切圆半径比为1:2 (图二)第二种 正方形 在⊙O 中四边形是正方形,在Rt △OAE 中,OE:AE:OE=1:1: √2 (图三) 变式 正方形内切圆与外切圆半径比为1: √2 (图四)第三种 正六变形 在⊙O 中六边形是正六边形,在Rt △OAB ,AB:OB:OA=1: √3 : 2 (图五)图一 图二 图三 图四 图五 设的半径为R ,圆心角所对弧长为l ,弧长公式:l=nπR180(弧长的长度和圆心角大小和半径的取值有关)扇形面积公式:圆锥的侧面积公式:122S l r rlππ==(其中l是圆锥的母线长,r是圆锥的底面半径)母线的概念:连接圆锥顶点和底面圆周任意一点的线段。

初中数学——正多边形

初中数学——正多边形

初中数学——正多边形
考点一、正多边形和圆
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

考点二、与正多边形有关的概念
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。

2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。

3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

考点三、正多边形的对称性
1、正多边形的轴对称性
正多边形都是轴对称图形。

一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。

考点四、弧长和扇形面积
1、弧长公式
n°的圆心角所对的弧长l 的计算公式为180
r
n l π=2、扇形面积公式
lR R n S 2
13602==π扇其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。

3、圆锥的侧面积
rl r l S ππ=∙=22
1其中l 是圆锥的母线长,r 是圆锥的地面半径。

专题11 正多边形以及与圆有关的计算

专题11 正多边形以及与圆有关的计算

专题11 与圆有关的计算一、正多边形和圆1. 正多边形的定义:各条边 ,并且各个 也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴ 正多边形的中心:正多边形的 的圆心叫做这个正多边形的中心.⑵ 正多边形的半径:正多边形外接圆的半径叫做正多边形的 .⑶ 正多边形的中心角:正多边形每一边所对的 叫做正多边形的中心角.⑷ 正多边形的边心距: 到正多边形的一边的距离叫做正多边形的边心距.3. 正多边形的性质:⑴正n 边形的半径和边心距把正n 边形分成2n 个 的直角三角形;⑵正多边形都是轴对称图形,正n 边形共有n 条通过正n 边形 的对称轴;⑶偶数条边的正多边形既是 图形,也是轴对称图形,其 就是对称中心.【例 1】⑴求正三角形的边心距、半径和高的比。

⑵若同一个圆的内接正三角形、正方形、正六边形的边心距分别为3r ,4r ,6r ,求346::r r r 。

边心距二、与圆有关的计算 1、弧长的计算如果弧长为 l ,圆心角度数为 n ,圆的半径为 r ,那么,弧长 l = 。

【推导】:【例 2】⑴将下表补充完整。

⑵【易错】若弦AB 将圆的周长分为1:5的两部分,则弦AB 所对的圆周角为 。

⑶图中有五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿1ADA 、12A EA 、23A FA 、3A GB 的路线爬行,乙虫沿ACB 路线爬行,则下列结论正确的是( )A. 甲先到B 点B. 乙先到B 点C. 甲、乙同时到B 点D. 无法确定⑷如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针A 3A 2A 1GFE D CBAB DOA2、扇形面积计算方法一:如果已知扇形圆心角为n,半径为r,那么扇形面积S=。

【推导】:方法二:如果已知扇形弧长为l ,半径为r,那么扇形面积S=。

【推导】【例 3】将下表补充完整。

人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。

正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算一、知识梳理: 1、正多边形和圆各边相等,各角也相等的多边形叫正多边形。

定理:把圆分成n (n >3)等分:(l )依次连结各分点所得的多边形是这个圆的内按正多边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形。

定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

正多边形的外接(或内切)圆的圆心叫正多边形的中心。

外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。

正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。

正n 边形的每个中心角等于n360正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

若n 为偶数,则正n 边形又是中心对称图形,它的中心就是对称中心。

边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。

2、正多边形的有关计算正n 边形的每个内角都等于nn180)2(-定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。

正多边形的有关计算都归结为解直角三角形的计算。

3、画正多边形(1)用量角器等分圆 (2)用尺规等分圆正三、正六、正八、正四及其倍数(正多边形)。

正五边形的近似作法(等分圆心角) 4、圆周长、弧长(1)圆周长C =2πR ;(2)弧长180Rn L π= 5、圆扇形,弓形的面积 (l )圆面积:2R S π=;(2)扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

在半径为R 的圆中,圆心角为n °的扇形面积S 扇形的计算公式为:3602R n S π=扇形 注意:因为扇形的弧长180Rn L π=。

所以扇形的面积公式又可写为LR S 21=扇形(3)弓形的面积由弦及其所对的弧组成的圆形叫做弓形。

弓形面积可以在计算扇形面积和三角形面积的基础上求得。

如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形和圆、弧长公式及有关计算.【典型例题】例1. 正六边形两条对边之间的距离是2,则它的边长是( )A. 33B. 233C. 23D. 223解:如图所示,BF =2,过点A 作AG ⊥BF 于G ,则FG =1F EA G DB C又∵∠FAG =60°∴=∠==AF FG FAG sin 132233故选B点拨:正六边形是正多边形中最重要的多边形,要注意正六边形的一些特殊性质。

