填料塔计算和设计

填料塔计算和设计文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

填料塔设计

2012-11-20

一、填料塔结构

填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。

二、填料的类型及性能评价

填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;

填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;

2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;

3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。

三、填料塔设计基本步骤

1.根据给定的设计条件,合理地选择填料;

2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;

3.计算填料层的压降;

4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。

四、填料塔设计

1.填料的选择

填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据

它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。

(1)填料种类的选择

填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值;

填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料;

填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要;

填料抗污堵性能强,拆装、检修方便。

(2)填料规格的选择

填料规格是指填料的公称尺寸或比表面积;

(a)散装填料规格的选择:工业塔常用的散装填料主要有DN16、DN25、DN38、DN50、DN76等;同类填料,尺寸越小,分离效率越高,但阻力增加,通量减少,填料费用也增加很多;而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。因此,对塔径与填料尺寸的比值要有一定限制,一般塔径与填料公称直径的比值D/d应大于8。

(b)规整填料规格的选择:国内习惯用比表面积表示规整填料的型号和规格,主要有125、150、250、350、500、700;同种类型的规整填料,其比表面积越大,传质效率越高,但阻力增加,通量减小,填料费用也明显增加。选用时应从分离要求、通量要求、场地条件、物料性质及设备投资、操作费用等方面综合考虑,使所选填料既能满足技术要求,又具有经济合理性。

对于同一座填料塔,可以选用不同类型、不同规格的填料,也可以同时使用散装填料和规整填料。

(3)填料材质的选择

填料的材质分为陶瓷、金属和塑料三大类

(a)陶瓷填料陶瓷填料具有很好的耐腐蚀性,可在低温、高温下工作,具有一定的抗冲击性但不宜在高冲击强度下使用,质脆、易碎是陶瓷填料的最大缺点。陶瓷填料价格便宜、具有很好的表面润湿性能,在气体吸收、气体洗涤、液体萃取等过程中应用较为普遍。

(b)金属填料金属填料可用多种材质制成,金属材质的选择主要根据物系的腐蚀性及金属材质耐腐蚀性来综合考虑。

碳钢填料造价低,且具有良好的表面润湿性能,对于无腐蚀性或低腐蚀性物系有限考虑使用;

不锈钢填料耐腐蚀性强,一般能耐Cl-以外常见物系的腐蚀,但其造价较高,且表面润湿性能较差;有时需要对其表面进行处理,才能取得良好的使用效果。

金属填料通过大、气阻小,具有很高的抗冲击性能,能在高温、高压、高冲击强度下使用,应用范围最为广泛。

(c)塑料填料主要包括聚丙烯(PP)、聚乙烯(PE)及聚氯乙烯(PVC),国内一般多采用聚丙烯材质。

塑料填料质轻、价廉,具有良好的韧性,耐冲击、不易碎,耐腐蚀性较好,可长期在100℃以下使用;它的通量大、压降低,多用于吸收、解析、萃取、除尘等装置中;塑料填料的缺点是表面润湿性能差,需对其表面进行处理。

2.填料塔工艺尺寸的计算

(1)塔径的计算:采用下式进行计算,其核心问题是确定空塔气速u。空塔气速

建议值为~1m/s。

泛点气速法:泛点气速是填料塔操作气速的上限,填料塔的操作空塔气速必须小于泛点气速,操作空塔气速与泛点气速之比称为泛点率。

对于散装填料:u/uF=对于规整填料:u/uF=泛点率的选择主要考虑两方面因素:第一,物系的发泡情况,对于易起泡沫的物系,泛点率应取低限值,而无泡沫的物系,可取较高的泛点率;

第二,填料塔的操作压力,对于加压操作的塔,应取较低的泛点率,对于减压操作的塔,应取较高的泛点率。

泛点气速一般通过经验方程式进行计算

贝恩—霍根关联式:

式中 uF2为泛点气速,m/s

g为重力加速度,s2

a为填料比表面积,m2/m3

ε为填料层空隙率,m3/m3

ρv、ρL为气相、液相密度,Kg/m3

μL为液体粘度,mPas

WL、WV为液相、气相的质量流量,Kg/h

A、K为关联常数

气体动能因子法:气相动能因子简称F因子,其定义式为

计算时,先从手册或图表中查出填料在操作条件下的F因子,然后依据上式即可计算出操作空塔气速u。

气相负荷因子法:气相负荷因子简称Cs因子,其定义式为:

采用气相负荷因子计算操作空塔气速,先计算出最大气相负荷因子Cs,max,然后依据Cs=,max计算出Cs。

Cs,max的数值见有关填料手册。

气相动能因子法和气相负荷因子法一般只适用于规整填料,且液体粘度不大于2×10-3Pas,操作压力不大于的场合。

(2)填料层高度计算

填料层高度的计算可分为传质单元法和等板高度法。在工程上,传质单元法多用于吸收、解吸、萃取等填料塔的设计计算,而对于精馏填料塔,则习惯用等板高度法计算填料层高度。

等板高度法计算填料层的基本公式为:

