五年级奥数题:逻辑推理
小学五年级奥数逻辑推理问题

小学奥数题:专题训练之逻辑推理问题1、甲、乙、丙、丁四位同学的运动衫上印了不同的号码。
赵说:甲是2号,乙是3号;钱说:丙是4号,乙是2号;孙说:丁是2号,丙是3丙;李说:丁是1号,乙是3号。
又知道赵、钱、孙、李每人都说对了一半,那么,丙的号码是( )号。
2、有一种俱乐部,里面的成员可以分成两类。
第一类是老实人,永远说真话。
第二类是骗子,永远说假话。
某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。
记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。
李四说:张三是老实人,那么李四是老实人还是骗子?3、一次游泳比赛,由甲、乙、丙、丁四个人参加决赛,赛前他们对比赛各说了一句话。
甲说:我第一,乙第二。
乙说:我第一,甲第四。
丙说:我第一,乙第四。
丁说:我第四,丙第一。
比赛结果无并列名次,且各人都只说对了一半。
那么,丁是第()4、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有()人。
5、甲、乙、丙、丁四人进行羽毛球双打比赛,已知:(1)甲比乙年轻;(2)丁比他的两个对手年龄都大;(3)甲比他的同伴年龄大;(4)甲与乙的年龄差距要比丙与丁的年龄差距大。
试判断谁与谁是同伴,并说出四人年龄从小到大的顺序。
6、一次国际足球邀请赛上,来自欧洲、美洲、亚洲、大洋洲、非洲的5支队伍均已到齐了,分组抽签仪式上,几位记者对各队的编号展开了讨论。
A记者:3号是欧洲队,2号是美洲队;B记者:4号是亚洲队,2号是大洋洲队;C记者:1号是亚洲队,5号是非洲队;D记者:4号是非洲队,3号是大洋洲队;E记者:2号是欧洲队,5号是美洲队。
结果,每人都只猜对了一半,那么1号是()队,3号是()队。
7、老师给甲、乙、丙各发一张写着不同整数的卡片。
老师:甲的卡片上写着一个两位整数,乙的卡片上写着一个一位整数,丙的卡片上写着一个比60小的两位整数,且甲的数×乙的数=丙的数。
小学五年级数学思维训练(奥数)《推理问题》讲解及练习题(含答案)

推理问题专题简析:解数学题,从已知条件到未知的结论,除了计算外,更重要的一个方面就是推理。
通常,我们把主要依靠推理来解的数学题称为推理问题。
推理问题中的条件繁杂交错,解题时必须根据事情的逻辑关系进行合情推理,仔细分析,寻找突破口,并且可以借助于图表,步步深入,这样才能使问题得到较快的解决。
例1有8个球编号是(1)——(8),其中有6个球一样重,另外两个球都轻1克。
为了找出这两个轻球,用天平称了3次,结果如下:第一次:(1)+(2)比(3)+(4)重;第二次:(5)+(6)比(7)+(8)轻;第三次:(1)+(3)+(5)与(2)+(4)+(8)一样重。
那么,两个轻球分别是几号?分析与解答从第一次看,(3)、(4)两球中有一个轻;从第二次看,(5)、(6)两球中有一个轻;从第三次看,(1)、(3)、(5)中有一个轻,(2)、(4)、(8)中也有一个轻。
综合上面的分析可以推出,两个轻球的编号分别是(4)和(5)。
随堂练习:1,甲、乙、丙、丁四个人中,乙不是最高,但他比甲和丁高,而甲不比丁高。
请说出他们各是几号。
2,某商品编号是一个三位数,现有五个三位数:874,756,123,364,925,其中每一个数与商品编号恰好在同一个数位上有一个相同数字。
这个商品的编号是多少?例2一个正方体6个面上分别写着1、2、3、4、5、6。
根据下图摆放的三种情况,判断每个数字对面上的数字是几。
分析与解答如果直接思考哪个数字的对面是几,有一定的困难。
我们可以这样想:这个数字的对面不会是几。
(1)从(A)、(B)两种摆法中可以看出:4的对面不会是2、5,也不会是1、6,那么,4对面一定是3;(2)从(B)、(C)两种摆法中可以看出:1的对面不会是4、6,也不会是2、3,那么,1的对面一定是5;(3)剩下2的对面一定是6。