例2. 正三角形的边心距、半径和高的比是( ) A. 1∶2∶3B. 123∶∶C. 123∶∶D. 123∶∶解:如图所示,OD 是正三角形的边心距,OA 是半径,AD 是高AOB D C设O D r =,则AO =2r ,AD =3r∴OD ∶AO ∶AD =r ∶2r ∶3r =1∶2∶3 故选A点拨:正三角形的内心也是重心,所以内心到对边的距离等于到顶点距离的12。

通过这个定理可以使问题得到解决。

例3. 周长相等的正三角形、正四边形、正六边形的面积S S S 346、、之间的大小关系是( )A. S S S 346>>B. S S S 643>>C. S S S 634>>D. S S S 463>>解析:设它们的周长为l ,则正三角形的边长是a l 313=,正四边形的边长为a l 414=,正六边形的边长为a l 616=∴=︒=⨯⨯=S a l l 332221260121932336sin S a l S a l l44226622211661260612136323372===⨯︒=⨯⨯⨯=sin∴>>S S S 643故选B点拨:一定要注意三个正多边形的周长相等这一重要条件,否则容易得出错误结论。

例4. 如图所示,正五边形的对角线AC 和BE 相交于点M ,求证: (1)ME AB =; (2)ME BE BM 2=·点悟:若作出外接圆可以轻易解决问题。

证明:(1)正五边形必有外接圆,作出这个辅助圆,则AB ⋂=⨯︒=︒1536072∴∠BEA =36°EC ⋂=⨯︒=︒25360144∴∠=⨯︒=︒∴∠=︒-︒-︒=︒=∠∴==EAC EMA EAMME AE AB1214472180367272(2) BC AB CAB BEA ⋂=⋂∴∠=∠,又∵公共角∠ABM =∠EBA ∴△ABM ∽△EBA∴=∴=AB BE BMAB AB BE BM 2·例5. 已知正六边形ABCDEF 的半径为2cm ,求这个正六边形的边长、周长和面积。

解:∵正六边形的半径等于边长 ∴正六边形的边长a cm =2正六边形的周长l a cm ==612正六边形的面积S cm =⨯⨯⨯⨯=6122232632点拨:本题的关键是正六边形的边长等于半径。

例6. 已知正方形的边长为2cm ,求它的外接圆的外切正三角形的边长和面积。

解:∵正方形的边长为2cm ∴正方形的外接圆半径为2cm∴外接圆的外切正三角形一边上的高为32cm∴正三角形的边长为3260323226sin ︒==cm∴正三角形的面积为12262632632⨯⨯⨯=cm点拨:本题的重点是正方形的边长、圆的半径和正三角形的半径之间的关系。

例7. 如图所示,已知⊙O 1和⊙O 2外切于点P ,⊙O 1和⊙O 2的半径分别为r 和3r ,AB为两圆的外公切线,A 、B 为切点,求AB 与两弧PA PB ⋂⋂、所围的阴影部分的面积。

解:连结O A O B 12、,过点O 1作O C O B 12⊥在Rt O O C ∆12中,O O r r r O C r r r 1223432=+==-=, ∴=-=O C r r r 12216423 ∴梯形O ABO 12的面积为:()12323432r r r r +=·又∵sin ∠===O O C O C O O r r 212122412 ∴∠=︒∴∠=︒∠=︒O O C O PO A 21213060120,∴扇形O PA 1的面积为:1203601322ππr r=扇形O PB 2的面积为:6033603222ππ·()r r=∴阴影部分的面积为:431332431162222r r r r --=-⎛⎝ ⎫⎭⎪πππ 点拨:求组合图形的面积一般要构造出易解决问题的基本图形,然后求出各图形的面积,最后通过面积的加减得出结论。

例8. 如果弧所对的圆心角的度数增加1°,设弧的半径为单位1,则它的弧长增加___________。

解:由弧长公式l n R=π180,得:当弧所对的圆心角的度数增加1°,则弧长为()n R+1180π()n R n R +-=⨯=11801801180180ππππ∴弧长增加π180,故填π180点拨:本题主要考查弧长公式l n R =π180。

例9. 如图,大的半圆的弧长为a ,n 个小圆的半径相等,且互相外切,其直径和等于大半圆的直径,若n 个小半圆的总弧长为b ,则a 与b 之间的关系是( )A. a b =B. a nb =C.a b n =D. a b =π解:设大半圆的半径为R ,小半圆的半径为r 由题意,得:a R =π∴=R aπ∴小圆的半径r a n =π∴每个小半圆的弧长为ππ·a n a n = ∴n 个小半圆的总弧长b n an a==·即b a =,故选A 。