由上式可看出,当工艺计算出完成规定分离任务所需的理论板层数NT后,关键是确定填料层的等板高度HETP。

等板高度不仅取决于填料的类型和尺寸,而且受系统物性、操作条件和设备尺寸的影响。一般是通过实验测定,或从工业应用的实际经验中选取HETP值。

采用上述方法计算出填料层高度后,还应留出一定的安全系数。根据设计经验,填料层的设计高度一般为Zˊ=()Z

(3)填料层压降的计算

填料层压力降是填料塔压力降的主要组成部分。通常,根据设计(或操作)参数,由通用关联图(或压降曲线)先求得每米填料层的压降值,然后再乘以填料层高度,即得出填料层的压力降。

散装填料的压降计算

散装填料的压降值可从有关填料手册中查得,也可由埃克特通用关联图计算。计算时先根据气液负荷及有关物性数据,求出横坐标;再根据操作空塔气速、压降填料因子及有关物性参数,求出纵坐标;通过作图得出交点,读出过交点的等压线数值,即可得出每米填料层压降值。

Φp为压降填料因子,ψ为液体密度校正系数,ρ水/ ρL

规整填料的压降计算

通过填料的压降关联式计算,规整填料的压降通常关联成以下形式:

式中 p/Z为每米填料层高度的压力降,Pa/m

u为空塔气速,m/s

ρv为气体密度,Kg/m3

α、β为关联式常数,可从填料手册中查出

填料塔的设计指导

二氧化硫填料塔设计 一.填料吸收塔简介 在化学工业中,吸收操作广泛应用于石油炼制,石油化工中分离气体混合物,原料气的精制及从废气回收有用组分或去除有害组分等。吸收操作中以填料吸收塔生产能力大,分离效率高,压力降小,操作弹性大和持液量小等优点而被广泛应用。目前国内对填料吸收塔设计大部分是经验设计方法,该方法是在给定生产任务的条件下,由经验确定出一个液气比的值,然后手算出吸收塔的有关设计参数。该设计手段落后,没有考虑经济技术指标,不符合工厂实际生产中成本最低要求,故提出了填料吸收塔的优化设计方法。 下面简要介绍一下填料塔的有关内容。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。填料塔以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 与板式塔相比,在填料塔中进行的传质过程,其特点是气液连续接触,而传质的好坏与填料密切相关。填料提供了塔内的气液两相接触面积。填料塔的流体力学性能,传质速率等与填料的材质,几何形状密切相关,所以长期以来人们十分注中填料的性能和新型填料的开发,使得填料塔在化工生产中应用更加广泛。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔还有以下特点: 1.当塔径不是很大时,填料塔因为结构简单而造价便宜。 2.对于易起泡物系,填料塔更适合,因填料对气泡有限制和破碎作用。 3.对于腐蚀性物系,填料塔更适合,因为可以采用瓷质填料。 4.对于热敏性物系宜采用填料塔,因为填料塔的持液量比板式塔少,物料在塔内的停留时间短。填料塔的压强降比板式塔小,因而对真空操作更有利。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 二.设计方案简介 2.1 方案的确定 填料精馏吸收塔的确定包括装置流程的确定,操作压力的确定,进料热状况的选择,加热方式的选择以及回流比的选择等 2.1.1 装置流程的确定 吸收装置的流程主要有以下几种 (1) 逆流操作: 定义:气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出的操作。 特点:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。 适用情况:工业生产中多采用逆流操作。 (2) 并流操作: 定义:气液两相均从塔顶流向塔底的操作。 特点:系统不受液流限制,可提高操作气速,以提高生产能力。 适用情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大; 易溶气体的吸收或处

填料塔的计算

一、填料塔的计算 (一) 操作条件的确定 1.1吸取剂的选择 1.2装置流程的确定 1.3填料的类型与选择 1.4操作温度与压力的确定 45℃常压 (二)填料吸取塔的工艺尺寸的运算 2.1基础物性数据 ①液相物性数据 关于低浓度吸取过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据

7.熔 依照上式运算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数 表面张力б=72.6dyn/cm=940896kg/h 3 ②气相物性数据 混合气体的平均摩尔质量为 M vm = y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347 混合气体的平均密度ρvm = =⨯⨯=301 314.805 .333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3 混合气体粘度近似取空气粘度,手册28℃空气粘度为

μV =1.78×10-5Pa ·s=0.064kg/(m •h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数: 在水中亨利系数E=2.6⨯105kPa 相平稳常数为m=1.25596 .101106.25 =⨯= P E 溶解度系数为H=)/(1013.218 106.22.9973 45 kPa m kmol E M s •⨯=⨯⨯= -ρ 2.2物料衡算 进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸取过程为低浓度吸取,平稳关系为直线,最小液气比按下式 运算,即 2 121min /X m Y Y Y )V L ( --= 关于纯溶剂吸取过程,进塔液组成为X2=0 2 121min /X m Y Y Y )V L ( --==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581

填料塔设计

第一章设计任务依据和要求 一、设计任务及操作条件: 1、混合气体(空气中含SO2气体的混合气)处理量为:106Kmol/h 2、混合气组成:SO2含量为6.7% (mol% ), 空气为:93.3 %(mol%) 3、要求出塔净化气含SO2为:0.148 %(mol%), H2O为:1.172 kmol/h 4、吸收剂为水,不含SO2 5、常压,气体入塔温度为25℃,水入塔温度为20℃。 二、设计内容: 1、设计方案的确定。 2、填料吸收塔的塔径、填料层高度及填料层压降的计算。 3、填料塔附属结构的选型与设计。 4、填料塔工艺条件图。 三、H2O-SO2在常压20℃下的平衡数据

