单室平衡容器原理(材料详实)

合集下载

内置式平衡容器

内置式平衡容器

内置式平衡容器1、差压水位计(老式单室平衡容器)下面就单室平衡容器的测量误差作一简要分析:如图三所示:当ΔP2=0时,有公式(5)成立H =(r- r //)g.L-ΔP1 -----(5)g(r / - r // )式中ΔP1:变送器所测参比水柱与汽包内水位的差压值(ΔP2=0时)L:参比水柱高度 r :参比水柱的平均密度ΔP2:正、负压侧仪表管路的附加差压这里饱和蒸汽和饱和水的密度(r //、r /)是汽包压力P的单值非线性函数,通过测量汽包压力可以得到,而参比水柱中水的平均密度r 通常是按50℃时水的密度来计算的,而实际的r 具有很大的不确定性与50℃时水的密度相差很大是造成测量误差的主要原因之一。

单室平衡容器参比水柱温度与DCS 修正补偿的50℃或60℃相差很大,带来不确定的附加误差,其误差在100mm 以上。

由于云母水位计和单室平衡容器的误差方向不一致,所以要保证各水位计之间的偏差在30mm 以内是不可能的,现行是以云母水位计为准,通过改变变送器或DCS 软件修正来拼凑的,只能从数值上在一个特定的工况和小范围内使其偏差在30mm 以内,是自欺欺人的做法,不能保证锅炉的安全运行。

从上可见要全过程全范围的实现汽包各水位计之间的偏差小于30mm 是不可能的。

由于汽包水位测量不准,造成汽包长期高水位运行,降低了旋风分离器的工作效率,使饱和蒸汽带水过多,增加了过热器和汽轮机的结垢,降低了机组的工作效率,加速了过热器的爆管泄漏,存在着很大的事故隐患。

21图三单室平衡容器测量原理图2、内置式单室平衡容器如图四所示:H=L-ΔP /g(r / - r // ) --- (6) (6)式是(5)式中,参比水柱的平均密度r 等于饱和水的密度r / 转换而来,L 、g 为常数,r / - r //是汽包压力的单值函数,ΔP 是变送器测得的差压值,故此消除环境温度对参比水柱密度的影响,从而克服了这一误差。

内置式平衡容器特点:1 、精确度高,不受汽包内水欠饱和以及外置平衡容器参比水柱温度变化的影响,从公式)S W /(0 -∆--=∆p H L h 可以看出变送器所测得的差压值p ∆为汽段参比水柱(饱和水)和相同高度的饱和汽静压之差,这一点与以往的任何一种外置式平衡容器不同,而采用外置式平衡容器测量汽包水位不仅受平衡容器下参比水柱温度变化的影响,而且由于补偿公式是假定汽包内水是饱和状态下推算出来,而实际上汽包内的水是欠饱和的,而且随着负荷变化欠饱和度也是变化的,由此可见,采用内装平衡容器的测量精确度远比外置式平衡容器要高。

关于汽包水位测量问题

关于汽包水位测量问题

就地水位计有:玻璃板式水位计、就地双色水位计、电接点式水位计几种。

原理都是通过连通器原理,即在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。

见下图。

只不过看的方式不同而已对于就地水位计来讲,存在着散热误差,导致读数不准。

上面公式推导过程:(假定饱和蒸汽密度与水H*ρ’=H 位计中蒸汽的密度相同) 管向周围空间散热,其水柱温度实际上低于容器内水的温度,直接影响水位计误差值|△h |与水位值H 成正比,即水位值H 越高(以水侧连通高,ρ'减少, ρ"增大,即在同样的散热条件下 (ρ1-ρ')变大,(ρ1-ρ上讲,当ρ1=ρ'时,(1)式可以简化为H1=H ,也就是说水位计水位值等于容器内水MW 机组)在高水位运行时,汽包水位计的“散热”误差值达100~150取样孔及连通管): 方向倾斜,水侧取样管应向下向容器方向倾斜,一般的上部不用保温: 一、个凸面安装法与高压容器上所对应的安装法兰相连接,组成一个高压二、1*ρ1+(H-H 1) *ρ’’ H*ρ’=H 1*ρ1+H*ρ’’-H 1* ρ’’H*ρ’- H*ρ’’=H 1*ρ1 -H 1*ρ’’ H*(ρ’- ρ’’)=H 1*(ρ1-ρ’’) H 1=[(ρ’- ρ’’)/ (ρ1-ρ’’)]*H (1)直接“散热”误差由于测量筒及其引位计测量筒内水的密度ρ1,即测量筒内水的密度ρ1大于容器内水的密度ρ',由(1)式可知水位计显示的水位H ,比容器内水位H 低。

