[所有分类]第五章 定量分析化学概论

合集下载

第五章分析化学概论

第五章分析化学概论

a、纯度高(含量达99.9%以上) b、组成恒定 c、性质稳定
d、有较大的摩尔质量
6、标准溶液 标准方法
准确称取一定量的基准物质,溶解后,定容至一定
体积。根据所称质量和定容的体积计算出准确浓度。
14
标准溶液的配制方法
b、间接法 先配成一种接近所需浓度的溶液,然后用基准物质进
四位有效数字。
8
使用注意事项
(2)将大单位化成小单位时,不能在数据的末尾填“0”,应写成x·10y 。例如:将体 积10.6L化成毫升时应写成 1.06×104mL,有效数字仍然是三位。改变单位时,不能改变 有效数字的位数。
(3)非测量所得数(如倍数或分数)视为无限多位有效数字,即不考虑其有效数字 的位数。
例如:将下列数据修约到4位有效数字。 1.4634 → 1.463 (四舍) 1.4636 → 1.464 (六入) 1.46351→ 1.464 (五后有数就进一) 1.4645 → 1.464 (五后没数要留双) 1.4635 → 1.464 (五后没数要留双)
再如:将0.1549修约到两位有效数字,只能一次性直接修约到所需位数, 即:0.15。
行标定或与另一已知准确浓度的溶液进行比较滴定。
确定标准溶液浓度的操作过程称为标定
标准溶液浓度的表示方法
C B 1 n 升 B (m)溶 oM lBm V 液 B (m ) 1 l 0 (m 0L o 0 1 )l
B为基本单元
所谓的基本单元可以是分子、离子、原子及其他粒子,或这些粒子的特定组合。
同一系统中的同一物质,所选的基本单元不同, C B 也不同!
3、对滴定分析法的要求 a、反应必须定量完成(完成程度达到99.9%以上); b、反应速度快;

第五章 定量分析化学概论

第五章 定量分析化学概论

分析结果 = 试样测定值× 校正系数 (2) 仪器误差 由于仪器本身不够精确引起的误差。可以通过
校正仪器消除。
(3) 试剂误差 由于试剂不纯,含有被测物质或干扰离子引 起的误差。可以通过空白试验来检查和扣除。 (4) 操作误差 由操作人员的主观原因造成的误差。 由操作人员的主观原因造成的误差。 例:习惯性的试样分解不完全、沉淀洗涤不完全 或洗涤过分;观察终点颜色偏深或偏浅。 消除方法: 消除方法 : 安排不同的分析人员互相进行对照 试验,此法称为“内检 内检”。也可将部分试样送 内检 交其他单位进行对照分析,此法称为“外检 外检”。 外检
i =1 i
∑X
(2)
d1 = −0.0002
d 3 = −0.0004
d= 4
d 2 = +0.0006
d 4 = 0.0000
d1 + d 2 + d 3 + d 4
0.0002 + 0.0006 + 0.0004 + 0.0000 = = 0.0003 4
(3) 相对平均偏差= d ×1000 ‰ = 0.0003 × 1000 ‰=1.47‰
仪 器 分 析 法
a.光学分析法:根据物质的光学性质建立的。 光学分析法: 光学分析法 可见和紫外吸光光度法、红外光谱法、发射光 谱分析法、原子吸收光谱分析法、分子荧光和磷 光分析法、激光拉曼光谱法、光声光谱法、化学 发光分析法。 b.电化学分析法:根据物质的电化学性质建立的。 电化学分析法: 电化学分析法 电导分析法、电位分析法、电解分析法、 库仑分析法、伏安法、极谱分析法。 c.色谱分析法: 色谱分析法: 色谱分析法 气相色谱法、高效液相色谱法。 d.热分析法:根据测量体系的物理性质间的 热分析法: 热分析法 动力学关系建立的。 热重法、差示热分析法、差示扫描量热法。