四、气体及液体的物性数据 1、气体的物性:气体粘度()0.0652/G u kg m h =? 气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ= 2、液体的物性:液体粘度μL =3.6 kg /(m ·h); 液体扩散系数D L =5.3×10-6m 2/s; 密度ρL =998.2 kg /m 3; 液体表面张力 4273/92.7110/L dyn cm kg h σ==? 五、 设计要求 1、设计计算说明书一份 2、填料塔图(2号图)一张 第二章 SO 2净化技术和设备 一、SO 2的来源、性质及其危害 二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。主要有自然来源和人为来源两大类: 自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。地球上57%的二氧化硫来自自然界,沼泽、洼地、大陆架等处所排放的硫化氢,进入大气,被空气中的氧氧化为二氧化硫。自然排放大约占大气中全部二氧化硫的一半,通过自然循环过程,自然排放的硫基本上是平衡的。 人为来源则指在人类进行生产、生活活动中,使用含硫及其化合物的矿石进行燃烧,以及硫矿石的冶炼和硫酸、磷肥纸浆的生产等产生的工业废气,从而使其中一部分或全部的硫以二氧化硫的形式排放到大气中,形成二氧化硫污染。这部分二氧化硫占地球上二氧化硫来源的43%。随着化石燃料消费量的不断增加,全世界认为排放的二氧化硫在不断在增加,其中北半球排放的二氧化硫占人为排

填料塔工艺尺寸的计算

第三节 填料塔工艺尺寸的计算 填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段 塔径的计算 1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~ 贝恩(Bain )—霍根(Hougen )关联式 ,即: 2213lg V F L L u a g ρμερ⎡⎤ ⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦=A-K 14 1V L V L w w ρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭ ⎝⎭ (3-1) 即:1 124 8 0.23100 1.18363202.59 1.1836lg[ ()1]0.0942 1.759.810.917998.24734.4998.2F u ⎛⎫⎛⎫⎛⎫ =- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以:2 F u /(100/3)()= UF=m/s 其中: f u ——泛点气速,m/s; g ——重力加速度,9.81m/s 2 W L =㎏/h W V =7056.6kg/h A=; K=; 取u= F u =2.78220m/s 0.7631D = = = (3-2) 圆整塔径后 D=0.8m 1. 泛点速率校核:2 6000 3.31740.7850.83600 u = =⨯⨯ m/s 则 F u u 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核: (1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量.

(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量.对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ⋅为. ()32min min 0.081008/w t U L m m h α==⨯=⋅ (3-3) 22 5358.8957 10.6858min 0.75998.20.7850.8L L w U D ρ= ==>=⨯⨯⨯⨯ (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理. 填料层高度的计算及分段 *110.049850.75320.03755Y mX ==⨯= (3-5) *220Y mX == (3-6) 3.2.1 传质单元数的计算 用对数平均推动力法求传质单元数 12 OG M Y Y N Y -= ∆ (3-7) ()**1 1 2 2* 11* 22() ln M Y Y Y Y Y Y Y Y Y ---∆= -- (3-8) = 0.063830.00063830.03755 0.02627ln 0.0006383 -- = 3.2.2 质单元高度的计算 气相总传质单元高度采用修正的恩田关联式计算: () 0.75 0.10.05 2 0.2 2 21exp 1.45/t c l L t L L V t w l t l L U U U g ασαρσαασαμρ-⎧⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ =--⎨⎬ ⎪ ⎪ ⎪⎝⎭ ⎝⎭⎝⎭⎪ ⎪⎩ ⎭ (3-9) 即:αw/αt =0. 液体质量通量为:L u =WL/××=10666.5918kg/(㎡ h ) 气体质量通量为: V u =60000×=14045.78025kg/(㎡h) 气膜吸收系数由下式计算:

填料塔的计算

一、设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 1.2装置流程的确定 1.3填料的类型与选择 1.4操作温度与压力的确定 45℃常压 (二)填料吸收塔的工艺尺寸的计算 2.1基础物性数据 ①液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA的物性数据 7.熔 根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa·s 暂取CO2在水中的扩散系数

表面张力б =72.6dyn/cm=940896kg/h 3 ②气相物性数据 混合气体的平均摩尔质量为 M vm = y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347 混合气体的平均密度ρ vm = =⨯⨯=301 314.805 .333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3 混合气体粘度近似取空气粘度,手册28℃空气粘度为 μ V =1.78×10 -5 Pa ·s=0.064kg/(m •h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2 /h 由文献时CO 2在MEA 中的亨利常数: 在水中亨利系数E=2.6⨯105 kPa 相平衡常数为m=1.25596 .101106.25 =⨯=P E 溶解度系数为H=)/(1013.218 106.22 .997345 kPa m kmol E M s ∙⨯=⨯⨯= -ρ 2.2物料衡算 进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即 2 121min /X m Y Y Y )V L ( --= 对于纯溶剂吸收过程,进塔液组成为X2=0 2 121min /X m Y Y Y )V L ( --==(0.153403-0.00767)/(0.1534/1.78)=1.78