由(2)式可以看出,水位计测量筒散热越多,ρ1也就越大,因而测量误差|△h |越大,这种误差我们称为直接“散热”误差。

为了减少直接“散热”误差|△h |,一般在水位计测量筒的下部至水侧连通管应加以保温,以减少测量筒水柱温度与容器内水的温度之差:同时水位计的汽侧连通管及水位计测量筒的上部不用保温,并让汽侧连通管保持一定的倾斜度,使更多的凝结水流入测量筒,以提高水位计测量筒内水的密度ρ1。

平衡容器工作原理

平衡容器工作原理

平衡容器的工作原理3.双室平衡容器的工作原理3.1.简介双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。

它的主要结构如图1所示。

在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。

为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。

3.2.凝汽室理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯及后续环节使用。

3.3.基准杯它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器(后文简称变送器)的正压侧。

基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室。

由于基准杯的杯口高度是固定的,故而称为基准杯。

3.4.溢流室溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。

正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水。

3.5.连通器倒T 字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧。

毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。

它之所以被做成倒T 字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结。

连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响。

3.6.差压的计算通过前面的介绍可以知道,凝汽室、基准杯及其底部位于容器内部的导压管中的介质温度与汽包中的介质温度是相等的,即γw =γ`w ,γs =γ`s 。

故而不难得到容器所输出的差压。

知识单双室平衡容器工作原理

知识单双室平衡容器工作原理

知识单双室平衡容器工作原理一、单室平衡容器工作原理如下图,单室平衡容器测水位的原理非常简单,从汽包汽侧取样孔引一管至平衡容器(平衡容器又叫作凝结室,它是一个表面积很大的不加保温层的容器),进入平衡容器的饱和蒸汽通过与外界换热不断凝结成水,多余的水由于溢流原理自取样管流回汽包,使平衡容器内的水位保持恒定。

因此,差压变送器的正压头由于平衡容器有恒定的水柱而维持不变,负压头则随着汽包水位的变化而变化,通过测量正负管路差压,再根据公式P=ρ*g*h,就能很容易的得出汽包的真实水位。

二、双室平衡容器工作原理如下图,双室平衡容器结构较单室平衡容器复杂,它是由凝汽室、基准杯、溢流室和连通器等几个部件组成。

来自汽包的饱和水蒸汽经过凝汽室凝结成水流入基准杯,基准杯的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压变送器的正压侧。

基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室,溢流室收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。

而连通器是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。

三、单双室平衡容器工作特性比较单室平衡容器参比液柱内水温上下温差很大,密度差别也很大,所以误差比较大,但是可以通过温度补偿等等方法来减小误差;双室平衡容器参比水柱内的水一直在流动,温度较高,与汽包温度相差不大,密度也基本相同,而且其本身在一定的压力温度范围内有补偿水位的作用,所以误差较小。

但是当汽包压力突然下降时,双室平衡容器内的饱和水将汽化,从而导致参比液柱本身出现变化,直接带来测量错误!加剧虚假水位。

而单室平衡容器由于参比液柱的温度不够,所以不用考虑汽包压力突然下降所带来的一系列影响。

而且现在的DCS普遍带有比较完善的温度补偿办法,所以现在的新机组,比如绍电一般都采用单室平衡容器测量汽包水位。

GJT-DⅡ双恒单室平衡容器简介.

GJT-DⅡ双恒单室平衡容器简介.

