圆周角及推论

合集下载

圆周角定理推论

圆周角定理推论

圆周角定理推论
中心角定理:如果一个三角形的三条边的长度都已知,则可以用这三条边到三角形的三个角的长度来求解出这个三角形的三个角的大小,这个定理又称为三角形钝角定理。

也可以称之为圆周角定理,它是圆周角的一种表示法,说明圆周角满足三角形的钝角定理。

即如果已知圆周角的三边长度,则可求出其三个内角。

例如,已知圆周角的三边长度分别为4,4,4,则可求出其三个内角分别为60°,60°,60°。

圆周角定理的公式是:若a、b、c分别为圆周角的三边长度,则有A = arccos((b2 + c2 - a2)/ 2bc),B = arccos((a2 + c2 - b2)/ 2bc),C = arccos((a2 + b2 - c2)/ 2bc)。

其中A,B,C分别为圆周角的三角形的三个内角。

圆周角定理的推论

圆周角定理的推论

圆周角定理的推论
一、什么是圆周角定理:
圆周角定理是一种几何定理,它指出了一个三角形与它所多接的弧线之间满足的某种关系,即:圆周上相邻的弧线之间的集合所形成的内角之和等于180度。

即可简写为:当三条线接触同一个圆的时候,它们共组成的内角之和是180度。

二、圆周角定理的推论
(1)中点定理:在任意一个多边形内,任意一边都和多边形内心连接构成一个角,这个角的度数相加一定为180度。

三、圆周角定理的适用范围
圆周角定理可用于描述任意一个多边形关于圆周角的位置关系,主要用于计算圆周角的大小,以及计算多边形中不同角的大小。

圆周角定理在平面几何中有着重要的应用,即它是描述多边形的重要定理,熟练的掌握和复习这个定理有助于更
好的理解多边形的内容。

《圆周角的定义及定理》

《圆周角的定义及定理》

02 圆周角定理
圆周角定理的表述
总结词:简洁明了
详细描述:圆周角定理是几何学中的基本定理之一,它表述了圆周角与其所夹弧 所对的中心角之间的关系。具体来说,对于同圆或等圆中的任意一个圆周角,其 所夹的弧所对的中心角等于这个圆周角。
圆周角定理的证明
总结词:逻辑严密
详细描述:圆周角定理的证明过程涉及到了角的相等性质和圆的性质。首先,通过角的相等性质,将 圆周角所夹的弧所对的中心角平分,得到两个相等的角。然后,利用圆的性质,证明这两个相等的角 与圆周角相等。
多少倍?
题目2
如果一个圆周角等于45度, 它所对的弦等于半径的多少倍

题目3
在圆中,如果一个圆周角等于 90度,它所对的弦与半径的
比值是多少?
综合练习题
总结词
考察圆周角定理与其他知识的综合运用
题目1
在圆中,如果一个圆周角等于60度,它所 对的弦与半径的比值为多少?同时求出这 个弦所对的弧的度数。
题目2
在圆或圆弧上选择一个点,作为 角的顶点。
通过该点和圆心画出射线,作为 角的边。
圆周角的分类
根据圆心与角的边的位置关系, 可以将圆周角分为三种类型: 优弧圆周角、劣弧圆周角和直 角圆周角。
根据角的度数,可以将圆周角 分为锐角、直角、钝角和优角 等类型。
根据角的数量,可以将圆周角 分为单角和复角等类型。
03 圆周角定理的推论
推论一:直径所对的圆周角是直角
总结词
直径所对的圆周角是直角,这是 圆周角定理的一个直接推论。
详细描述
根据圆周角的定义,我们知道直 径将圆分成两个相等的部分,因 此直径所对的圆周角必然是直角 。
推论二
总结词
在同一个圆或相等的圆中,如果两个 圆周角的大小相等,那么这两个圆周 角所对的弧也相等。

24.1.4圆周角定理及其推论(教案)-2023-2024学年九年级上册数学(人教版)

24.1.4圆周角定理及其推论(教案)-2023-2024学年九年级上册数学(人教版)
24.1.4圆周角定理及其推论(教案)-2023-2024学年九年级上册数学(人教版)
一、教学内容
本节课选自人教版数学九年级上册第24章“圆”的24.1.4节,主要教学内容包括圆周角定理及其推论。具体内容包括:
1.圆周角定理:圆周角等于其所对圆心角的一半。
2.圆周角定理推论:
(1)同弧或等弧所对的圆周角相等;
首先,我发现学生们在理解圆周角定理的基本概念时,普遍感到比较困难。尽管我通过动态演示和模型操作来帮助他们形象地理解,但似乎效果并不如预期。在今后的教学中,我需要寻找更直观、更贴近学生生活实际的教学方法,让他们能够更容易地接受和理解这个定理。
其次,在案例分析环节,我注意到学生们对实际问题的解决能力还有待提高。他们往往知道定理,但在应用时却不知道从何下手。针对这个问题,我计划在后续的教学中增加一些典型例题的讲解,并引导学生从多个角度去思考问题,培养他们的解题技巧和思维灵活性。
-强调圆周角为90°的圆弧为四分之一圆,通过画图展示。
-圆内接四边形对角互补,通过具体例子让学生理解内接四边形的性质。
-实践应用:通过典型例题,让学生应用定理和推论解决具体问题。
2.教学难点
-难点内容:圆周角定理及其推论的理解和运用。
-难点解析:
-理解难点:
-圆周角与圆心角的关系:学生可能难以理解圆周角为何等于圆心角的一半,需要通过动态演示或模型操作来直观展示。
1.讨论主题:学生将围绕“圆周角定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