随堂练习:1,一个正方体的6个面分别涂着红、黄、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。
五年级数学逻辑推理练习题

五年级数学逻辑推理练习题题目一:找规律1. 请观察下面的数列,寻找规律,并写出下一个数。
2, 4, 6, 8, 10, ?2. 下面的数字有一个共同的特征,请选出其中不符合规律的数字。
6, 9, 16, 21, 263. 请观察下面的数字组成的图形,找出其中的规律,并写出图形的下一行。
12 34 5 67 8 9 10题目二:数列推理1. 请观察下面的数列,找出其中的规律,并写出数列的下一项。
3, 6, 10, 15, ?2. 请观察下面的数列,找出其中的规律,并写出数列的下一项。
2, 5, 9, 14, 20, ?3. 请观察下面的数列,找出其中的规律,并写出数列的下一项。
1, 4, 9, 16, 25, ?题目三:推理判断1. 今天是星期六,那么6天后是星期几?2. 王明每天运动30分钟,一周总共运动多少分钟?3. 如果所有的狗都会叫,那么所有会叫的动物一定是狗吗?为什么?题目四:逻辑推理阅读下面的故事,请回答问题。
小明、小华和小红住在同一栋楼里,小明住在小华的上面,小红住在小明的下面。
以下四个陈述是否正确?1. 小红住在最上面。
2. 小明住在最下面。
3. 小华住在最上面。
4. 小华住在最下面。
题目五:排序请将下面的数字按照从小到大的顺序排列:7, 2, 10, 3, 5题目六:算术运算1. 36 ÷ 4 × 3 = ?2. 25 ÷ 5 + 7 - 3 × 2 = ?3. (12 - 5) × 4 + 8 ÷ 2 = ?题目七:文字推理阅读下面的文字材料,请回答问题。
小红、小明、小华和小刚四个人参加一次比赛,中奖名次如下:1. 小红比小明和小华都要晚一名。
2. 小明比小华晚一名。
3. 小刚比小红晚一名。
请问,他们四个人的名次是怎样的?题目八:综合题阅读下面的问题,请解答。
甲、乙、丙三个人一起捉迷藏,甲先找,乙和丙是藏的人,甲找了一会儿找到了乙,乙还没来得及躲好,甲就找到了丙。
人教版五年级上册数学 奥数 逻辑推理 (课件)

【优化】这类题属于用假设法解的逻辑推理题
【既学既练3】甲乙丙三位同学中有一位同学课前自觉地将教室打 扫干净,老师问他们三人是谁打扫的教室。甲说:“丙做的”。 丙说:“不是我打扫的”。乙也说:“不是我打扫的”。现在知 道他们之中只有一个人说了真话,你知道谁打扫了教室吗?
【例4】 甲、乙、丙、丁与小红为同学一起进行象棋比赛,每两人都要比 赛一盘,已知甲已经赛了四盘,乙赛了三盘,丙赛了两盘,丁赛 了一盘,问小红已赛了几盘
能用天平(无砝码)一次将重的一袋盐挑出来吗?
【例2】 下图是标有1,23,4,5,6六个数字的正方体的三种不
同摆法,问这个正方体的每一个数字对面各是什么字?
?
2 【优化】这类题属于根据同一个立方体不同的
摆放情况,依据相邻面的数学关系,采用排除法进 行逻辑推理的问题。
【既学既练2】有一个正方体,每个面上分别写上汉字:数、 学、奥、林、匹、克,三人从不同的角度观察的结果如图所示, 问这个正方体的每一个汉字对面各是什么字?
A:B第三,C第五; B:D第二,E第四; C:A第一,E第四; D:C第一。B第二; E:D第二,A第三。 结果表明它们每个名次都有人猜中,试求个人的名次
谢谢观看
> 12 3
【例1】 有三个相同规格的零件,其中一个是次品,重量较轻,在没
有砝码的天平上称一次,问能将那个次品零件挑出来吗?
【优化】这类题属于利用天平挑次品类问题,
一般是根据题设条件,直接推出事情发生的各种情 况,分析得出结论。这类问题能提升我们的逻辑推 理能力和培养我们的优化意识。
【既学既练1】 有3袋盐,其中2袋每袋重500克,另一袋比500克重一些,你
林 匹奥
学 奥数
克 数林
【例3】 E先生在外地经商,他的四位邻居ABC、D对他的收入进行猜测。 A说:“E赚了500万元。” B说:“E至少赚了1000万元。" C说:“E赚的钱不到2000万元。' D说:“E最少赚了1万元。" 这四个猜测中只有一个猜测是对的。问:A、B、C、D谁的猜测是正 确的?