分析化学概论

分析化学概论

例1:可溶性钡盐中钡含量的测定 重量分析法
试样 mx 干燥
HCl 溶解
稀H2SO4
BaSO4
过滤
洗涤
称重
mp
计算
Ba%
例2:铁矿中铁含量的测定
滴定分析法
试样 mx 硫-磷混酸 溶解 Fe3+ 还原剂 Fe2+
K2Cr2O7
VC
滴定分析法的分类
• 酸碱滴定法 • 氧化还原滴定法
• 配位滴定法
• 沉淀滴定法
绝对误差 = 测得值 - 真实值
个别测定值的误差为:
xi T
测定结果的绝对误差为:
Ea x T
相对误差 = 绝对误差 / 真实值× 100%
测定结果的相对误差为:
Ea Er 100% T
2. 精密度与偏差

精密度表示n次平行测定结果之间相互接 近的程度,体现了测定结果的再现性。 精密度的高低用偏差的大小来衡量。
待测物 + 试剂
产物
化学分析法所用仪器简单,结果准确,应用 范围广泛,主要适用于常量组分的测定。
• 重量分析法:通过化学反应使试样中的 待测组分转化为一种纯净的、化学组成 固定的难溶化合物,再通过称量该化合 物的质量来确定待测组分的含量的分析 方法。 • 滴定分析法:根据化学反应中,消耗试 剂的体积和浓度来确定被测组分含量的 分析方法,又称容量分析法。
称量的绝对误差±0.0001g,
相对误差±0.0001g/ 0.4830g=±0.02%;
若记为0.483g,数字角度看值相同,计 量角度看,相对误差为±0.2%。 因此记录数据不能随意增减。
• 有关有效数字,应注意以下几点: ①记录数据时,只保留一位可疑数字;

第五章 化学分析概论

第五章 化学分析概论

---由固定原因产生
具单向性(大小、正负一定)


可消除(原因固定)
重复测定重复出现
原因:
方法误差: 方法不恰当产生 试剂误差:试剂不纯或蒸馏水中含微量杂质
仪器误差: 天平、砝码、滴定管、容量瓶等刻度不准 操作误差: 操作人员的主观原因所造成的误差
【与操作过失不同】
12
偶然误差(随机误差)
0.01-1% 0.1 ~ 0.01 0.01~ 0.0001
固体试样质 > 0.1 量(g) 液体试样体 积(mL)
> 10
10 ~ 1
0.01~1
< 0.01
4
根据分析原理划分:
重量分析 化学分析 容量分析(滴定分析法)
以物质的化学反应为基础的分析方法
光学分析法、电化学分析法 仪器分析
---由一些随机的原因引起的,如实验时温度、电流、大 气压等外界因素突然发生变化,仪器性能的微小波动等造成。

不具单向性(大小、正负不定) 不可消除(原因不定) 但可减小(测定次数↑) 分布服从统计学规律(正态分布)
特点:


操作过失
13
二、误差的表示方法 ---准确度、精密度、误差和偏差
准确度:
s
2 2 2 d1 d 2 d n n1
相对标准偏差:
s CV % 100% x
16
例:
数组1:+0.1, +0.4, 0.0, -0.3, +0.2, -0.3, +0.2, -0.2, -0.4, +0.3 数组2:-0.1, -0.2, +0.9, 0.0, +0.1, +0.1, 0.0, +0.1, -0.7, -0.2