大气课设填料塔设计计算

学校代码: 10128 学号: 201320303014 课程设计说明书 题目:S H S20-25型锅炉低硫烟煤烟 气袋式除尘湿式脱硫系统设计学生:周永博 学院:能源与动力工程学院 班级:环工13-1 指导教师:英楠

2016年 7 月 1 日 工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生:周永博学号: 4 指导教师:英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉...高等教育.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》铭...化学工业.2001.4; 《火电厂除尘技术》胡志光、胡满银...中国水利水电.2005; 《除尘设备》金国淼...化学工业.2002; 《火力发电厂除尘技术》原永涛...化学工业.2004.10; 《环境保护设备选用手册》鹿政理...化学工业.2002.5; 《工业通风》一坚主编..中国建筑工业,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业,1994; 《除尘设备设计》金国淼主编..科学技术,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,华等主编..中国电力; 《燃煤烟气脱硫脱硝技术及工程实例》. 钟主编.化学工业,2004; 《环保工作者使用手册》. 丽芬,友琥主编.冶金工业,2001; 《工业锅炉房设计手册》航天部第七研究编.中国建筑工业,1986; 《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二,1995; 《大气污染控制工程》. 标编.科学,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

大气课设填料塔设计计算

课程设计说明书 题 目:S H S 20-25型锅炉低硫烟煤烟 气袋式除尘湿式脱硫系统设计 学生姓名: 周永博 学 院: 能源与动力工程学院 班 级: 环工13-1 指导教师:曹英楠 2016年 7 月 1 日

内蒙古工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生姓名:周永博学号: 201320303014 指导教师:曹英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉..北京.高等教育出版社.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》郑铭..北京.化学工业出版社.2001.4; 《火电厂除尘技术》胡志光、胡满银..北京.中国水利水电出版社.2005; 《除尘设备》金国淼..北京.化学工业出版社.2002; 《火力发电厂除尘技术》原永涛..北京.化学工业出版社.2004.10; 《环境保护设备选用手册》鹿政理..北京.化学工业出版社.2002.5; 《工业通风》孙一坚主编..中国建筑工业出版社,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业出版社,1994; 《除尘设备设计》金国淼主编..上海科学技术出版社,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业出版社,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,杨华等主编..中国电力出版社;《燃煤烟气脱硫脱硝技术及工程实例》. 钟秦主编.化学工业出版社,2004; 《环保工作者使用手册》. 杨丽芬,李友琥主编.冶金工业出版社,2001; 《工业锅炉房设计手册》航天部第七研究设计院编.中国建筑工业出版社,1986;《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二设计院,1995;《大气污染控制工程》. 吴忠标编.科学出版社,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

填料吸收塔设计方案

填料吸收塔设计方案 1、设计方案简介 1.1吸收剂的选择 根据所处理混合气体,可采用洗油为吸收剂,其物理化学性质稳定,选择性好,符合吸收过程对吸收剂的基本要求。 1.2吸收流程 该吸收过程可采用简单的一步吸收流程,同时应对吸收后的洗后进行再生处理。以混合气体原有的状态即27℃和1atm条件下进行吸收,流程如图2-1所示。混合气体进入吸收塔,与洗油逆流接触后,得到净化气排放,吸收苯后的洗油,经富液泵送入再生塔塔顶,用过热水蒸气进行气提解吸操作,解吸后的洗油经贫油泵,送回吸收塔塔顶,循环使用,气提气则进入冷凝系统进行苯水分离。 1.3吸收塔设备及塔填料选择 该过程处理量不大,所用的塔直径不会太大,故采用填料塔较为适宜,并选用25mm塑料作阶梯环填料,其主要性能参数如下。 经查表将25mm塑料阶梯环的主要物性参数见下表1-1。 表1-1 25mm塑料阶梯环的物性参数[]1 比表面积α填料因子孔隙率ε填料的对应A值泛点填料因子填料的表面张力 228 260 0.9 0.204 176 75 1.4解吸塔设备及塔填料选择 解吸塔采用水蒸气加热再生法,并选用25mm碳钢阶梯环填料,其主要性能参数见下表1-2。 表1-2 25mm碳钢阶梯环的物性参数[]1

比表面积α填料因子孔隙率ε填料的对应A值泛点填料因子填料的表面张力 220 273 0.93 0.106 176 75 1.5操作参数选择 操作参数主要包括吸收(解吸)压力、温度及吸收因子(解吸因子)。吸收过程:1atm、27℃;解析过程:1atm、120℃。吸收因子(解吸因子)通过工艺过程设计计算得出。 1.6提高能量利用率 尽量保持气体吸收前后压力1atm,避免气体解压后重新加压;设计时尽量减小各部分的阻力损失,以减少气体输送过程的能量损失;回收系统内部热量。 2、流程的设计及说明 图2-1 从水煤气中回收粗苯的流程示意[]2

