传递过程原理习题答案

合集下载

中南大学冶金传递过程原理习题解答

中南大学冶金传递过程原理习题解答

1-1-8 50kg密度为1600 kg•m-3的溶液与50kg 25℃的水混合,问混合后溶液的密度为多少?(设混合前后溶液的体积不变)。

解:25°C时水的密度为996kg·m-3。

由得,解得,即混合后溶液的密度为。

1-1-9 如图所示为一平板在油面上作水平运动,已知运动速度u为0.8m•s-1,平板与固定板之间的距离,油的粘度为1.253Pa•s,由平板所带动的油运动速度呈现直线分布,问作用在平板单位面积上的粘性力为多少?解:单位面积上的粘性力即为τ,则即平板单位面积上的粘性力为1002.4 N 。

1-1-10 25℃水在内径为50mm的管内流动,流速为2m•s-1,试求其雷诺准数为若干?解:25°C时水的密度为996kg·m-3,粘度系数μ为89.5×10-5Pa·s。

则1-1-11 运动粘度为4.4cm2•s-1的油在内径为50mm的管道内流动,问:(1)油的流速为0.015m•s-1时,其流动型态如何?解:﹤2300所以其流动型态为层流。

(2)若油的流速增加5倍,其流动型态是否发生变化?解:若油的流速增加5倍,则Re*=5Re=8.5﹤2300所以其流动型态没有发生变化。

1-1-12 某输水管路,水温为20℃,管内径为200mm,试求:(1)管中流量达到多大时,可使水由层流开始向湍流过渡?解:20°C时水的密度为998.2kg·m-3,粘度系数μ为100.42×10-5Pa·s。

水由层流开始向湍流过渡时,Re=2300,则解得v=0.01157m·s-1所以管中流量达到时,可使水由层流开始向湍流过渡。

(2)若管内改送运动粘度为0.14cm2•s-1的某种液体,且保持层流流动,管中最大平均流速为多少?解:所以保持层流流动,管中最大平均流速为。

1-2-3 某地区大气压力为750mmHg。

传递过程原理第二章习题解

传递过程原理第二章习题解
解:

10求证流函数 和势函数 满足 方程
据流函数与势函数定义

分别对x y求偏导数
对应式相加可得
1.甘油在流道中心处的流速与离中心25mm处的流速:
2.通过单位管长的压力降:
3.管壁面处的剪应力。
2流体在两块无限大平板之间作一维稳态层流,试计算截面上等于主体流速 的点距板壁面的距离。又如流体在管内作一维稳态层流时,该点与壁面的距离为若干?
解:
两无限大平板之间 可得
分离变量并积分有: 得到流线方程得一般形式
当 、 、 时, ,过(1,3)点的流线方程为:
当 、 、 时, ,过(1,3)流线方程仍为:
8已知某不可压缩流体作平面流动时的速度 , ,试导出此情况下的流函数。
解:

9某不可压缩流体作二维流动时的流函数可用下式表示:
试导出点(2,1)处的速度值。
第二章
1温度为20℃的甘油以10kg/s的质量流率流过宽度为1m、高为0.1m的的矩形截面管道,流动已充分发展,试求算:
1.甘油在流道中心处的流速与离中心25mm处的流速;
2.通过单位管长的压力降;
3.管壁面处的剪应力。
已知20℃的甘油的密度 ,粘度为
解:
确定流型
流动为层流,处理为两大平板之间稳态层流流动
解:
流动为层流
中心处:
半径中点处:
壁面处:
5常压下,温度为45℃的空气以 的体积流率流过水平套管环隙,套管的内管外径为50mm,外管内径为100mm,试计算:
1.空气最大流速处的径向距离;
2.单位长度的压力降;
3.内外管间中点处的空气流量;
4.空气最大流速;
5. 及 处的壁面剪应力。