定量分析化学概论

定量分析化学概论

绪论1. 分析化学的任务和作用是研究物质的化学组成的分析方法及相关理论的科学任务: 确定组成物质的化学成分(元素.离子.化合物等)属于定性分析测定物质中各组分的相对含量属于定量分析确定物质分子内原子的空间排列(分子结构或晶体结构及其对性质的影响) 属于结构分析2. 分析方法的分类:根据分析任务,分析对象,测定原理,操作方法和具体的要求不同,又可分为定性分析, 定量分析, 结构分析,无机分析,化学分析,仪器分析,常量分析,半微量分析,微量分析,例行分析,仲裁分析,常量组分分析,微量成分分析和痕量成分分析.而化学分析法(包括滴定分析也称容量分析和重量分析)是根据物质的化学反应而建立起来的分析方法,仪器分析法(主要包括光学分析法,电化学分析法,热分析法,色谱分析法,质谱法,核磁共振,X衍射,电子显微镜分析法以及毛细管电泳分析法.则是通过物质的物理或者物理化学性质而建立起来的一种分析方法.3. 分析化学发展简史历史上曾经有三次重大的变革(1) 20世纪初,由于物理化学平衡理论的建立,为分析化学提供了理论依据,,建立了溶液四大平衡理论.形成了分析化学的学科.(2) 在第二次世界大仗时期,由于物理学和电子学的迅猛发展,促进了各种仪器分析方法的发展,形成了分析化学的另一个组成部分仪器分析法.(3) 20世纪70年代以来,以计算机应用为主的信息时代的到来,主要是生命科学,材料科学,环境科学,能源科学的发展需要,对分析化学提出了更高的要求,形成了现代分析化学法,不但要求尽可能提供更广,更全面组成,含量,结构的信息,而且要准确,快速,灵敏,用量少,对待测物质的无损分析.总之,分析化学吸取了当代科学技术的最新成果,已经成为最富有活力的学科之一.第一章定量分析化学概论1.1 概述一. 定量分析的过程定量分析的任务是测定物质组分的含量,完成一项定量分析的任务一般包括以下四个过程,(1) 取样最重要的是要使取样具有代表性(2) 试样的分解和分析试液的制备. 分解要完全,分解过程中绝不能引入其他的干扰杂质(3) 分离和测定应根据待测组分的性质,含量和对分析结果准确度的要求,选择合适的分析方法.要选择合适的分离方法分离对待测组分干扰的共存组分(4) 分析结果的计算及评价按照化学反应的化学计量关系进行计算并对测定结果及其误差分布情况应用统计学的方法进行评价.1.2 分析结果的表示(1) 待测组分的化学表现形式: 通常以待测组分的实际存在形式的含量表示.(2) 待测组分的含量的表示方法.a.固体试样 W = SB m m b 液体试样 物质的量浓度 mol/l 质量摩尔浓度 mol/kg (溶剂)质量分数 体积分数 摩尔分数 质量浓度 mg/l1.2 分析化学中的误差一. 真值(X T )二. 平均值 (X )三. 中位数.四. 准确度与精密度五. 误差和偏差六. 极差七.系统误差和随机误差八. 公差1.3 有效数字及其运算规则一. 有效数字及其运算规则1. 有效数字的意义和位数(1)有效数字:所有准确数字和一位可疑数字(实际能测到的数字)(2)有效位数及数据中的― 0 ‖1.0005, 五位有效数字0.5000, 31.05% 四位有效数字0.0540, 1.86 三位有效数字0.0054, 0.40% 两位有效数字0.5, 0.002% 一位有效数字2. 有效数字的表达及运算规则(1)记录一个测定值时,只保留一位可疑数据,(2)整理数据和运算中弃取多余数字时,采用―数字修约规则‖:四舍六入五考虑五后非零则进一五后皆零视奇偶五前为奇则进一五前为偶则舍弃不许连续修约(3)加减法:以小数点后位数最少的数据的位数为准,即取决于绝对误差最大的数据位数;(4)乘除法:由有效数字位数最少者为准,即取决于相对误差最大的数据位数;(5)对数:对数的有效数字只计小数点后的数字,即有效数字位数与真数位数一致;(6)常数:常数的有效数字可取无限多位;(7)第一位有效数字等于或大于8 时,其有效数字位数可多算一位;(8)在计算过程中,可暂时多保留一位有效数字;(9)误差或偏差取1~2 位有效数字即可。

