小学奥数最大值最小值问题汇总只是分享

合集下载

小学六年级奥数——最大与最小(竞赛班)

小学六年级奥数——最大与最小(竞赛班)

小学六年级奥数——最大与最小【知识要点】研究某种量(或几种量)在一定条件下取得最大值或最小值的问题,我们称为最大与最小问题.在日常生活、科学研究和生产实践中,存在大量的最大与最小问题.如,把一些物资从一个地方运到另一个地方,怎样运才能使路程尽可能短,运费最省;一项(或多项)工作,如何安排调配,才能使工期最短、效率最高等等,都是最大与最小问题.这里贯穿了一种统筹的数学思想-最优化原则.概括起来就是:要在尽可能节省人力、物力和时间的前提下,争取获得在可能范围内的最佳效果.这一原则在生产、科学研究及日常生活中有广泛的应用.【例题】例1 (1)把14拆成两个自然数的和,如何拆可以使乘积最大?(2)14分拆为3个自然数之和,使它们的乘积最大.(3)14分拆为几个自然数之和,使它们的乘积最大.例2、(1)把1、2、3、4组成两位数乘两位数的算式,积最大与最小分别是多少?(2)1、2、3、4、5组成两位数乘三位数的算式,积最大与最小分别是多少?例3.用长和宽分别是4厘米和3厘米的长方形小木块,拼成一个正方形,最少要用这样的木块多少块?例4、975⨯935⨯972⨯( ),要使这个连乘积的最后四个数字都是零.在括号内最小应填 .例5、在一条公路上,每隔100千米有一个仓库,共5个.一号仓库存货10吨,二号仓库存货20吨,五号仓库存货40吨,三、四号仓库空着.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.8元运费,那么最少要花多少运费?【池中戏水】1.下面算式中的两个方框内应分别填和______,才能使这道整数除法题的余数最大.□÷25=104…□2、100个自然数,它们的总和是10000,在这些数里,奇数的个数比偶数的个数多,那么这些数里至多有多少个偶数?3.把小正方体的六个面分别写上1、2、3、4、5、6.拿两个这样的正方体,同时掷在桌子上.每次朝上的两个面上的数的和,最小可能是 .最大可能是 ,可能出现次数最多的两个面的数的和是 .4、王奶奶有一个24米长的篱笆,想围成一个长方形的养鸡场,这个养鸡场的面积最大可以是多少平方米?如果一边靠墙呢?【江中畅游】1.某车场每天有4辆汽车经过A1、A2、A3、A4、A5、A6六个点组织循环运输(如图).在A1点装货,需6个工人;在A2点卸货,需4个工人;在A3点装货,需8个工人;在A4点卸货,需5个工人;在A5点装货需3个工人;在A6点卸货,需4个工人.若每个点固定工人太多,会造成人力浪费,我们可以让装卸工人跟车走.这样有人跟车,有人固定,问最少要安排多少名装卸工人?【海中冲浪】1.王大伯从家(A点处)去河边挑水,然后把水挑到积肥潭里(B点处).请帮他找一条最短路线,在下图表示出来,并写出过程.AB··河。

最新小学奥数 最大最小问题

最新小学奥数  最大最小问题

最新小学奥数最大最小问题同学们在学习中经常能碰到求最大最小或最多最少的问题,这一讲就来讲解这个问题。

例1两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?分析与解:将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。

由此可知把15分成7与8之和,这两数的乘积最大。

结论1如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。

特别地,当这两个数相等时,他们的乘积最大。

例2比较下面两个乘积的大小:a=57128463×87596512,b=57128460×87596515。

分析与解:对于a,b两个积,它们都是8位数乘以8位数,尽管两组对应因数很相似,但并不完全相同。

直接计算出这两个8位数的乘积是很繁的。

仔细观察两组对应因数的大小发现,因为57128463比57128460多3,87596512比87596515少3,所以它们的两因数之和相等,即57128463+87596512=57128460+87596515。

因为a的两个因数之差小于b的两个因数之差,根据结论1可得a >b。

例3用长36米的竹篱笆围成一个长方形菜园,围成菜园的最大面积是多少?分析与解:已知这个长方形的周长是36米,即四边之和是定数。

长方形的面积等于长乘以宽。

因为长+宽=36÷2=18(米),由结论知,围成长方形的最大的面积是9×9=81(米2)。

例3说明,周长一定的长方形中,正方形的面积最大。

例4两个自然数的积是48,这两个自然数是什么值时,它们的和最小?分析与解:48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。

小学五年级奥数第38讲 最大最小问题(含答案分析)

小学五年级奥数第38讲 最大最小问题(含答案分析)