填料塔设计

填料塔设计1000字 填料塔(也称为吸附塔、萃取塔、蒸馏塔等)是化工工业中常见的 塔式设备,用于分离和提取混合物中的组分。填料塔设计的目标是 实现有效的传质和反应,同时最小化能量消耗和成本开销。本文将 介绍填料塔设计的基本流程和注意事项。 一、设计流程 1. 确定塔的物理性质和流量 任何填料塔的设计首先需要确认其物理性质和流量。这将决定了塔 的大小、填料类型、流体速度等各种参数。物理性质包括塔的直径、高度、壁厚等。流量包括进料量、空气量、气体流量、液体流量等。 2. 选择填料 填料是填料塔的核心组件,它可以有效增加反应表面积和物质传递 速率。填料的种类很多,包括塑料、金属、陶瓷、玻璃等材料。常 见的填料包括环形塔填料、球形塔填料、骨架填料等。我们需要根 据所需要处理的物质和填料性能来选取填料。 3. 确定反应机理 填料塔的工作原理基于物质分离和反应过程。在设计塔之前,需要 加深对所需处理的物质的反应机理的了解,包括化学反应、传质、 相变等。这将有助于确定合适的填料、塔高度等参数。 4. 计算填料密度 填料密度是液相和气相之间传质的决定性因素。在设计填料塔时, 我们需要对填料的密度进行计算。这可以帮助我们确定塔的高度、 填料体积等参数。 5. 选择塔板 塔板是塔式设备中流体分离和传质的重要组成部分。常用的塔板有 单孔板、多孔板和节流板等。选定塔板的种类和数量取决于所需处 理的物质和塔的物理尺寸。 6. 确定工艺流程

填料塔的设计需要确定完整的工艺流程。我们需要确认现有流程的 适用性,并着手设计流程概要、工艺流程图等。 7. 设计并检验填料塔 完成上述步骤后,我们需要开始具体的设计工作。填料塔设计需要 考虑许多因素,包括结构强度、塔的散热、氢气脆化等。我们需要 对设计方案进行校验,以确保它符合现行规定和安全标准。 二、设计注意事项 1. 确定填料尺寸 填料尺寸直接影响到塔体积,进而影响到设备成本和能量消耗。因此,我们需要选用最小的填料尺寸,以减小设备尺寸和成本。 2. 考虑气液流量比 填料塔中的气液流量比会直接影响反应效率和传质速率。它们之间 的差异将产生气体涡流,降低反应速率。所以我们需要合理设计气 液流量比,以获得最佳反应效果。 3. 考虑填料选择 填料的选择是填料塔设计中的重要因素。对于不同的反应,我们需 要选择适合的填料种类,从而提高塔体积命中率,增强反应效果。 4. 考虑气体速度和压降 气体速度和压降直接影响到传质速率和气液分布。过高的气体速度 和压降会导致塔内的气液分布不均衡,影响传质效率和反应效率。 因此,我们需要评估气体速度和压降,确保它们在可控范围内。 5. 考虑散热 填料塔内的反应过程可能会产生大量的热量。为了防止温度过高, 我们需要考虑有效的散热措施,如室外空气冷却器或者不同温度的 流体冷却。 6. 考虑安全因素 填料塔内的反应过程可能会产生大量的有毒有害气体或液体。因此,我们需要考虑安全因素,设计相应的安全措施,包括流量控制、防 喷装置、设备监控等等,以确保人和设备的安全。

填料塔设计

填料塔的设计 本章符号说明英文字母 a——填料的有效比表面积,m2/m3 a t——填料的总比表面积,m2/m3 a W——填料的润湿比表面积,m2/m3 A T——塔截面积,m2; C——计算u max时的负荷系数,m/s; C s——气相负荷因子,m/s; d——填料直径,m; D——塔径,m; DL——液体扩散系数,m2/s; Dv——气体扩散系数,m2/s ; ev——液沫夹带量,kg(液)/kg(气); E——液流收缩系数,无因次; E T——总板效率,无因次; g——重力加速度,9.81 m/s2; h——填料层分段高度,m; HETP关联式常数; h max——允许的最大填料层高度,m; H B——塔底空间高度,m; H D——塔顶空间高度,m; H oG——气相总传质单元高度,m; H1——封头高度,m; H2——裙座高度,m; HETP——等板高度,m; k G——气膜吸收系数,kmol/(m2·s·kPa); k L——液膜吸收系数,m/s; K G——气相总吸收系数,kmol/(m2·s·kPa); l W——堰长,m; L b——液体体积流量,m3/h; L S——液体体积流量,m3/s; L W——润湿速率,m3/(m·s);

m——相平衡常数,无因次; n——筛孔数目; N OG——气相总传质单元数; P——操作压力,Pa; △P——压力降,Pa; u——空塔气速,m/s; u F——泛点气速,m/s u0.min——漏液点气速,m/s; u′0——液体通过降液管底隙的速度,m/s;U——液体喷淋密度,m3/(m2·h) U L——液体质量通量,kg/(m2·h) U min——最小液体喷淋密度,m3/(m2·h) U v——气体质量通量,kg/(m2·h) V h——气体体积流量,m3/h; V S——气体体积流量,kg/s; w L——液体质量流量,kg/s; w V——气体质量流量,kg/s; x——液相摩尔分数; X——液相摩尔比Z y——气相摩尔分数; Y——气相摩尔比; Z——板式塔的有效高度,m; 填料层高度,m。 希腊字母 β——充气系数,无因次; δ——筛板厚度,m ε——空隙率,无因次; θ——液体在降液管内停留时间,s;μ——粘度,Pa·s; ρ——密度,kg/m3; σ——表面张力,N/m; φ——开孔率或孔流系数,无因次;Φ——填料因子,l/m; ψ——液体密度校正系数,无因次。 下标 max——最大的; min——最小的;