GJT -D Ⅰ双恒单室平衡容器简介淮安维信仪器仪表有限公司高维信为了给汽包水位差压式测量提供准确稳定的参照物——参比水柱,提高水位自动调节系统的准确性与稳定性,提高CRT 水位计的可信性,淮安维信仪器仪表有限公司独家研发、独家制造的最新专利产品GJT -D Ⅰ双恒单室平衡容器。

1. 汽包水位差压平衡容器概述差压水位计测量原理是,由平衡容器形成参比水柱,比较汽包内水柱与参比水柱的高度差,将高度差转换为静压差△P 1,从而实现“水位-差压”变换,再由传输环节将差压送至变送器,测量显示水位。

差压变送器准确性与稳定性很高,故差压水位计测量系统问题主要在于,传统单、双室平衡容器不能为“水位-差压”变换提供准确稳定的参比水柱,即参比水柱密度变化较大,参比水柱高度不恒定。

配套凝结球式单室平衡容器(见图1)的差压式水位计测量系统主要问题是,必须进行参比水柱平均温度修正。

而准确修正难度之大由(1)式可见。

平均温度T c p =(t h /m L)(1- e - m L)+T c ------(1)式中:t h —饱和水温度;T c —环境温度;m =[(αU)/(λS)]0.5 ,α是参比水柱管放热系数,S 、D 、U 是参比水柱管的几何参数,S —截面积,D —直径,U —周长;λ—导热系数;L—参比水柱高度;t h 、λ又与汽包压力有关,放热系数α是变量、且量值不易确定。

所以,以参比水柱平均温度计算法确定温度修正参数,既困难,又不实用。

目前只能以简单的温度给定,或以简易的温度测量进行温度修正初步设定,投入运行后按云母水位计、电接点水位计指示进行修正参数调整。

现场试验调整工期长,工作量大,修正误差大。

因此,参比水柱温度修正是差压水位计准确测量主要难点。

因此,《火力发电厂锅炉汽包水位测量系统技术规定》(DRZ/T01-2004)在 3.2指出,“中差压式水位表应充分考虑平衡容器下取样管参比水柱温度对水位测量的影响,应采用参比水柱温度稳定、接近设定温度的平衡容器,或采用经实践证明有成功应用经验的参比水柱温度接近饱和温度的平衡容器。

单室平衡容器的工作原理是

单室平衡容器的工作原理是

单室平衡容器的工作原理是
单室平衡容器是一种用于容纳气体或液体的容器,其工作原理基于受力平衡的原理。

在单室平衡容器中,容器内部被分为两部分,上下两个相等大小的房间。

上半部分被称为"工作室",而下半部分被称为"储罐"。

当容器中装有气体或液体时,气体或液体会均匀地分布在整个容器内部。

由于重力的作用,液体或气体会下沉到容器的底部,即储罐部分,而容器的顶部则会相对较空。

这样,工作室与储罐之间就会产生一个垂直于容器底部的压力差。

当需要从容器中取出气体或液体时,只需在容器的工作室部分设置一个出口,并通过控制出口的开关来调节气体或液体的流动。

在开启出口的同时,上部的空间会让液体或气体进入工作室,并将其从出口处排出。

在这个过程中,容器内部的压力会始终保持平衡,因为工作室中的气体或液体会不断地从储罐中流入,以保持两个房间中的物质量相等。

这样,即使储罐中的气体或液体减少,容器的压力也不会发生变化。

总之,单室平衡容器的工作原理是通过保持容器内外部气体或液体的质量平衡来实现受力平衡,并通过控制出口的开关来控制物质的流动。

锅炉汽包水位的原理分析

锅炉汽包水位的原理分析

锅炉汽包水位的原理分析0 引言汽包水位计是现代火电厂最重要的监视仪表之一,其测量准确与否对生产过程影响很大。

汽包水位过高,降低了汽包内汽水分离器的分离效果,使供出的饱和蒸汽携带水分过多,含盐量也增多。

由于蒸汽湿度大,过热蒸汽过热度降低,这不但降低了机组出力,而且容易造成汽机末几级叶片的水冲击,造成轴向推力过大使推力轴承磨损;含盐量过多,使过热器和汽机流通部分结垢,使机组出力不足且易使受热面过热而造成爆管。