冶金传输原理习题答案

冶金传输原理习题答案

冶金传输原理习题答案冶金传输原理习题答案冶金传输原理是冶金学中的一个重要分支,研究金属和合金在加热、冷却和变形过程中的传输规律和机制。

在学习和研究冶金传输原理时,习题是不可或缺的一部分,通过解答习题可以加深对该学科的理解和掌握。

下面将给出一些常见的冶金传输原理习题及其答案。

1. 请简述热传导的基本原理。

热传导是指物质内部由于温度差异而传递热量的过程。

其基本原理是热量从高温区传递到低温区,传递过程中热量通过物质内部的分子或电子的碰撞和传递完成。

热传导的速率与温度差、物质的导热性质和传热距离有关。

2. 什么是对流传热?请举例说明。

对流传热是指通过流体(气体或液体)的传热方式。

当物体表面与流体接触时,流体会受热膨胀,形成对流循环,将热量从高温区传递到低温区。

例如,热水器中的水受热后上升,冷水下降,形成对流循环,使整个水体均匀受热。

3. 请解释辐射传热的特点。

辐射传热是指通过电磁波的传热方式。

辐射传热不需要介质,可以在真空中传递热量。

辐射传热的特点是传热速率与温度差的四次方成正比,与物体表面特性和距离的平方成反比。

例如,太阳辐射的热量可以通过真空传递到地球上。

4. 请简述固体变形的原理。

固体变形是指固体在外力作用下发生形状和尺寸的改变。

固体变形的原理是固体内部的晶格结构发生变化,从而使整个固体发生形变。

固体变形可以分为弹性变形和塑性变形两种。

弹性变形是指在外力作用下,固体发生形变后能够恢复原状;塑性变形是指在外力作用下,固体发生形变后不能恢复原状。

5. 请解释扩散的基本原理。

扩散是指物质在非均匀温度和浓度条件下的自发性传递过程。

扩散的基本原理是物质分子或原子的热运动引起的碰撞和交换。

扩散的速率与温度、浓度差、物质的扩散系数和距离有关。

扩散在冶金过程中起着重要的作用,如金属中的杂质扩散、合金的相变等都与扩散有关。

通过以上习题的解答,我们可以更加深入地理解和掌握冶金传输原理。

在实际应用中,冶金传输原理的理论和方法可以帮助我们解决金属加工和冶炼过程中的问题,提高生产效率和产品质量。

传递过程原理复习题最后报告

传递过程原理复习题最后报告

《传递工程基础》复习题第一单元传递过程概论本单元主要讲述动量、热量与质量传递的类似性以及传递过程课程的内容及研究方法。

掌握化工过程中的动量传递、热量传递和质量传递的类似性,了解三种传递过程在化工中的应用,掌握牛顿粘性定律、付立叶定律和费克定律描述及其物理意义,理解其相关性。

熟悉本课程的研究方法。

第二单元动量传递本单元主要讲述连续性方程、运动方程。

掌握动量传递的基本概念、基本方式;理解两种方程的推导过程,掌握不同条件下方程的分析和简化;熟悉平壁间的稳态层流、圆管内与套管环隙中的稳态层流流动情况下连续性方程和奈维-斯托克斯方程的简化,掌握流函数和势函数的定义及表达式;掌握边界层的基本概念;沿板、沿管流动边界层的发展趋势和规律;边界层微分和积分动量方程的建立。

第三单元热量传递本单元主要讲述热量传递基本方式、微分能量方程。

了解热量传递的一般过程和特点,进一步熟悉能量方程;掌握稳态、非稳态热传导两类问题的处理;对一维导热问题的数学分析方法求解;多维导热问题数值解法或其他处理方法;三类边界问题的识别转换;各类传热情况的正确判别;各情况下温度随时间、地点的分布规律及传热通量。

结合实际情况,探讨一些导热理论在工程实践中的应用领域。

第四单元传量传递本单元主要介绍传质的基本方式、传质方程、对流传质系数;稳定浓度边界层的层流近似解;三传类比;相际传质模型。

掌握传质过程的分子扩散和对流传质的机理;固体中的分子扩散;对流相际传质模型;熟悉分子扩散微分方程和对流传质方程;传质边界层概念;沿板、沿管的浓度分布,传质系数的求取,各种传质通量的表达。

第一部分 传递过程概论一、填空题:1. 传递现象学科包括 动量 、 质量 和 热量 三个相互密切关联的主题。

2. 化学工程学科研究两个基本问题。

一是过程的平衡、限度;二是过程的速率以及实现工程所需要的设备。

3. 非牛顿流体包括假塑性流体,胀塑性流体,宾汉塑性流体 (至少给出三种流体)。

传递过程原理作业题解(1-7章)