填料塔

填料塔 一、填料塔的概念及示意图 填料塔是以塔内填料作为气液两 相间接触构件的传质设备。填料塔的塔 身是一直立式圆筒(如上图所示),底部 装有填料支承板,填料以乱堆或整砌的 方式放置在支承板上。填料的上方安装 填料压板,以防被上升气流吹动。液体 从塔顶经液体分布器喷淋到填料上,并 沿填料表面流下。气体从塔底送入,经 气体分布装置(小直径塔一般不设气体 分布装置)分布后,与液体呈逆流连续 通过填料层的空隙,在填料表面上,气 液两相密切接触进行传质。填料塔属于 连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 二、填料塔的特点 优点:生产能力大。填料塔内件开孔率大,空隙率大,液泛点高。分离效率高填料每米论级远大于板式塔,尤其在减压及常压条件下。 压降小。空隙率高,阻力小。 持液量小、操作弹性大 缺点:填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂

精馏不太适合等。 三、填料的类型及性能评价 1 填料(packings)的类型 1).分类 按填料形状分:网体填料、体填料 按填料的装填方式分:散装填料、整填料 按材质分:金属填料、料填料、瓷填料、墨填料 2).常用的几种填料 ①拉西环(Rasching ring) :拉西环是工业上最早使用的一种填料,为外径与高度相等的圆环,通常由陶瓷或金属材料制成。 拉西环结构简单,制造容易,但堆积时相邻环间易形成线接触,填料层的均匀性差,因而存在严重的向壁偏流和沟流现象,致使传质效率低。而且流动阻力大,操作范围小。其改善方面有θ形、十字格形的拉西环。 ②鲍尔环(pall ring):鲍尔环是在拉西环的壁上开一层或两层长方形窗口,窗孔的母材两层交错地弯向环中心对接。这种结构使填料层内气、液分布性能大为改善,尤其是环的内表面得到充分利用 与同样尺寸的拉西环相比,鲍尔环的气液通量可提高50%,而压降仅为其一半,分离效果也得到提高。其改进为阶梯形鲍尔环,圆筒部分的一端制成喇叭口形状。这样填料间呈现点接触,床层均匀且空隙率大,与鲍尔环相比气体阻力减少25%,生产能力提高10%。 ③阶梯环:鲍尔环基础上改造得出的。环壁上开有窗孔,其高度为直径的一半。由于高径比的减少,使得气体绕填料外壁的平均路径大为缩短,减少了阻力。 喇叭口一边,不仅增加机械强度,而且使填料之间为点接触,有利于液膜的汇集与更新,提高了传质效率。目前所使用的环型填料中最为优良的一种。 ④弧鞍形(Berl saddle)矩鞍形(Intalox saddle)填料 一种表面全部展开的具有马鞍形状的瓷质型填料 (马鞍填料)。弧鞍填料在塔内呈相互搭接状态,形成弧形气体通道。 优点:空隙率高,气体阻力小,液体分布性能较好,填料性能优于拉西环。 缺点:相邻填料易相互套叠,使填料有效表面降低,从而影响传质速率。

吸收氨过程填料塔的设计、吸收塔设计(完整版)

目录 1. 设计任务书 (1) 2. 设计方案简介 (2) 2.1 吸收流程的确定 (2) 2.2 吸收剂的选择 (2) 2.3 操作温度与压力 (3) 2.4 塔填料的选择 (3) 2.5 初步流程图 (3) 3. 工艺计算 (4) 3.1 基础物性数据 (4) 3.1.1 液相物性的数据 (4) 3.1.2 气相物性数据 (5) 3.1.3 气液相平衡数据 (5) 3.1.4 物料衡算 (5) 3.2 填料塔的工艺尺寸的计算 (6) 3.2.1 塔径的计算 (6) 3.2.2 填料层高度计算 (8) 3.2.3 填料层压降计算 (10) 3.2.4 吸收塔接管尺寸的计算 (11) 4. 辅助设备的计算及选型 (12) 4.1 除沫器 (12) 4.2 液体分布装置 (13) 4.3 液体再分布器 (15) 4.4 填料压紧装置 (15) 4.5 填料支承装置 (16) 4.6 气体的进出口装置 ................................................................ 错误!未定义书签。 4.7封头的选择............................................................................ 错误!未定义书签。 4.8人孔的选择 (17) 4.9 法兰的选择........................................................................... 错误!未定义书签。 4.10 塔底液保持管高度............................................................... 错误!未定义书签。 4.11 塔附属高度计算 (18) 4.12 离心泵的选型...................................................................... 错误!未定义书签。 4.13 风机的选型 (19) 5、设计一览表 (20) 6、对本实验的评述 (21) 参考文献 (22) 主要符号说明 (23)