汽包水位过低,则破坏了锅炉的汽水自然循环,致使水冷壁管被烧坏,严重缺水时还会发生爆管等事故。

所以准确测出汽包内水位,以提高机组的安全性是技术人员重点关注的问题[1]。

1 几种水位测量仪表的应用介绍1.1 双色水位计双色水位计采用连通器原理制成,通过光学原理中水汽两种介质的折射率不同而显示出锅炉水汽颜色的不同,汽红水绿。

这种水位计属于锅炉的附属设备,就地安置。

直接观测水位,汽满呈现红色,水满呈现绿色。

随水位变化自动而连续。

在锅炉启、停时用以监视汽包水位和正常运行时定期校对其他型式的水位计。

1.2 电接点式水位计利用饱和蒸汽与蒸汽凝结水的电导率的差异,将非电量的锅炉水位转换为电信号,并由二次仪表远距离地显示水位。

电接点式水位计基本上克服了汽包压力变化的影响,可用于锅炉启停及参数运行中。

电接点式水位计离汽包很近,电极至二次仪表全部是电气信号传递,所以这种仪表延迟小,误差小,不需要进行误差计算和调整,使得仪表的检修与校验大为简化[3]。

1.3 差压式水位计差压式水位计的工作原理是在汽包水位取样管上安装平衡容器,利用液体静力学原理使水位转换成差压,用引压管将差压信号送至差压计,由差压计显示汽包水位。

经过发展现在采用智能式差压变送器来测量汽包水位,特别计算机控制技术的引入,从技术性能、安全性、可靠性都有了极大的提高,现在亚临界锅炉均采用差压式水位计作为汽包水位测量的主要手段,并作为汽包水位控制、保护信号用。

单室平衡容器工作原理

单室平衡容器工作原理

单室平衡容器工作原理
单室平衡容器工作原理如下:
单室平衡容器是一种常用于测量气体压力的装置。

它由一个密封的容器和一个连通装置组成。

容器内部被划分为两个部分,上下两个相等容积的房间。

上方的房间称为压力室,下方的房间称为平衡室。

工作过程如下:
1. 初始状态下,压力室和平衡室的压力相等。

容器处于平衡状态。

2. 在容器的一侧添加要测量的气体,气体进入压力室内,增加了压力室的压力。

3. 压力室的压力增加导致容器内部发生不平衡,导致容器在一个方向上发生了位移。

4. 为了恢复平衡,容器会移动,直到压力室和平衡室的压力再次相等。

5. 容器移动的距离与压力差成正比。

通过测量容器位移的方法,可以计算出压力差的大小。

6. 在测量过程中,可以使用校准装置对容器进行校准,确保测量结果的准确性。

总结:单室平衡容器利用容器内气体压力差导致容器发生位移的原理,测量出气体的压力差。

通过校准装置的辅助,可以获得更准确的测量结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锅炉汽包水位测量误差分析
汽包水位是电厂的主要监控参数之一,正确测量汽包水位是锅炉安全运行的保证。

传统的测量方式有:就地双色水位计、电接点水位计、差压式水位计(单室或双室平衡容器补偿式)。

就地水位计、电接点水位计的测量误差受锅炉压力、散热情况、安装形式、实际水位的影响,很难准确计算。

因此高参数、大容量机组多以各种补偿差压水位计作为汽包水位测量的主要仪表,但这种水位计测量误差也同样受到诸多因素的影响。

本文通过分析汽包水位计的测量方式和水位测量误差的原因,并对特定工况下汽包水位的测量进行定量计算分析,提出减少水位测量误差的方法和措施。

一、就地水位计:
就地水位计是安装在锅炉本位上的直读式仪表,是锅炉厂必配的基本设备,大容量机组均采用工业电视远传到集控室监视,一般都配有两套,分别安装在汽包的两端。

就地水位计有玻璃、云母和牛眼之分,工作原理都是连通管原理,连通管原理是:在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。

就地水位计如图1所示。

式中:
h——汽包正常水位距水侧取样的距离,mm
△h——水位计中的水位与汽包中水位的差值,mm
Ps——饱和蒸汽密度,kg/m3
Pw——饱和水密度,kg/m3
Pa——水位计中水的平均密度,kg/m3
Ps'——水位计中蒸汽的密度,kg/m3
对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。

从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。

为了给电厂提供参考,有的锅炉厂给出了就地水位计和汽包正常水位差值的参考数据见表1。

相关文档
最新文档