五年级奥数逻辑推理题集

1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?5.人的血型通常分为A型、B型、0型、AB型.子女的血型与其父母间的关系如表10一l所示.现有3个分别身穿红、黄、蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红、黄、蓝3种,依次表示所具有的血型为AB,A,0.问:穿红、黄、蓝上衣的孩子的父母各戴什么颜色的帽子?6.如图10-2,有一座4层楼房,每个窗户的4块玻璃分别涂上黑色和白色,每个窗户代表一个数字.每层楼有3个窗户,由左向右表示一个三位数.4个楼层表示的三位数为:791,275,362,612.问:第二层楼表示哪个三位数?7.房间里有12个人,其中有些人总说假话,其余的人说真话.其中一个人说:“这里没有一个老实人.”第二个人说:“这里至多有一个老实人.”第三个人说:“这里至多有两个老实人.”如此往下,至第十二个人说:“这里至多有11个老实人.”问房间里究竟有多少个老实人?8.甲、乙、丙、丁约定上午10时在公园门口集合.见面后,甲说:“我提前了6分钟,乙是正点到的.”乙说:“我提前了4分钟,丙比我晚到2分钟.”丙说:“我提前了3分钟,丁提前了2分钟.”丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收音机报北京时间10时整.”请根据以上谈话分析,这4个人中,谁的表最快,快多少分钟?9.桌子上放了8张扑克牌,都背面向上,牌放置的位置如图lO-3所示.现在知道:①每张牌都是A,K,Q,J中的某一张;②这8张牌中至少有一张是Q;③其中只有一张A;④所有的Q都夹在两张K之间;⑤至少有一张K夹在两张J之间;⑥至少有两张K相邻;⑦J与Q互不相邻,A与K也互不相邻.试确定这8张牌各是什么?10.甲、乙、丙、丁4个同学同在一间教室里,他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信.已知:①甲不在念英语,也不在看小说;②如果甲不在做数学题,那么丁不在念英语;③有人说乙在做数学题,或在念英语,但事实并非如此;④丁如果不在做数学题,那么一定在看小说,这种说法是不对的;⑤丙既不是在看小说,也不在念英语.那么在写信的是谁?11.在国际饭店的宴会桌旁,甲、乙、丙、丁4位朋友进行有趣的交谈,他们分别用了汉语、英语、法语、日语4种语言.并且还知道:①甲、乙、丙各会两种语言,丁只会一种语言;②有一种语言4人中有3人都会;③甲会日语,丁不会日语,乙不会英语;④甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈;⑤没有人既会日语,又会法语.请根据上面的情况,判断他们各会什么语言?12.甲、乙、丙3个学生分别戴着3种不同颜色的帽子,穿着3种不同颜色的衣服去参加一次争办奥运的活动.已知:①帽子和衣服的颜色都只有红、黄、蓝3种:②甲没戴红帽子,乙没戴黄帽子;③戴红帽子的学生没有穿蓝衣服:④戴黄帽子的学生穿着红衣服:⑤乙没有穿黄色衣服.试问:甲、乙、丙3人各戴什么颜色的帽子,穿什么颜色的衣服?13.甲、乙、丙、丁、戊5人各从图书馆借来一本小说,他们约定读完后互相交换,这5本书的厚度以及他们5人的阅读速度都差不多,因此总是5人同时交换书.经过数次交换后,他们5人每人都读完了这5本书.现已知:①甲最后读的书是乙读的第二本;②丙最后读的书是乙读的第四本;③丙读的第二本书甲在最初就读了;④丁最后读的书是丙读的第三本;⑤乙读的第四本是戊读的第三本;⑥丁第三次读的书是丙最初读的那本.设甲、乙、丙、丁、戊5个人最后读的书分别为4,B,C,D,E,根据以上情况确定他们5人读的第四本书各是什么书?14.如图10-4,这是一个挖地雷的游戏,在64个方格中一共有10个地雷,每个方格中至多有一个地雷.对于写有数字的方格,其格中无地雷.但与其相邻(有公共边或公共顶点)的格中有可能有地雷,地雷的个数与该数字相等.请你指出哪些方格中有地雷.15.5位学生A,B,C,D,E参加一场比赛.某人预测比赛结果的顺序是ABCDE,结果没有猜对任何一个名次,也没有猜中任何一对相邻的名次(意即某两个人实际上名次相邻,而在此人的猜测中名次也相邻,且先后顺序相同);另一个人预测比赛结果为DAECB,结果猜对了两个名次,同时还猜中了两对相邻的名次.求这次比赛的结果.16. 小刚、丁飞和王宇一位是工程师,一位是医生,一位是飞行员。
五年级奥数:逻辑推理(二)计算逻辑