传递过程原理作业题解(1-7章)

第二章1. 对于在r θ平面的不可压缩流体的流动,r 方向的速度分量为2cos /r u A r θ=-。

试确定速度的θ分量。

解:柱坐标系的连续性方程为11()()()0r z ru u u r r r z θρρρρθθ∂∂∂∂+++='∂∂∂∂对于不可压缩流体在r θ平面的二维流动,ρ=常数,0,0z z u u z∂==∂,故有11()0r u ru r r r θθ∂∂+=∂∂ 即22cos cos ()()r u A A ru rr r r rθθθθ∂∂∂=-=--=-∂∂∂将上式积分,可得22cos sin ()A r A u d f r r θθθθ=-=-+⎰式中,()f r 为积分常数,在已知条件下,任意一个()f r 都能满足连续性方程。

令()0f r =,可得到u θ的最简单的表达式:2sin A u r θθ=-2.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。

(1)在矩形截面管道,可压缩流体作稳态一维流动; (2)在平板壁面上不可压缩流体作稳态二维流动; (3)在平板壁面上可压缩流体作稳态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向稳态流动; (5)不可压缩流体作球心对称的径向稳态流动。

解: ()0ρρθ∂+∇=∂u(1) 在矩形截面管道,可压缩流体作稳态一维流动0x z x y z u u u u u u x y z x y z ρρρρρθ∂∂∂∂∂∂∂++++++=∂∂∂∂∂∂∂⎛⎫⎪⎝⎭y 稳态:0ρθ∂=∂,一维流动:0x u =, 0y u = ∴ z 0z u u z z ρρ∂∂+=∂∂, 即 ()0z u zρ∂=∂ (2)在平板壁面上不可压缩流体作稳态二维流动()()()0y x z u u u xyzρρρρθ∂∂∂∂+++=∂∂∂∂稳态:0ρθ∂=∂,二维流动:0z u = ∴()()0y x u u xyρρ∂∂+=∂∂, 又cons t ρ=,从而0yx u u x y∂∂+=∂∂ (3)在平板壁面上可压缩流体作稳态二维流动 在此情况下,(2)中cons t ρ≠∴()()0y x u u xyρρ∂∂+=∂∂(4)不可压缩流体在圆管中作轴对称的轴向稳态流动()()()110r z r u u u r r r zθρρρρθθ∂∂∂∂+++='∂∂∂∂ 稳态:0ρθ∂='∂,轴向流动:0r u =,轴对称:0θ∂=∂ ∴()0z u z ρ∂=∂, 0z uz∂=∂ (不可压缩cons t ρ=) (5)不可压缩流体作球心对称的径向稳态流动22()(sin )()1110sin sin r r u u u r r r r θφρρθρρθθθθφ∂∂∂∂+++='∂∂∂∂ 稳态0ρθ∂='∂,沿球心对称0θ∂=∂,0φ∂=∂,不可压缩ρ=const ∴221()0r r u r r ∂=∂ ,即 2()0r d r u dr= 3.某粘性流体的速度场为22538=x y xyz xz +-u i j k已知流体的动力粘度0.144Pa s μ=⋅,在点(2,4,-6)处的法向应力2100N /m yy τ=-,试求该点处的压力和其它法向应力和剪应力。