人教版九年级数学上章节知识点深度解析 圆周角 第1课时 圆周角定理及推论

人教版九年级数学上章节知识点深度解析 圆周角 第1课时 圆周角定理及推论
AD = CB . 求证: AM = CM .
证明:由圆周角定理推出∠ A =∠ C ,∠ D =∠B ,
在△ ADM 和△ CBM 中,
∠=∠,
ቐ=,
∠=∠,
∴△ ADM ≌△ CBM (ASA).∴ AM = CM .
1
2
3
4
5
谢谢观看
Thank you for watching!

.

定理的 2.半圆(或直径)所对的圆周角是 直角
推论 90°的圆周角所对的弦是 直径 .


图例
90°直径ຫໍສະໝຸດ 圆周角内容图例
①在圆中,利用“直径所对的圆周角是直
解题
角”构造直角三角形解题.
策略
②一条弦所对的圆周角有两种情况:相等
或互补.
当堂检测
1. 如图,已知圆心角∠ BOC =78°,则圆周角∠ BAC
的度数是( C

A. 156°
B. 78°
C. 39°
D. 12°
第1题图
1
2
3
4
5
2. 如图, AB 是圆 O 的直径,点 C 在圆 O 上,若∠ A =
30°,则∠ B 的度数为( B
A. 75°
B. 60°
C. 45°
D. 15°

第2题图
1
2
3
4
5
3. 如图, AB , BC 是☉ O 的弦, AB =3,∠ ACB =
30°,则☉ O 的半径等于(
A. 1.5
B. 3
C. 4.5
D. 6

B
第3题图
1
2
3

圆周角定理 课件

圆周角定理 课件

3.关于圆周角定理推论的理解
(1)在推论1中,注意:“同弧或等弧”改为“同弦或等弦” 的话结论就不成立了,因为一条弦所对的圆周角有两种可 能,在一般情况下是不相等的.
(2)圆心角的度数和它所对的弧的度数相等,但并不是 “圆心角等于它所对的弧”.
(3)“相等的圆周角所对的弧也相等”的前提条件是“在 同圆或等圆中”.
【示例2】 如图,D,E分别为△ABC边AB,AC 的中点,直 线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC; (2)△BCD∽△GBD.
证明 (1)因为D,E分别为AB,AC的中点,所以DE∥BC.又 已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD = AD. 而 CF∥AD , 连 接 AF , 所 以 ADCF 是 平 行 四 边 形 , 故 CD=AF.
证明 连结 CE、CF、EF,∵BC 为⊙O 的直径,∴∠BFC =90°,∠BEC=90°.又∵∠ACB=90°,∴∠BCE=∠A. 又∵∠BFE=∠BCE,∴∠BFE=∠A.又∵∠EBF=∠DBA, ∴△BEF∽△BDA.∴EBFE=ABDD. ∵∠BFC=∠BCA,∠CBD=∠CBD, ∴△CBF∽△DBC.∴CBCF=CBDD. 又∵AD=CD,∴EBFE=CBCF,∴BBCE=CEFF.
(4)在同圆或等圆中,由弦相等⇒弧相等时,这里的弧要求 同是优弧或同是劣弧,一般选劣弧.
题型一 圆中相关角度数的求解
【例 1】 在半径为 5 cm 的圆内有长为 5 3 cm 的弦 AB,求此弦
所对的圆周角.
[思维启迪] 对于弦所对的圆周角要考虑全面.
解 如图所示,过 O 点作 OD⊥AB 于点 D.因为 OD⊥AB,OD
反思感悟 弦所对的圆周角有两个,易丢掉120°导致错误,另外求圆周角时易应用到解三角形的知识.