填料塔设计与计算(正式版),环境工程原理设计

环境工程原理大作业 填料吸收塔课程设计 说明书 学院名称:环境科学与工程学院 专业:环境工程 班级:环工0801 姓名:黄浩段永鹏魏梦和祥任稳刚 指导老师:*** 2011.1.2

环境工程原理课程设计—填料吸收塔课程设计说明书 目录 (一)设计任务 (1) (二) 设计简要 (2) 2.1 填料塔设计的一般原则 (2) 2.2 设计题目 (2) 2.3 工作原理 (2) (三) 设计方案 (2) 3.1 填料塔简介 (2) 3.2填料吸收塔的设计方案 (3) .设计方案的思考 (3) .设计方案的确定 (3) .设计方案的特点 (3) .工艺流程 (3) (四)填料的类型 (4) 4.1概述 (4) 4.2填料的性能参数 (4) 4.3填料的使用范围 (4) 4.4填料的应用 (5) 4.5填料的选择 (5) (五)填料吸收塔工艺尺寸的计算 (6) 5.1液相物性数据 (6) 5.2气相物性数据 (7) 5.3气、液相平衡数据 (8) 5.4塔径计算 (8) 5.5填料层高度计算 (8) (六)填料层压降的计算 (10) (七)填料吸收塔内件的类型与设计 (10) 7.1 填料吸收塔内件的类型 (10) 7.2 液体分布 (12) (八)设计一览表 (13) (九)对设计过程的评述 (13)

(十)主要符号说明 (14) 参考文献 (15) 附录 (24)

(一)设计任务 设计一填料吸收塔,吸收矿石焙烧炉气中的SO2。 (二)设计简要 (1)填料塔设计的一般原则 填料塔设计一般遵循以下原则: ②:塔径与填料直径之比一般应大于15:1,至少大于8:1; ②:填料层的分段高度为:金属:6.0-7.5m,塑料:3.0-4.5; ③:5-10倍塔径的填料高度需要设置液体在分布装置,但不能高于6m; ④:填料塔操作气速在70%的液泛速度附近; ⑤:由于风载荷和设备基础的原因,填料塔的极限高度约为50米。 (2)设计题目 矿石焙烧炉送出的气体冷却到25℃后送入填料塔,用20℃清水洗涤除去其中的SO2,试设计一填料塔进行上述操作并画出设计方案工艺流程图。 设计要求: 设计方案确定(流体流向、塔高、塔径); 填料选择; 流体基础物性的计算(液体物性、气体物性、气液平衡、物料衡算); 填料塔的工艺尺寸计算。 基础数据: 入塔炉气流量:2400m3h⁄; SO2的摩尔分率:0.05; SO2的回收率:95%。 注意:①低浓度气体的吸收溶液的物性数据可近似取纯水的物性数据; ②气象为混合气体。 (3)工作原理 气体混合物的分离,总是根据混合物中各组分间某种物理性质和化学性质的差异而进行的。吸收作为其中一种,它根据混合物各组分在某种溶剂中溶解度的不同而达到分离的目的。在物理吸附中,溶质和溶剂的结合力较弱,解析比较方便。 填料塔是一种应用很广泛的气液传质设备,它具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,操作时液体与气体经过填料时被填料打散,增大气液接触面积,从而有利于气体与液体之间的传热与传质,使得吸收效率增加。 (三)设计方案 (1)填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视;) ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差

填料塔设计及核算软件开发

填料塔设计及核算软件开发 填料塔是一种广泛应用于化工、环保、水处理等行业的传质设备,其设计及核算软件开发对于提高工业过程效率、降低能耗具有重要意义。本文将从填料塔设计和核算软件开发两个方面展开讨论,以期为相关行业提供理论和应用参考。 填料塔的塔型选择是设计过程中的重要环节,需要根据工艺要求、介质特性和操作条件等因素进行选择。一般情况下,填料塔分为板式塔和柱式塔两种类型,需要根据实际需求进行选择。 填料的种类对填料塔的性能有着决定性的影响。常用的填料包括塑料填料、金属填料和陶瓷填料等,需要根据介质腐蚀性、耐磨性等要求进行选择。 填料塔的质量要求是设计过程中必须考虑的因素。在选择填料时,需要考虑到填料的材质、结构、装填方式等因素,以确保填料塔的性能和寿命。 操作空间是填料塔设计的另一个重要方面。在填料塔中,操作空间的大小直接影响到气液接触面积和传质效率。因此,需要在设计中合理安排操作空间,以获得最佳的传质效果。

在核算软件开发前,需要进行详细的需求分析。这包括对用户需求、软件功能、性能要求等方面的分析,以便为后续的系统设计提供依据。系统设计是核算软件开发的关键环节。在此阶段,需要设计出合理的软件架构,确定各个模块的功能和关系,并编写相应的技术文档。 编码实现是核算软件开发的具体实施阶段。在此阶段,需要根据系统设计的要求,采用合适的编程语言和开发工具进行编码工作。同时,需要注意软件的可维护性和可扩展性。 测试和部署是保证核算软件质量的关键步骤。在测试阶段,需要对软件进行功能测试、性能测试、安全测试等,以确保软件的稳定性和可靠性。在部署阶段,需要根据用户的需求将软件部署到相应的平台上,并进行必要的配置和优化。 填料塔设计和核算软件开发在工程实践中有广泛的应用。例如,在石化行业中,填料塔被用于吸收和分离气体中的有害成分;在环保领域,填料塔用于处理工业废水中的有害物质;在制药行业,填料塔用于萃取和分离药物成分等。通过合理的填料塔设计和核算软件开发,可以显著提高这些过程的效率和质量。 本文对填料塔设计和核算软件开发进行了全面的探讨,包括塔型选择、