传输原理课后答案

传输原理课后答案

传输原理课后答案1. 传输原理的基本概念。

传输原理是指在信息传输过程中所涉及的各种原理和技术。

它涉及到电信号的传输、调制解调、数字信号的传输、传输介质的选择等内容。

在信息技术日新月异的今天,传输原理显得尤为重要,它关乎着信息的传递速度、传输质量以及网络的稳定性。

2. 传输原理的基本分类。

根据传输介质的不同,传输原理可以分为有线传输和无线传输两大类。

有线传输是指通过电缆、光纤等有线介质进行信息传输,它的优点是传输速度快、传输质量高,但受限于线路长度和布线成本。

而无线传输则是指通过无线电波进行信息传输,它的优点是灵活便捷,但受限于信号受干扰、传输距离有限等问题。

3. 传输原理的关键技术。

在传输原理中,调制解调技术是一项非常重要的技术。

调制是指将数字信号转换为模拟信号,以便在传输过程中能够通过介质传输;而解调则是将模拟信号转换为数字信号,以便接收端能够正确解读信息。

调制解调技术的发展,使得数字信号的传输更加稳定可靠。

4. 传输原理的应用。

传输原理在现代社会中有着广泛的应用,比如在通信领域,传输原理决定了通信网络的速度和质量;在互联网领域,传输原理决定了网络的稳定性和安全性。

此外,在工业自动化、智能家居等领域,传输原理也扮演着重要的角色。

5. 传输原理的未来发展。

随着信息技术的不断发展,传输原理也在不断创新和进步。

未来,随着5G、6G等新一代通信技术的应用,传输原理将迎来新的发展机遇。

同时,随着人工智能、物联网等新技术的兴起,传输原理也将在更多领域得到应用和拓展。

总结,传输原理作为信息技术的重要组成部分,对于信息的传输和通信至关重要。

通过对传输原理的学习和理解,可以更好地掌握信息技术的核心内容,为未来的发展打下坚实的基础。

希望同学们能够认真学习传输原理的相关知识,不断提升自己的专业能力。

传递过程原理习题答案

传递过程原理习题答案

《传递过程原理》习题一一、在一内径为2cm 的水平管道内,测得距管壁5mm 处水的流速为s 。

水在283K 温度下以层流流过管道。

问:(1)管中的最大流速。

(2)查出283K 下水的粘度,注明出处。

(3)每米管长的压强降(N/m 2/m )。

(4)验证雷诺数。

【解】:(1) ])(1[4)(42222RrL R P r R LP v g g -∆=-∆=μμ (1) 在r =0处,即管中心处速度最大为2max 4R LP v g μ∆=本题中R =1cm, 在r ==,v =s ,带入(1)得,])1/5.0(1[41.022-∆=LR P g μ =∆=LR P v g μ42max s=s(2) 31031.1-⨯=μ (3)2max 4R v L P g μ=∆= Pa/s (4) 10201031.13.1301.0101212Re 33max max=⨯⨯⨯⨯====-μρμρμρRv v R vd <2100为层流二、用量纲确证有效因子(节)中的K 为无量纲数。

(R D a k K A /1=)【解】:11][-⋅=s m k1][-=m a 12][-⋅=s m D ABm R =][所以,1)/(][1211=⨯⋅⨯⋅=---m s m m s m K 故,K 为无量纲数三、对双组份A 和B 系统证明下列关系式: 1.A B B A A B A A x M x M x M M w d )(d 2+=(从ρρAA w =出发先推出w A 与x A 的关系式) 2.2)//(d dB B A A B A AA M W M W M M w x +=(从CC x A A=出发先推出x A 与w A 的关系式)【解】方法1:从w A 与x A 的关系式推导(M A 与M B 为常量)()/()/A A A A AA A BA AB B A A B BC M C x M w C M C M C x M x M ρρρ===+++, A A w x 求导(略),得2()A A BA A AB B dw M M dx x M x M =+ (/)//(//)///A A A A AA AB A A B B A A B BC M w M x C C M M w M w M ρρρρρ===+++, A A x w 求导(略),得 21(//)A A A B A A B B dx dw M M w M w M =+ 注意:22, A A B A A A A B dw M M dx M dx dw M M M ==方法2:从M 的定义推导,1,,1,1///A B A A B B A B A A B B x x M x M x M w w M w M w M +=⎧⎪=+⎪⎨+=⎪⎪=+⎩20() (1)0(1/)(1/)(1/) ()/() (2)A B A A B B A B A A B A A B BA B A B A dx dx dM M dx M dx M M dx dw dw M dM M dw M dw M M M M dw +=⎧⎪=+=-⎪⎨+=⎪⎪-=+⎩=--⋅ (2)÷(1),得22()A A B A BA A AB B dw M M M M dx M x M x M ==+ (1)÷(2),得221(//)A A A B A B A A B B dw M dx M M M M w M w M ==+四、在管内CO 2气体与N 2气进行等摩尔逆向扩散。

《传递过程原理》课后习题参考答案

《传递过程原理》课后习题参考答案

《传递过程原理》课程第一次作业参考答案(P56)1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示θθθsin ;cos 22⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-=D r C u D r C u r其中C ,D 为常数,说明此时是否满足连续方程。