第5章 分析化学概论

第5章 分析化学概论

1% ≤含量≤ 10%
含量≤ 1%
二、误差的产生及表示方法
1.误差的产生 误差:分析结果与真实值之间的数值差。
产生误差的原因
(1)分析方法、测量仪器、试剂 (2)分析人员 (3)测试条件
误差客观存在,只能减小,不能消除
2.误差类型
1. 系统误差(systematic error)
系统误差:分析过程种由某些确定原因造成的。
配制溶液(近似浓度)
标定(standardization):
确定浓度
利用基准物质或已知准确浓度的溶液来 确定滴定液浓度的操作过程
3.标准溶液浓度的表示方法
(1)物质的量浓度(molarity)
单位体积溶液中所含溶质B的物质的量,用符号cB表示
nB cB V
V:溶液中的体积,单位为L或ml nB:物质B的物质的量,单位为mol或mmol cB :物质的量浓度,单位为mol/L或mmol/L
(1)直接配制法 符合基准物质条件
(2)间接配制法
不符合基准物质条件
(1)直接法:用基准物质配制滴定液
步骤: 计算
称量 溶解 容量瓶
[例] 配0.02000mol/L K2Cr2O7 250mL,分析天平称1.4709g溶 解后转入250mL容量瓶。
(2)间接法:所配制物质不符合基准物质条件 步骤:
是研究物质组成含量结构和形态等化学信息的科学是化学领域的重要分支分析化学的任务分析化学的任务什么鉴定物质的化学组成多少测定物质组分的相对含量怎样确定物质的化学结构定性分析定量分析结构分析分析化学的作用分析分析化学新品研发产品检验三废处理医药卫生二定量分析的方法1
第六章 分析化学概论
6.1 分析化学的任务和作用

《定量分析概述》PPT课件

《定量分析概述》PPT课件
精密度是指同一测定中多次平行测定结果 之间彼此符合的程度,它表示各测定结果之间的重复 性。精密度用偏差(d)表示,偏差越小,说明测定结 果精密度越高。偏差有多种表示方法。
• 3、准确度与精密度的关系
第三节 有效数字和可疑值的取舍
• 一、有效数字及运算规则
• 1、有效数字 • ①概念:在分析工作中实际能测量到的有实际意义
3、滴定分析法的简单计算
在滴定分析中要涉及到一系列的计算问题,如标准溶液
的配制和浓度的标定、标准溶液和被测物质间的计算关系以及
测定结果的计算等。
①滴定分析计算根据
对于任一滴定反应:
tT +
aA
P
(滴定剂)(被滴定物质)
(生成物)
当滴定达到化学计量点时,t mol T恰好与a mol A 完
全作用,也就是说,对于一个定量进行的化学反应,化学方程
四倍法
方法如下:
1、除去可疑数据外,将其余数据相加 求出算术平均值及平均偏差;
2、如可疑数据与平均值之差的绝对值 大于4倍的平均偏差时,则弃去此可疑数据, 否则应予以保留。
例题见P95
第四节 滴定分析概述
• 滴定分析名词术语 • 滴定分析方法 • 滴定分析法对滴定反应的要求 • 常用的滴定方式 • 标准溶液的配制及标定 • 滴定分析的误差要求
仪器 分析
滴定 质量 气体 光学 电化学 色谱 分析 分析 分析 分析 分析 分析
• 化学分析:是以物质的化学反应为基础的分析方法。
• 仪器分析:是以物质的物理性质或物理化学性质为 基础,通过精密仪器测定物质的物理性质或物理化 学性质而测出待测物含量。 仪器分析的特点:灵敏、快速、准确、应用广,但 设备昂贵。
三、定量分析的方法