五年级奥数:逻辑推理(二)计算逻辑逻辑推理(二)计算逻辑在逻辑推理过程中,需要进行数字(或数)的计算来完成的逻辑问题,如数字问题,体育比赛的得分、场数、名次问题,在考试中的得分等等问题,我们称这类问题为计算逻辑.例1在一座办公大楼里,有30名办事员.某天上班有一名办事员没有和其他办事员见面.请问这一天在大楼里办公的人最多能遇到几位同事?随堂练习1某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子.问戴红帽子的人数比戴蓝帽子的人数多了多少个人?例2如图,六张四位数的纸片互相纵横交错叠在一起.其中有且只有一个数是完全平方数.这个数是多少?例3伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者.C年4月D日逝世于美国,享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1)1955 (2)3 (3)1879 (4)76 (5)18随堂练习2 A年B月16日在德意志的波恩附近,一件破旧的阁楼上诞生了以后影响百年的音乐奇才——贝多芬.他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章.在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世.一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1)26 (2)57 (3)1827 (4)12 (5)1770例4 10个好朋友彼此住得很远,没有电话,只能靠写信互通消息.现在这10个人每人都知道一条好消息,这10条好消息彼此不同,为使这10个人都知道所以的好消息,只能通过相互写信通报.请问至少要让邮递员传送几封信?例5甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分.结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得分.随堂练习3五个选手进行象棋比赛,每两个人之间都要赛一盘.规定胜一盘得2分,平一盘各得1分,输一盘不得分.已知比赛后,其中4位选手共得16分,则第5位选手得了分.例6 A、B、C、D、E五对夫妇聚会,见面时相互握手问候.A先生好奇地私下向每个人(包括他太太)刚才握手的次数,得到的回答使他惊奇.9个人中竟然没有两个人握手次数相同的.A太太握手次数是多少?(一对夫妇之间不握手)随堂练习4四所小学,每所小学有两只足球队.这八支足球队进行友谊比赛.规定本校两支球队不进行比赛,不同学校的任意两队之间比赛一场.比赛进行到某一阶段后(还没有赛完).A校第一队队长发现,其他七支球队已赛过的场数互不相同.问这时A校第二队赛了几场?练习题1.有9张纸牌,分别为1至9.A、B、C、D四人取牌,每人取两张.现已知A取两张牌之和是10;B取两张牌之差是1;C取两张牌之积是24;D取两张牌之商是3.剩下的一张牌是几?2.四名棋手每两名选手都要比赛一局,规则规定胜一局得2分,平一局得1分,负一局得0分.比赛结果,没有人全胜,并且各人的总分都不相同.那么至多可以有多少个平局?3.甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别为8、7和17分.甲得了一个第一名,已知各个比赛项目分数相同,且第一名得分不低于二、三名得分的和.那么,比赛共有几个项目,甲每项得分分别是几分?4.三人打乒乓球,每场两人,输者退下换成另一人.这样继续下去.在甲打了9场,乙打了6场时,丙最多打了______场.5.在一个庆典晚会上,男女嘉宾共69人.出现了一个非常有趣的情况:每位女士认识的男士的人数各不相同,而且组成连续的自然数,最少的认识16位男士,最多的只有两位男士不认识.这次晚会上共有女嘉宾______人.6.一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右至左1至6报数,两次都报3的恰有5名,这列士兵最多有______名.7.共有四人进行跳远、百米、铅球、跳高四项比赛.规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每个单项比赛中四人得分互不相同.总分第一名得17分,其中跳高得分低于其他项的得分;总分第三名得11分,其中跳高得分高于其他项的得分.问总分第二名的铅球得分是多少?8.在一次射击练习中,甲、乙、丙三位战士各打了四发子弹,全部中靶.其命中情况如下:(1)每人四发子弹所命中的环数各不相同;(2)每人四发子弹所命中的总环数均为17环;(3)乙有两发命中的环数分别与甲命中的环数一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几环?9.12个队参加一次足球比赛,每两个队都要比赛一场,每场比赛中,胜队得3分,负队得0分,平局各得1分.比赛完毕后,获第三名和第四名的两个队得分最多可以相差______分.10.有A、B、C、D四支足球队进行单循环比赛,共要比赛______场.规定:胜一场得2分,平一场得1分,负一场得0分.全部比赛结束后,A、B 两队的总分并列第一名,C队第二名,D队第三名,C队最多得______分.11.一种游戏,每一局胜则得6分,平则得5分,负则得零分,比赛足够多局,但无论比赛多少局,不能得到的分数共有多少个?。
五年级奥数 逻辑推理

逻辑推理一、知识要点解答推理问题常用的方法有:排除法、假设法、反证法。
一般可以从以下几方面考虑:1、选准突破口,分析时综合几个条件进行判断;2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论;3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的;4、遇到比较复杂的推理问题,可以借助图表进行分析。