2. 判断以下流动是否可能是不可压缩流动(1) ⎪⎩⎪⎨⎧-+=--=++=zx t u z y t u yx t u z y x 222 (2) ()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=22221211t tz u xy u x y u z y x ρρρρ3.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。

(1)在矩形截面流道内,可压缩流体作定态一维流动;(2)在平板壁面上不可压缩流体作定态二维流动;(3)在平板壁面上可压缩流体作定态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向定态流动;(5)不可压缩流体作圆心对称的径向定态流动。

《化工传递过程导论》课程作业第三次作业参考P-573-1流体在两块无限大平板间作定态一维层流,求截面上等于主体速度u b的点距离壁面的距离。

又如流体在圆管内作定态一维层流,该点距离壁面的距离为若干?距离壁面的距离02(12d r =-3-2温度为20℃的甘油以10kg/s 的质量流率流过长度为1m ,宽度为0.1m 矩形截面管道,流动已充分发展。

已知20℃时甘油的密度ρ=1261kg/m 3,黏度μ=1.499Pa·s 。

试求算(1)甘油在流道中心处的流速以及距离中心25mm 处的流速; (2)通过单位管长的压强降;2max 012P u y xμ∂=-∂流动方向上的压力梯度Px∂∂的表达式为:max 22u Px y μ∂=-∂ 所考察的流道为直流管道,故上式可直接用于计算单位管长流动阻力:fP L∆,故: -1max 22022 1.4990.119142.7Pa m 0.1()2f P u P P L x L y μ∆∂∆⨯⨯=-=-===⋅∂ (3) 管壁处剪应力为:2max max 002[(1())]xy y y yu u yu yy y y μτμτμ==∂∂=-⇒=--=∂∂ max 2022 1.4990.119N 7.135m 0.12u y μτ⨯⨯⇒===故得到管壁处的剪应力为2N7.135m《化工传递过程导论》课程第四次作业解题参考(P122)2. 常压下,20℃的空气以5m/s 的速度流过一光滑的平面,试判断距离平板前缘0.1m 和0.2m 处的边界层是层流还是湍流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《传递过程原理》习题一一、在一内径为2cm 的水平管道内,测得距管壁 5mm 处水的流速为s 。

水 在283K 温度下以层流流过管道。

问:(1)管中的最大流速。

(2)查出283K 下 水的粘度,注明出处。

(3)每米管长的压强降(N/m 2/m )。

(4)验证雷诺数。

为层流二、用量纲确证有效因子(节)中的 K 为无量纲数 (K .. «a/ D A R ) 【解】:[k 1] m s 1[a] m 12 1[D AB ] m s [R] m所以,[K] ms 1m 1/(m 2s 1) m 1故,K 为无量纲数【解】:⑴r 2)P g R 24 L(1)在r =0处, 即管中心处速度最大为V max P丄R 24 L本题中 R=1cm, 在 r ==, v=s ,带入(1)得, 0.1P g R 22g[1 (0.5/1)2]4 LP g R 2s=s4 L31.31 10 4 v-r=Pa/s⑷Redv2R2VmaXRV max心/ 1020<2100 1.31 10、对双组份A 和B 系统证明下列关系式:方法2:从M 的定义推导四、在管内CQ 气体与N 2气进行等摩尔逆向扩散。