分析化学概论

分析化学概论

第五章分析化学概论教学目的及要求:1. 了解分析化学的任务、作用和定量分析的方法和一般程序2. 有效数字的表示及相关运算规则。

3. 掌握精密度与准确度的关系。

4. 掌握定量分析的误差、偏差计算。

5. 会对可疑值进行取舍。

6. 了解滴定分析的各种方法。

教学重点:1. 有效数字的表示及相关运算规则。

2. 掌握精密度与准确度的关系。

3. 掌握定量分析的误差、偏差计算。

4.会对可疑值进行取舍。

教学难点:1.精密度与准确度的关系。

2.有效数字的表示及相关运算规则。

教学时数:5学时教学方法:讲授与练习相结合§5.1 分析化学概论一、分析化学的任务和作用任务:是鉴定试样的可能组成和测定有关组分的含量及结构,相应地可分为定性分析、定量分析和结构分析。

作用:应用到国民经济建设的各个方面二、定量分析的方法1、化学分析法:包括重量分析和滴定分析2、仪器分析法:三、定量分析的一般程序1、取样2、试样的分解3、测定4、数据处理§5.2 定量分析的误差一、有效数字及其运算规则1.有效数字及其位数有效数字是指实际能测量得到的数字。

一个数据中的有效数字包括所有确定的数字和最后一位不确定的数字。

举例见课本P832.有效数字的运算规则(1)记录测量数值时,只保留一位可疑数字;(2)当有效数字位数确定后,其余数字应一律舍弃,舍弃办法:采取“四舍六入五留双”的规则。

(举例)(3)加减法:几个数据相加或相减时,它们的和或差的有效数字的保留,应该以小数点后位数最少的数字为准。

(举例)(4)在乘除法中,有效数字的保留。

应该以有效数字位数最少的为准。

举例见课本P85。

(5)分数和倍数的计算,分数和倍数是非测量值,为无限位数有效数字。

二、误差的产生及表示方法1.误差的产生误差是指分析结果与真实值之间的数值差。

2.误差的分类(1)系统误差(可测误差)特点:单向性,可测性系统误差可以分为下列几种:(1)方法误差(2)仪器、试剂误差(3)操作误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(相对误差最大)的数为准,将多余的数
字修约后再进行乘除。
例如:0.0121,25.64,1.05782三数相乘。
三个数的相对误差分别为:
0.0001 100% 0.8% 0.0121 0.00001 0.01 100% 0.0009% 100% 0.04% 1.05782 25.64
2. 按研究的对象分类:无机分析和有机分析
无机分析(元素、化合物、离子基团)
有机分析(官能团、结构分析) 3. 按测定原理分类:化学分析和仪器分析 化学分析:以物质的化学反应为基础的分析方法, 其中主要有滴定分析和重量分析法。 仪器分析:根据被测物质的物理或物理化学性质 (比重、折光率、沸点、凝固点、熔点 、旋光 度、颜色等)与组分的关系的测定方法,称其为
重量分析中的沉淀的溶解或吸附杂质。在滴定分
析中反应不完全,副反应等。
消除方法:作对照试验,用已知组分的标准试样进
行多次测定。通过校正系数校正试样的分析结果。
标准试样标准值 校正系数 标准试样测定值
分析结果 试样测定值 校正系数 (2) 仪器误差 由于仪器本身不够精确引起的误差。可以通过
校正仪器消除。
(4) 标准偏差:
(0.0002 ) 2 (0.0006 ) 2 (0.0004 )2 0 S 0.0004 4 1
(5) 变异系数:

S 0.0004 1000 ‰ 1000 ‰ =2‰ 0.2043 X
(6) 平均值的标准偏差:
SX S n 0.0004 4 0.0002
例如:滴定管读数,甲读为23.43mL, 乙读为23.42mL,丙读为23.44mL 前三位数字是准确的,第四位是不确定的数值, 有±0.01的误差。有效数字中只允许保留一位不确 定的数字。
有关有效数字的位数可以用下列几个数据说明:
1.2104 字 0.1000 字 0.0120 字 25.315 24.13 1.65×10-6 五位有效数 四位有效数 三位有效数
5.5 有效数字及计算规则
在定量分析中,为了获得准确的分析结果,还
必须注意正确合理的记录和计算。因此需要了解 有效数字及其运算规则。 实验数据应包含两个内容:
1. 反映所测定的量是多少;
2. 反映数据的准确度。 5.5.1 有效数字及其位数 数据中能够正确反映一定量(物理量和化学 量)的数字叫有效数字。包括所有的确定数字 和最后一位不确定性的数字。
5.4.1 准确度与精密度 1. 准确度 准确度表示测量值(x)与真值(xT)之间符合
的程度。
即表示测量结果的准确性。体现一个(一组)
数据的准确性,以真值为参考。
准确度的表示—— 绝对误差 绝对误差:测量值(X)与真值(XT)之差,
用E表示:
E X XT
2. 精密度 精密度是指在相同的条件下多次重复(平
可见,0.0121的有效数字位数最少(三位)相 对误差最大,故应以此数为准,将其它各数修约 为三位(指的是三位有效数字),然后相乘得: 0.0121×25.6×1.06=0.328
3. 表示准确度和精密度时一般只取一位有效数
字,最多取两位有效数字。
5.5.3 在定量分析中数据的记录和计算的基本规则 1. 记录测量结果时,只应保留末尾一位可疑 数字。 2. 在运算中舍弃多余数字时,按“四舍六入
第五章 定量分析化学概论
5.1 分析化学的任务和作用 5.2 分析方法的分类 5.3 定量分析过程和分析结果的表示
5.4 定量分析误差
5.5 有效数字及计算规则 5.6 分析数据的统计处理
5.7 滴定分析法概述
5.2 分析方法的分类
根据分析任务、分析对象、测定原理、操作方
法和具体要求不同,分析方法的分类很多。 1. 按任务分类:定性分析、定量分析、结构分析 定性分析的任务:鉴定物质所含的组分 (元素、离子基团、化合物) 定量分析的任务:测定各组分的相对含量。 结构分析的任务:研究物质的分子结构或晶 体结构 化学的发展逐步由定性 定量。
1. 平均偏差(d) 各次测量值与平均值的差值为绝对偏差。 偏差有正有负,其和为零,所以,为了说明分 析结果的精密度,通常采用平均偏差(n