圆周角的三个定理和三个推论

圆周角的三个定理和三个推论

圆周角的三个定理和三个推论
圆周角是几何学中非常重要的课题,它测量了连续弧线绕圆心一周所形成的面积,它表征了圆弧路径的大小。

圆周角的三个定理和三个推论很重要,下面将对
它们做一些详细的介绍。

第一个定理是“极角定理”,它声明了一个角的圆心角(圆周角),它的大小
是由圆弧的长度和此弧端点从圆心到他们之间的距离决定的。

它可以为求解圆周角提來许多帮助。

第二个定理,“同余角定理”,它认为圆弧A,B,C,D上的三个角相同,即
A=B=C=D,那么圆的圆周必然相同为∠ACD。

这一定理使圆周角更容易求解。

第三个理定,“圆周角定理”,它宣称,对于任意两个圆心角相同的多边形的
每一条边,其角的总和为360°,或等于2π。

这一定理可以用来计算更复杂的圆
上的角度和圆周角。

此外,圆周角有三个重要推论,第一个是“梯形定理”,它保证了梯形是可以
分解为两个相同的三角形,梯形的内角和周围角之和等于360°,即弧度为2π。

第二个推论是“饼图定理”,它保证了由一个圆形分割成多个部分形成的饼图,其总弧度之和等于2π,在此饼图中,各部分所占的弧度数可以根据各部分的大小
来计算。

最后一个推论是“三角形定理”,它给出了一个三角形,它的三条边和三个内
角的总和等于180°,或与弧度等于π。

这三个推论可以用来计算更复杂的圆周角。

总之,圆周角的三个定理和三个推论对于几何学是非常重要的,它们可以帮助
我们很好地计算出更复杂的圆周角,这对于研究几何领域是很有帮助的。

圆周角定义及定理

圆周角定义及定理

圆周角的定义是:顶点在圆上,角的两边都与圆相交的角。

其特点可归纳为:①顶点在圆上,②两边都和圆相交。

这两个条件缺一不可。

圆周角定理为:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

具体来说,定理有三方面的意义:
圆心角和圆周角在同一个圆或等圆中;
它们对着同一条弧或者对的两条弧是等弧;
具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半。

此外,还有以下推论:
在同圆或等圆中,相等的圆周角所对的弧相等。

直径(半圆)所对的圆周角是直角;90°的圆周角所对的弦为直径。

如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:圆周角及推论
【学习目标】
1.学习圆周角、圆内接多边形的概念,圆周角定理及推论.
2.掌握圆周角与圆心角、直径的关系,能用分类讨论的思想证明圆周角定理.
3.会用圆周角定理及推论进行证明和计算.
【学习重点】
圆周角的定理及应用.
【学习难点】
运用分类讨论的数学思想证明圆周角定理.
情景导入 生成问题
旧知回顾:
(1)圆心角指顶点在圆心的角.
(2)如图,AB ,CD 是⊙O 的两条弦:
①如果AB =CD ,那么AB ︵=CD ︵,∠AOB =∠COD ;
②如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ;
③如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.
自学互研 生成能力
知识模块一 圆周角的定义
【自主探究】
阅读教材P 85探究上面内容,重点理解圆周角定义,回答下列问题:
1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角.
2.如图,下列图形中是圆周角的是( C )
3.如图,AD ︵所对的圆心角是∠AOD ,所对的圆周角有∠B 和∠C .
结论:一条弧对着一个圆心角,对着无数个圆周角.
知识模块二 圆周角定理
【自主探究】
认真看P 85“探究”~P 86推论上面内容,根据课本回答下列问题:
1.圆周角定理的证明共分了哪几种情况?
图1 图2 图3 答:圆心在圆周角的一边上,圆心在圆周角的内部,圆心在圆周角的外部.
2.如图1,∠A 与∠BOC 的大小关系怎样?你是怎样得到的?
答:∠A =12
∠BOC .理由如下: ⎭
⎪⎬⎪⎫OA =OC ⇒∠A =∠ACO ∠BOC =∠A +∠ACO ⇒∠A =12∠BOC 3.如图2,∠A 与∠BOC 的大小关系怎样?你是怎样得到的?
答:∠A =12
∠BOC ,理由略. 4.如图3,∠A 与∠BOC 的大小关系怎样?你是怎样得到的?
答:∠A =12
∠BOC ,理由略.
范例:如图所示,AB 是⊙O 的直径,AB =10cm ,∠ADE =60°,DC 平分∠ADE ,求AC 、BC 的长. 解:∵∠ADE =60°,DC 平分∠ADE ,
∴∠ADC =12
∠ADE =30°. ∴∠ABC =∠ADC =30°.
又∵AB 为⊙O 的直径,
∴∠ACB =90°,
∴AC =12
AB =5cm , BC =AB 2-AC 2=102-52=53(cm ).
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 理解圆周角的概念,能够在图形中正确识别圆周角
知识模块二 掌握圆周角定理,并会运用定理进行简单的计算与证明
当堂检测 达成目标
【当堂检测】
1.如图,在⊙O 中,圆心角∠BOC =78°,则圆周角∠BAC 的大小为( C )
A .156°
B .78°
C .39°
D .12°
(第1题图)
(第2题图)
2.如图,在⊙O 中,已知∠OAB =22.5°,则∠C 的度数为( D )
A .135°
B .122.5°
C .115.5°
D .112.5°
3.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.
证明:∵AB =BC ,∴AB ︵=BC ︵,
∴∠BDC =∠ADB ,∴DB 平分∠ADC.
【课后检测】见学生用书
课后反思 查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________。

相关文档
最新文档