管长为0.20m ,管径为0.01m , 管内N 2气的温度为298K ,总压为。

管两端 CQ 的分压分别为456mmHg 和 76mmHg 。

CQ 通过N 2气的扩散系数D AB =X 10-5m 2/s 。

试计算CQ 的扩散通量。

【解】取柱坐标,设A 为CQ , B 为N 2, L 为管长。

假设(1) 一维定态(2)等摩尔逆向扩散:N AZ +N BZ =0(3)理想气体:C p/(RT), C A p A /(RT)并有 p=c on st, T=con st , D AB =C onstM A MB2(XAM A X B M B )dX A (从 W A —出发先推出W A 与X A 的关系式)2. dx A M A M B (W A /M A W B /M B )2 (从X ACC A 出发先推出XA 与WA的关系式)【解】方法1:从W A 与X A 的关系式推导(M A 与M B 为常量)求导(略)dx A X A求导(略) 注意:A B(CA M ACB M B ) /CMA M B「"A M,W A X AXA M AXB M B(X A M AC A C A CBdX A dw Adw A dX ABM B )(A /M A )/ (A /M A B /M B )/1M A M B (W A /M AMA MB M 2dX A dw A2W B / M B ) 2MMA M BW A ' M A ,X A W AW A / M A W B / M BX A X B 1, dx Adx B 0M X A M AXB M B ,dM M A dx A M B dx E i(MAM iE )dx A (1)W AW B 1,dw Adw B 01/MW A / M A W B / M B ,(1/ 2M )dM(1/M A )dw A (1/ M B)dW B(M AM B )/(M A MB )dw A⑵(2 )亠(得赞 M A M B(1)dw Ar( 2) , 得 ——dXM A M B(XA M AXB M B )12M A M B ( W A /M AW B /M B )M A M B22由假设(1)作壳体平衡,R 2NAZ Z R 2N AZZ Zdx A dz 解得x A =k 1z+k 2dN Az dz得 N AZ =C onst由假设(2) J A ZN AZ X A (N AZ N BZ ) N AZ由假设(3)p/(RT) constX A X AO1.0132 5105Pa 8.314J /(mol k) 283k P A /(RT)40.940.9mol/m 3N m/molC A /C p/(RT)456mmHg 0.6,760mmHgP A /P76mmHg X AL0.1760mmHg再利用Fick 扩散定律(一维), j * CD咚A ZAB .dzQ N AZ (本例即为J A Z) , C , D AB 均为常数k 1 (k 1=c onst )由边条件可定出《 2.5m 1, k 20.5通量 NAZ J AZ CD AB R40.9mol/m 3 1.67 10 5m 2/ s ( 2.5/ m ) 1.71 10 3mol /(m 2 s )27W AR N A Z 1.34 10 mol /s附:管道体积V R 2 L 1.57 10 5 m 3 管道的气体量V C 6.42 10 4mol讨论:圆截面通量W A 为x 10-7mol/s ,与管道内气体量X 10-4mol 相比很小,可见 求通量时,假设为“定态”可认为是合理的。

五、通过非等温球形膜的扩散(双组份)问题的求解。

dX A N Ar CD AB X A (N ArN Br )dr方程:d (r 2N Ar ) dr边界条件:当 r=r 1 时,X B =X B 1当 r=r 2 时,X B =X B2n假定匚丄D ABT 1「1D AB ,13/2T,C=p/RT, p=常量,N B =0 (组份 B 静止)1求:(1) x B =f (r , X BI , X B2)的表达式。

(n 工-2)(2) W A 4 r iN Ar r r ?(n 工-2)(3)用洛必大法则求出n=-2时的X A 和W A 。

[解]: N ArCD ABd:AdrX A (N Ar N B 「)(a )因为N Br =O , 上式可以化简为:N Ar (1 X A )CDABd(1-X A ) dr '(b)即N Ar X BCDABdx B dr(c)又,—(r 2drN Ar )即,N ArC 1r2nD AB r 2 (d)T n rD ABT3/2可堆出:(e )T 1「1D AB,1T 1 ?JJ 」D AB,1r 13(3) n=-2 时,C=p/RT (e), (d)带入(c )得,$X BrR D AB ,1n2dx B dr令:ApD AB,1—TTRr 12积分的:由边界条件:A I nX BC11 1A l nX B ,1 In21 2n 12n r 12r 2r=r 1时, X B =X B1; r=r 2 时, "曰 X B =X B21 1 1X B 2(n 1) 1 .1 ‘Al 门土-nr(1 n/2)(1 rr1n /2) (2) W A带入得:X BXB1XB2 XB1「2(1 n/2)r 1 (1n/2)4 rj N Ar r r 14 rj C 14 r 1C1=4中1) Jnr 121 r 2Ain 独X B,11X B ,1X B-n r 12C 11X B X B1 X B2l im2(1 n/2) (1 n/2)r r i「(1 n/2)~ (1 n/2)「2 「1「2 \2n X B1X B1X B2X B1X A 1 X B 1 X B1 X B2「2X B1I n imTX B1X B2X B1r21) rf n1r"X B 2Al n-B2X B ,14 P D AB,1r1 . X B2 InRln^ X B1r1。

相关文档
最新文档