第38讲最大最小问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。

解答最大最小问题通常要用下面的方法:1、枚举比较法。

当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。

二、精讲精练例题1把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。

问这个和最大值是多少?练习一1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。

例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。

把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习二1、一把钥匙只能开一把锁。

现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。

最多要试开多少次才能配好全部钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。

那么年龄最大的最多是几岁?例题3 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习三1、一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。

2、如下图,有两条垂直相交的线段AB、CD,交点为E。

已知DE=2CE,BE=3AE。

在AB和CD取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?例题4一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。

四年级数学A班奥数专题“最大与最小”问题

四年级数学A班奥数专题“最大与最小”问题

->“最大与最小”问题在应用数学知识解决日常生活中的一些实际问题时,经常会出现解决方案不止一种,有时还会有无数种的情况。

在这种情况下,我们往往需要找最大量或最小量。

例1试求乘积为36,和为最小的两个自然数。

分析与解不考虑因数顺序,乘积是36的两个自然数有以下五种情况:1×36、2×18、3×12、4×9、6×6。

相应的两个乘数的和是:1+36=37、2+18=20、3+12=15、4+9=13、6+6=12。

显然,乘积是36,和为最小的两个自然数是6与6。

例2试求乘积是80,和为最小的三个自然数。

分析与解不考虑因数顺序,乘积是80的三个自然数有以下八种情况:1×2×40、1×4×20、1×5×16、1×8×10、2×2×20、2×4×10、2×5×8、4×4×5。

经过计算,容易得知,乘积是80,和为最小的三个自然数是4、4、5。

结论一:从上述两例可见,m个自然数的乘积是一个常数,则当这m 个乘数相等或最相近时,其和最小。

例3试求和为8,积为最大的两个自然数。

分析与解不考虑加数顺序,和为8的两个自然数有以下四种情况:1+7、2+6、3+5、4+4。

相对应的两个加数的积是:1×7=7、2×6=12、3×5=15、4×4=16。

显然,和为8,积为最大的两个自然数是4和4。

例4试求和为13,积为最大的两个自然数。

分析与解不考虑加数顺序,和为13的两个自然数有以下六种情况:1+12、2+11、3+10、4+9、5+8、6+7。

经过计算,不难发现,和为13,积为最大的两个结论二:从上述两例可知,m个自然数的和是一个常数,则当这m个数相等或最相近时,其积最大。

(完整版)小学奥数最值问题

(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

小学奥数积最大及和最小的规律

小学奥数积最大及和最小的规律

例2:用12米长的铁丝焊接成一个长方体,长、宽、高如何分配, 它的体积最大?
43;b=?
由上述各式可见,当两数差越 小时,它们的和也就越小;当 两数的差为0时,即两数相等 时,它们的和最小
和最小规律总结
多个数的积一定,当这几个数均相等 时,它们的和最小
小学奥数积最大及和最小的规律
PART
积最大规律
思考:a,b为正数,a+b=10, a×b=?
1+9=10
→ 1×9=9
2+8=10
→ 2×8=16
3+7=10
→ 3×7=21
4+6=10
→ 4×6=24
4.5+5.5=10 → 4.5×5.5=24.75
5+5=10
→ 5×5=25
5.5+4.5=10 → 5.5×4.5=24.75
……
•积最大规律总结
多个数的和一定(为一个不变的常 数),当这几个数均相等时,它们的 积最大,用字母表示,就是
(b为一常数),

时,
有最大值
•实际问题结论一:周长相等的长方形中,以正方形的面积最大

结论二:棱长总和相等的长方体中,以正方体的体积最大
例1:用长为24厘米的铁丝,围成一个长方形,长宽如何分配时,它 的面积最大?
实际问题结论一:面积不变的长方形中,以正方形的周长最小 推论:在所有面积相等的封闭图形中,以圆的周长最小
例1:用铁丝围成一个面积为16平方分米的长方形,如何下料,材料 最省?
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。

小学六年级小升初培优奥数-最大与最小问题

小学六年级小升初培优奥数-最大与最小问题

最大与最小问题知识要点在日常生活中,我们经常会遇到有关最大、最小、最多、最少等诸多问题,而这一类问题我们统一称为最大与最小问题。

最大与最小问题涉及的知识点很广泛,题目也相对复杂,而且很多题目没有固定的解题模式,所以解决这一类问题时,需要根据题目所给的条件灵活的去分析、判断、计算以及推理最后得到正确的答案。

1、若三个数的和为定值,则当三个数相等时,他们的乘积最大。

2、若n个数的和为定值,则当这n个数相等时,他们的乘积最大。

3、若两个数的乘积一定,则当两个数相等时,他们的和最小。

4、在棱长和相等的长方体中,长、宽、高都相等的长方体(正方体)的体积最大。

精选例题例1 如果四个人的平均年龄为30岁,并且在四个人当中没有谁的年龄小于21岁,那么年龄最大的可能是多少岁?☝思路点拨:四个人的平均年龄是30岁,则四个人的年龄总和是30×4=120岁,又因为四个人当中没有小于21岁的,所以当其中三个人的年龄都为最小时,另一个人的年龄最大。