X
i 1
n
i
X
n
平均偏差没有负值。
d 相对平均偏差= 1000 ‰ X
2. 标准偏差(S)
S
(X
行)测定值之间的吻合程度(个别测定值与
平均值之间的吻合程度),表示测定结果的
再现性。
精密度用“偏差”表示。偏差越小精密度越 高,所以偏差的大小是衡量精密度高低的尺度。
精密度是保证准确度的前提,精密度低说 明所测结果不可靠,当然准确度也就不高。
9.4.2 误差与偏差 误差是测定结果(X)和真实值(XT)之间的差值 (E=X-XT)。误差越小,准确度越高,反之则 越低。 误差有绝对误差和相对误差之分:绝对误差 表示测量值与真实值之间的差值,相对误差表 示绝对误差在真实值中所占的千分率(‰)。 误差有正有负,为正时表示分析结果偏高,
物理化学分析法,由于需要用到比较特殊的仪器,
一般又叫做仪器分析法。
仪 器 分 析 法
a.光学分析法:根据物质的光学性质建立的。 可见和紫外吸光光度法、红外光谱法、发射光 谱分析法、原子吸收光谱分析法、分子荧光和磷 光分析法、激光拉曼光谱法、光声光谱法、化学 发光分析法。 b.电化学分析法:根据物质的电化学性质建立的。 电导分析法、电位分析法、电解分析法、 库仑分析法、伏安法、极谱分析法。 c.色谱分析法: 气相色谱法、高效液相色谱法。 d.热分析法:根据测量体系的物理性质间的 动力学关系建立的。 热重法、差示热分析法、差示扫描量热法。
交其他单位进行对照分析,此法称为“外检”。
2. 偶然误差(随机误差)
原因:由难以控制、无法避免的因素(环境的 温度,湿度,气压的微小波动,仪器性能的微
小变化)所引起的。故又称不可测误差。
特点:其大小、正负具有随机性,所以称为 不可测误差。但多次重复测定时,它符合正 态分布规律。可用正态分布曲线来表示:
0.0030
5.0
两位有效数
分析化学中常遇到倍数或分数的关系,他们 为非测量所得,可视为有无限多位有效数字。 数据中的“0”有以下规定:
1. 有效数字中间的“0”是有效数字。
2. 有效数字前面的“ 0”不是有效数字。 (起定位作用) 3. 有效数字后面的“0”是有效数字。 改变单位并不改变有效数字的位数。当需要 在数的末尾加“0”作定位时,最好采用指数形式
表示,否则有效数字的位数含混不清。
5.5.2 计算规则
1. 加减法 几个数字相加或相减时,它们的和或差的有效 数字的保留应以小数点后位数最少(即绝对误差
最大)的数为准,将多余的数字修约后再进行加
减运算。 例如:0.0121,25.64,1.05782三数相加 不正确的计算 0.0121 25.64 正确的计算 0.01 25.64
5.3.2 定量分析结果的表示
1. 待测组分的化学表示形式 ① 通常以实际存在形式的含量表示; ② 实际存在形式不清楚的用氧化物或元素形式的 含量表示; ③ 工业分析中,有时用所需组分的含量表示;
④ 电解质溶液常用离子的含量表示。 2. 待测组分分析含量的表示方法 (1) 固体试样
m B (g ) wB m s (g )
= -0.0001/0.2176 ×1000‰ = -0.5‰
偏差( )是测定值( )与一组平行测定值的
平均值( )之间的差,是衡量精密度高低的尺度,
d
X
X
偏差小表示精密度高,偏差大表示精密度低。
d XX
某一试样平行测量n次,测定值为X1,X2,…,Xn, 则:
X1 X 2 X n X n
由图可看出其规律性:
1.对称性:正负误差出现的几率相等。
2.单峰性:小误差出现的机率大,大 - 0 +
误差出现的机率小。 3.抵偿性:平行测定次数 n → ∞时,
偶然误差的算术平均值 E→0。
纵坐标:测定次数
横坐标:误差
曲线表明:分析结果偶然误差的大小是随着测定 次数的增加而减少。 通常平行测定3~4次。要求高时,测定10次左右。
w B 质量分数 m B 待测组分 B的质量 m s 试样的质量
(2) 液体试样
物质的量浓度、质量摩尔浓度、质量分数、体 积分数、摩尔分数、质量浓度 (3) 气体试样 体积分数
5.4 定量分析误差
测定数据与真实值并不一致,这种在数值上的
差别就是误差。
分析过程中的误差是客观存在的。 误差可控制得越来越小,但不能使误差降低为 零。
+ 1.05782
26.70992
+ 1.06
26.71
上面相加的三个数据中,25.64的小数点
后位数最少,绝对误差最大。因此应以
25.64为准,保留有效数字位数到小数点后
第二位,所以,左面的计算是不正确的,
右面的计算是正确的。
2. 乘除法 几个数相乘或相除时,它们的积或商的 有效数字的保留应以有效数字位数最少
(3) 试剂误差 由于试剂不纯,含有被测物质或干扰离子引
起的误差。可以通过空白试验来检查和扣除。
(4) 操作误差 由操作人员的主观原因造成的误差。
例:习惯性的试样分解不完全、沉淀洗涤不完全
或洗涤过分;观察终点颜色偏深或偏浅。 消除方法:安排不同的分析人员互相进行对照
试验,此法称为“内检”。也可将部分试样送
i 1
n
i
X)
2
n 1
f = n - 1 自由度,表示独立变化的偏差数目。
相对标准偏差(变异系 数):
S 1000 ‰ X
3. 平均值的标准偏差(S X) 对于有限次的测定值而言,平均值的标准偏差 与测定次数的平方根成反比。
相关文档
最新文档