点拨:本题的关键是大半圆的半径和小半圆的半径之间的关系,然后通过弧长和半径之间的关系求解。

例10. 如图所示,两个同心圆被两条半径截得的AC ⋂的长为6πcm ,BD ⋂的长为10πcm ,若AB cm =12,则图中阴影部分的面积为( )A. 192πB. 144πC. 96πD. 48π解:设∠O =α,由弧长公式得:618010180618010180παππαπαα=︒=︒∴=⨯︒=⨯︒·,·,OAOBOA OB又 AB OB OA =-∴=⨯︒-⨯︒∴=︒∴=⨯︒︒==⨯︒︒=121018061806061806018101806030αααOA OB ,∴阴影部分的面积为:()6030360601836030186962222︒︒-︒︒=⨯-=ππππ··故选C点拨:本题主要考查弧长、扇形面积的有关计算,要熟记公式,正确运用。

例11. 如图所示,⊙O 的半径OA 为R ,弦AB 将圆周分成弧长之比为3∶7的两段弧,求弦AB 的长,如果将3∶7改为m ∶n ,此时弦AB 的长度是多少?点悟:欲求弦长AB ,需用弦长公式,需知圆心角的度数,∠AOB 可通过两弧长之比3∶7求得,再利用ADR DOA=∠sin 求得AD ,AB 就可求。

解:作OD ⊥AB 于D ,连结OB ∵这两段弧之比为3∶7∴这两段弧所对的圆心角之比也为3∶7 设这两个圆心角的度数为3x ,7x ,则 37360x x +=︒即AB AmB AOB ⋂=︒=︒∠=︒108252108,,⌒∴∠DOA =54°,又ADR =︒sin54∴AD =Rsin54° ∵AB =2AD∴=︒AB R 254·sin同理可得3∶7改为m ∶n 时,解得:AB R mm n n m =+>2·sin()π点拨:有关正多边形的计算,都要作出它的半径和边心距为辅助线,从而将问题转化为解直角三角形的问题。

例12. 已知正六边形边长为a ,求它的内切圆的面积。

点悟:欲求内切圆的面积,根据圆面积公式S R =π2,需求内切圆的半径OH ,可依据正六边形的性质及边长a 求得OH OA AH =-22,代入面积公式,即可。

解:如图所示,设正六边形的边长AB a =,内切圆的圆心为O ,连结OA 、OB ,作OH ⊥AB 于H ,则∠AOH =30°()∴===∴=-=-⎛⎝ ⎫⎭⎪=∴==OA AH AB aOH OA AH a a aS OH a O 223234222222内切⊙ππ例13. 已知正多边形的周长为12cm ,面积为122cm ,则内切圆的半径为__________。

解:设正多边形是正n 边形,圆半径为r ∵正多边形的周长是12cm∴正多边形的边长是12n cm又∵正多边形的面积是122cm∴=∴=1212122n nr r cm ···()故应填2cm 。

点拨:要注意内切圆半径等于正多边形的边心距这一重要概念。

【模拟试题】(答题时间:30分钟)一. 判断题。

1. 各边相等的圆外切多边形是正多边形。

( )2. 各边相等的圆内接多边形是正多边形。

( )3. 各角相等的圆内接多边形是正多边形。

( )4. 各角相等的圆外切多边形是正多边形。

( )5. 一个四边形不一定有外接圆或内切圆。

( )6. 矩形一定有外接圆,菱形一定有内切圆。

( )7. 三角形一定有外接圆和内切圆,且两圆是同心圆。

( )8. 依次连结正多边形各边中点所得的多边形是正多边形。

( )二. 填空题。

9. 若正多边形内角和是540°,那么这个多边形是_________边形。

10. 两个圆的半径比为2∶1,大圆的内接正六边形与小圆的外切正六边形的面积比为__________。

11. 有一修路大队修一段圆弧形弯道,它的半径R 是36m ,圆弧所对的圆心角为60°,则这段弯道长约________m (精确到0.1m ,π=314.)。

三. 解答题。

12. 已知半径为R 的圆有一个外切正方形和内接正方形,求这两个正方形的边长比和面积比。

13. 如图,△AFG 中,AF =AG ,∠FAG =108°,点C 、D 在FG 上,且CF =CA ,DG =DA ,过点A 、C 、D 的⊙O 分别交AF 、AG 于点B 、F 。

求证:五边形ABCDE 是正五边形。

AB E OF C D G14. 如图:三个半径313331--+,,的圆两两外切,求由三条切点弧围成的阴影图形的周长。

D FB CE A【试题答案】一. 判断题。

1. × 2. × 3. √ 4. √ 5. √ 6. √7. ×8. √二. 填空题。

9. 正五 10. 3∶111. 37.7三. 解答题。

12. 边长比21∶,面积比2∶1 13. 易求∠F =∠G =36°∴∠FAC =∠GAD =∠CAD =36°从而,BC CD DE ⋂=⋂=⋂由△AFC ≌△AGD 得:AC =AD∴=∴====ABC AEDAB BC DE CD EA ⌒⌒⌒⌒⌒⌒⌒∴ABCDE 是正五边形14. 利用弧长公式,关键是求出三段弧所对圆心角的度数。

相关文档
最新文档