☝标准答案:30×4-21×3=57(岁)活学巧用1、如果8个人的平均年龄是48岁,已知8人中,没有大于51岁的,又知,最多能有三个人的年龄相同,那么年龄最小的可能是几岁?2、有一队学生(200人以内)如果每9人排成一列,最后余下4人,如果7人排成一列,最后余下3人,问,这队学生有多少人?3、已知五个人的平均年龄为18岁,且五个人中没有小于15岁的,则五个人中年龄最大的是多少岁?例2 某人有一根长16米的铁丝网,他要借用围墙作一面,用这根铁丝网围成一个长方形菜地,并且使这块菜地的面积尽可能的大,问这个菜地的最大面积是多少?☝思路点拨:将菜地关于围墙“对称”得菜地与对称图形的复合图形,其长与宽的和为16×2=32从而,当复合图形是边长为8米时面积最大,而当菜地的长为8米,宽为4米时菜地的面积是最大的。

☝标准答案:4×8=32✌活学巧用1、用长为28米的竹篱笆围成一块长方形菜地,其中一边靠墙,为使菜地面积最大,应该怎么分配长于宽,最大面积是多少平方米?2、用30厘米的铁丝围成一个长方形,要使长方形的面积最大,长和宽应该是多少厘米?最大面积是多少平方厘米?3、把一根长537厘米的木料锯成长为35厘米和长为26厘米的短木料那么,各锯多少根才能使余料最少?(不计损耗)例3 将14分拆成若干个自然数的和,如何分拆,可以使这些自然数的乘积最大?☝思路点拨:将14分成若干个自然数的和时,为了使这些自然数的乘积最大,分拆中尽可能的用2与3,且尽可能的选择3多一点。

四年级奥数最大最小值

四年级奥数最大最小值

最大最小值知识框架一、知识点概述:这类问题涉及的知识面广,没有固定的模式,方法多样,解答时要认真审题,根据题目的特点,灵活地选择解法.在日常生活和工作中,经常会遇到这样一类问题:怎样安排时间最省、怎样行走路线最短、怎样管理费用最低、怎样设计面积最大、怎样合作效率最高、怎样加工利用率最大等等,它们都可以归结为在一定条件下的最大值或最小值方面的数学问题.例题精讲模块一、数论中的极端思想【例 1】如果10个互不相同的两位单数之和等于898,那么这10个单数中最小的一个是多少?【例 2】有两个整数A和B,它们的和是8,当A和B各是多少时,A×B的积最大?【例 3】103除以一个一位数,余数最大是多少?【例 4】商店进玩具熊若干,每三个一数则余下一只,若每五个一数则还差4个。

问商店至少进了多少只玩具熊?【例 5】1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。

那么这两个四位数各是多少?【巩固】两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【巩固】两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【例 6】有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数中最大的自然数是多少?【例 7】有一类自然数,它的各个数位上的数字之和为2003,那么这类自然数中最小的是几?【例 8】将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 12 (9899100)从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【例 9】把17分成几个自然数的和,怎样分才能使它们的乘积最大?【巩固】把14拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大?【例 10】某国家的货币中有1元、3元、5元、7元、9元五种,为了能支付1元、2元 (100)元的钱数(整数元),那么至少需要准备货币多少张?【例 11】在五位数 22576的某一位数码后面再插入一个该数码,能得到的六位数中最大的是几?【例 12】在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数最大值最小值问题汇总
1.三个自然数的和为15,这三个自然数的乘积最大可能是_______。

3.一个长方形周长为24厘米,当它的长和宽分别是_______厘米、_______厘米时面积最大,面积最大是_______平方厘米。

4.现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_______米,宽应是_______米。

5.将16拆成若干个自然数的和,要使和最大,应将16拆成_______。

6.从1,2,3,…,2003这些自然数中最多可以取_______个数,才能使其中任意两个数之差都不等于5。

7.一个两位小数保留整数是6,这个两位小数最大是_______,最小是_______。

8.用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出_______种不同的整数的重量。

9.有一架天平,左右都可以放砝码,要称出1~80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用_______的砝码。

10.如下图,将1~9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_____。

二、解答题(30分)
1.把19分成若干个自然数的和,如何分才能使它们的积最大?2.把1~6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。