二、精讲精练【例题1】甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。
”乙说:“我没有打碎破璃。
”丙说:“是乙打碎的。
”他们当中有一个人说了谎话,到底是谁打碎了玻璃?【例题2】五个相同的正方体木块,按相同的顺序在上面写上数字1~6, 把木块叠成下图,那么,2的对面是几?4的对面是几?5的对面是几?【例题3】明明、冬冬、兰兰、静静、思思和毛毛六人参加一次会议,见面时每两个人都要握一次手。
明明已握了5次手,冬冬握了4次手,兰兰握了5次手,静静握了2次,思思握了1次手。
问毛毛握了几次手?【例题4】口袋中有三种颜色的筷子各10根,问: ⑴至少取多少根才能保证三种颜色都取到? ⑵至少取多少根才能保证有2双颜色不同的筷子?54652363645巩固练习1、下面三块正方体的六个面都是按相同的规律涂有红、黄、蓝、白、绿、黑六种颜色。
请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?2、A 、B 、C 、D 与小强五个同学一起参加象棋比赛,每两人都赛一盘,比赛一段时间后统计:A 赛了4盘,B 赛了3盘,C 赛了2盘,D 赛了一盘。
问小强已经赛了几盘?3、有甲、乙、丙、丁四人同住一座四层的楼房,他们中间有律师、工人、教师、医生,现已知:①甲比乙住的楼层低,比丙住的楼层高,丁住第四层。
②教师住在工人的楼上,在医生楼下住,律师住最低层。
问甲、乙、丙、丁四人各住在第几层,他们的职业各是什么?4、A 、B 、C 、D 四个学生中有两个同学在假日里为街道做好事,班主任把这4个人找来了解情况,4人分别回答如下:A 说:“C 、D 两人中有人做了好事。
五年级奥数:逻辑推理(A)(含答案)

五年级奥数:逻辑推理(A)(含答案)一、填空题1。
甲、乙、丙三人进行跑步比赛。
A、B、C三人对比赛结果进行预测。
A说:“甲肯定是第一名。
”B说:“甲不是最后一名。
”C说:“甲肯定不是第一名。
”其中只有一人对比赛结果的预测是对的。
预测对的是。
2。
A、B、C、D、E和F六人一圆桌坐下。
B是坐在A右边的第二人。
C是坐在F右边的第二人。
D坐在E的正对面,还有F和E不相邻。
那么,坐在A和B之间的是。
3。
甲、乙、丙、丁与小明五位同学进入象棋决赛。
每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分。
到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分。
那么小明现在已赛了盘,得了分。
4。
曹、钱、刘、洪四个人出差,住在同一个招待所。
一天下午,他们分别要找一个单位去办事。
甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待。
曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路。
”钱:“今天我一定得去,要不明天人家就不接待了。
”刘:“这星期的前几天和今天我去都能办事。
”洪:“我今天和明天去,对方都接待。
”那么,这一天是星期,刘要去单位,钱要去单位,曹要去单位,洪要去单位。
5。
四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥。
(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和。
根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在层;D是人,住在层。
6。
小赵的电话号码是一个五位数,它由五个不同的数字组成。
小张说:“它是84261。
”小王说:“它是26048。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数题:逻辑推理
一、填空题
1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个
叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一
个人:“请问,你是哪个民族的人?”
“匹兹乌图”.那个人回答.
外地人听不懂,就问其他两个人:“他说的是什么意思?”
第二个人回答:“他说他是宝宝族的.”
第三个人回答:“他说他是毛毛族的.”
那么,第一个人是族,第二个人是族,第三个人是族.
2. 有四个人各说了一句话.
第一个人说:“我是说实话的人.”
第二个人说:“我们四个人都是说谎话的人.”
第三个人说:“我们四个人只有一个人是说谎话的人.”
第四个人说:“我们四个人只有两个人是说谎话的人.”
请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.
3. 某地质学院的三名学生对一种矿石进行分析.
甲判断:不是铁,不是铜.
乙判断:不是铁,而是锡.
丙判断:不是锡,而是铁.
经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全
说误了.
那么,三人中是对的, 是错的, 只对了一半.
4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈
话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二
名,我第三名.”丁没说话.
最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、
丙、丁四人的名次.
甲是第名,乙是第名,丙是第名,丁是第名.
5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三
人分别说了下面几句话:
陈:“我没做这件事.殷华也没做这件事.”
王:“我没做这件事.陈刚也没做这件事.”
殷:“我没做这件事.也不知道谁做了这件事.”
当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .
6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得
b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共
得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一
次得了b分的是班.
7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得
3分,平一场得1分,负一场得0分.已知:
(1)比赛结束后四个队的得分都是奇数;
(2)A队总分第一;
(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.
8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得分,最少可得分.
9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况列在下表
甲与丁的比分为 ,丙与丁的比分为 .
10. 某俱乐部有11个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人?”那天,J和K休息,余下的9个人这样回答:
A说:“有10个人.”B说:“有7个人.”C说:“有11个人.”D说:“有3个人.”E说:“有6个人.”F说:“有10个人.”G说:“有5个人.”H说:“有6个人.”I 说:“有4个人.”
那么,这个俱乐部的11个成员中,总说谎话的有个人.
二、解答题
11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?
12. 世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,
败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.
问:一个队至少要积几分才能保证本队必然出线?简述理由.
在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线
吗?为什么?
———————————————答案—————————————————
1. 宝宝,宝宝,毛毛.
如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝
宝族的,第三个人是毛毛族的.”
2. 真,假,假,不确定.
第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.
3. 丙,乙,甲.
如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.
4. 三,一,四,二.
假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.
五年级奥数题:逻辑推理
5. 陈刚.
如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华
做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,
符合题意.所以陈刚做了坏事.
6. 三.
N次比赛共得20+10+9=39(分),39=3⨯13,所以共进行了3次比赛,
每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20
分,20÷3=6…2,所以a≥7,a,b,c可能组合为7、5、1;7、4、2;8、4、
1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=1
得班
一班二班三班
分次
场次
第一次8 1 4
第二次8 1 4
第三次 4 8 1
总分20 10 9
7. 3。
B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分.A队总分第1,并且没有胜B队,只能是胜2场平1场(与B 队平),得7分.因为C队与B队平局,负于A队,得分是奇数,所以只能得1分.D队负于A、B队,胜C队,得3分.
8. 3,1.共赛了4⨯6÷2=12(场),其中平了4场,分出胜负的8场,共得3⨯8+2⨯4=32(分).因为前三位的队至少共得7+8+9=24(分),所以后三位的队至多共得32-24=8(分).又因为第四位的队比第五位的队得分多,所以第五位的队至多得3分.因为第六位的队可能得0分,所以第五位的队至少得1分(此时这两队之间必然没有赛过).
9. 3:2,3:4.由乙队共进2球,胜2场平1场推知,乙队胜的两场都是1:0,平的一场是0:0.由甲队与乙队是0:0,甲队与丙队未赛,推知甲队所有的进球都来自与丁队的比赛,所以甲队与丁队是3:2.由丙队与乙队是0:1,丙队与甲队未赛,所以丙队与丁队是3:4.
10 9.因为9个人回答出了7种不同的人数,所以说谎话的不少于7人.若说谎话的有7人,则除B外,其他回答问题的8人均说了谎话,与假设出现矛盾;若说谎话的有8人,则回答问题的9人均说了谎话,出现矛盾;若说谎话的有10人,则只能1人说实话,而A和F都说了实话,出现了矛盾;若说谎话的有11人,则没有说实话的,而E说了实话,出现矛盾;显然说谎话的有9人,回答问题的9人均说谎话,休息的两人说实话.
11. 根据题意有关条件,用“√”表示是、“Х”表示不是,列表所示.
12. 四个队单循环赛共6场比赛,每场均有胜负,6场最多共计18
分。
若该队积7分,剩下的11分被3个队去分,那么,不可能再有两个队都得7分,即至多再有一个队可得7分以上.这样该队可以出线.
其次,如果该队积6分,则剩下12分,可能有另两队各得6分.如果这另两队小分都比该队高,该队就不能出线了.
所以,一个队至少要积7分才能保证必然出线.
有可能出线.
当6场比赛都是平局时,4个队都得3分,这时两个小分最高的队可以出线.如果这个队恰属于两个小分最高的队,那么这个队就会出线.。