3.自行车的前轮轮胎行驶9000千米后要报废,后轮轮胎行驶7000
千米后要报废。

前后轮可在适当时候交换位置。

问一辆自行车同时换上一对新轮胎,最多可行驶多少千米?
4.如下图,有一只轮船停在M点,现需从OA岸运货物到OB岸,最后停在N点,这只船应如何行走才能使路线最短?
5.甲、乙两厂生产同一型号的服装,甲厂每月生产900套,其中上衣用18天,裤子用12天;乙厂每月也生产900套,但上衣用15天,裤子也要用15天。

两厂合并后,每月最多可以生产多少套衣服? 6.现在有若干千克苹果,把苹果装入筐中,要求能取出1~63千克所有整千克数的苹果,并且每次都是整筐整筐地取出。

问:至少需要多少个空筐?如何装?
B卷(50分)
一、填空题(每题2分,共20分) 1.在六位数865473的某一位数码后面再插入一个该数码,能得到的七位数中最小的是_____。

2.用1~8这八个数码组成两个四位数,要使这两个数的差尽量小,这个差是______。

3.三个质数的和是100,这三个质数的积最大是______。

4.有一类自然数,自左往右它的各个数位上的数字之和为8888,这类自然数中最小的
(1)求最大量的最大值:让其他值尽量小。

例:21棵树载到5块大小不同的土地上,要求每块地栽种的棵数不同,问栽树最多的土地最多可以栽树多少棵?
解析:要求最大量取最大值,且量各不相同,则使其他量尽可能的小且接近,即为从“1”开始的公差为“1”的等差数列,依次为1、2、3、4,共10棵,则栽树最多的土地最多种树11棵。

(2)求最小量的最小值:让其他值尽量大。

例:6个数的和为48,已知各个数各不相同,且最大的数是11,则最小数最少是多少?
解析:要求最小数的最小值,则使其他量尽可能的大,又因为各数各不相同,那么其余5个数为差1的等差数列,依次为11、10、9、8、7,和为45,还余3,因此最小数最少为3。

(3)求最小量的最大值:求平均数,让其中一个尽可能最大,其余尽可能最小
例:五个人的体重之和是423斤,他们的体重都是整数,并且各不相同,则体重最轻的人,最重可能重多少?
解析:这五个体重的中位数是423÷5=84.6,五人体重呈82、83、84、85、89分布,这样才能保证最轻的人,体重最重。

因此,体重最轻的人,最重可能重82公。

需要注意的一定不能超过体重之和,否则计算就失去了意义。

(4)求最大量的最小值:求平均数,让其中一个尽可能最小,其余尽可能最大。

例:现有21朵鲜花分给5人,若每人分得的鲜花数各不相同,则分得鲜花最多的人至少分得多少朵鲜花。

解析:先分组,得鲜花数最多的那个人单拿出来,要令其分得鲜
花数最少,那么其他四个分得的鲜花数尽可能最多。

于是其他四个分得鲜花数尽量接近分得鲜花最多的那个人,每人分得鲜花的平均数为21÷5=4.2,为了使其尽可能最大,只有前四个人分别分得2、3、4、5朵,才能保证分得最多的人分得最少,即21-2-3-4-5=7。

综上所述,解决极值问题关键是让事物尽可能的“平均”“接近”。

怎么样,学会了吗?学会了就试着做一下下面的题目吧。

1、5个人的平均年龄是29,5个人中没有小于24的,那么年龄最大的人可能是多少岁?
2、现有100块糖,把这些糖分给10名小朋友,每名小朋友分得的糖数都不相同,则分得最多的小朋友至少分得多少块糖?
3、电视台要播放一部40集的电视剧,每天至少播放一集,如果要求每天播放的集数互不相等,则该电视剧最多可以播放多少天?
六年级奥数-最大与最小
1.用1~8这八个数码组成两个四位数,要使这两个数的差尽量小,这个差是几?
2.要砌一个面积是72米2的长方形猪圈,长方形的边长都是自然数(单位∶米),这个猪圈的围墙总长是多少米?
3.三个质数的和是100,这三个质数的积最大是几?
4.在下面的一排数字之间添上五个加号,组成一个连加算式,求这个连加算式的结果的最小值。

1 2 3 4 5 6 7 8 9
5.把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?
6.将546分解成四个不同自然数的乘积,这四个自然数的和最大是多少?
7.三个两位的连续偶数,它们的个位数字的和能被7整除,这三个数的和最少等于多少?
8.有两个三位数,构成它们的六个数码互不相同。

已知这两个三位数之和等于1771,求这两个三位数之积的最大可能值。

9.有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,如246,1347等等,这类数中最大的自然数是几?
10用1~7七个数码组成三个两位数和一个一位数,并且使这四个数的和等于100。

选择组成的四个数中,最大的数最大是几?最小的两位数最小是几?
11.1 2 3 4 5 6 7 8 9 10 11 12……9899100从中划去170个数字,剩下的数字形成一个22位数,这个22位数最大是多少?最小是多少?。

相关文档
最新文档