填料塔持液量计算

填料塔持液量计算 填料塔持液量计算是在化工工艺中常见的一种计算方法,它用于确定填料塔内液体的持液量,从而帮助工程师设计和优化工艺。本文将从基本原理、计算方法和应用案例等方面进行介绍。 一、基本原理 填料塔是一种常见的化工设备,广泛应用于各种物质的分离、萃取和反应过程中。其基本构造是将填料装置在塔内,使流体与填料进行充分的接触和混合,从而实现传质、传热和反应等目的。而填料塔持液量计算就是为了确定填料塔内液体的持液量,以保证塔内流体的稳定性和工艺效果的达到。 填料塔内的液体持液量是指填料塔内液体的体积或质量,通常用液体高度或液体重量来表示。持液量的大小直接影响到填料塔的工作效果和设备的运行稳定性。因此,准确计算填料塔持液量是设计和操作填料塔的重要前提之一。 二、计算方法 填料塔持液量的计算方法有多种,常见的有重力平衡法和压力平衡法两种。下面将分别介绍这两种方法。 1. 重力平衡法 重力平衡法是通过平衡填料塔内液体的重力和塔内气体的向上流动所需的力来计算持液量。根据阿基米德原理,塔内液体的重力可以

用液体的体积和密度来表示。而塔内气体的流动所需的力可以通过流体力学的基本原理来计算。通过平衡这两个力,可以得到填料塔的持液量。 2. 压力平衡法 压力平衡法是通过平衡填料塔内液体的静压力和塔内气体的动压力来计算持液量。根据流体静力学的基本原理,液体静压力可以通过液体的密度、液体高度和重力加速度来计算。而塔内气体的动压力可以通过气体的密度、气体流速和气体速度来计算。通过平衡这两个压力,可以得到填料塔的持液量。 三、应用案例 填料塔持液量计算在化工工艺中有着广泛的应用。下面以一个分离过程为例,介绍填料塔持液量计算的应用过程。 假设有一个二元混合物,需要通过填料塔进行分离。根据物质的性质和分离要求,确定了填料塔的高度、填料种类和操作条件等参数。首先,根据工艺要求和设备的尺寸,确定了填料塔的直径和高度。然后,根据填料种类和操作条件,选择了合适的填料,并计算了填料的体积和密度。 接下来,根据填料塔的类型和操作条件,选择了适当的持液量计算方法。在本例中,选择了重力平衡法来计算填料塔的持液量。通过计算填料塔内液体的重力和塔内气体的向上流动所需的力,得到了

填料塔的设计完整版

填料塔的设计HEN system office room [HEN 16

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在儿分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。

一.设计任务书 1•设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2. 设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25°C,以清水为吸收剂,吸收脱除混合气体中的NH3,气体处理量为1500m3/h,其中含氨%(体积分数),要求吸收率达到99%,相平衡常数呼。 3. 设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括□录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。 6)对设计过程的评述和有关问题的讨论。 二.设计资料 1. 工艺流程 采用填料塔设计,填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体 间的接触表面。例如应用于气体吸收时,液体山塔的上部通过分布器进入,沿填料表面下 降。气体则山塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简 单,检修较方便。广泛应用于气体吸收、蒸镭、萃取等操作。 2. 进气参数 进气流量:1500m7h 进气主要成分:NHs 空气粘度系数:“v = 1.81 x IO-5 pa - s = 0.065kg!m h 298K,下,氨气在空气中的扩散系数以二s; 298K,下,氨气在水中的扩散系数D L=*10-9m7s 25°C时,氨在水中的溶解度为H=m3kpa

填料塔计算和设计

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量(de)填料为相间接触构件(de)气液传质设备.填料塔(de)塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌(de)方式放置在支承板上.在填料(de)上方安装填料压板,以限制填料随上升气流(de)运动.液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下.气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质.填料塔属于连续接触式(de)气液传质设备,正常操作状态下,气相为连续相,液相为分散相. 二、填料(de)类型及性能评价 填料是填料塔(de)核心构件,它提供了气液两相接触传质(de)相界面,是决定填料塔性能(de)主要因素.填料(de)种类很多,根据装填方式(de)不同,可分为散装填料和规整填料两大类.散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛(de)是波纹填料,分为板波纹填料和网波纹填料; 填料(de)几何特性是评价填料性能(de)基本参数,主要包括比表面积、空隙率、填料因子等.

1.比表面积:单位体积填料层(de)填料表面积,其值越大,所提供(de)气液传质面积越大,性能越优; 2.空隙率:单位体积填料层(de)空隙体积;空隙率越大,气体通过(de)能力大且压降低; 3.填料因子:填料(de)比表面积与空隙率三次方(de)比值,它表示填料(de)流体力学性能,其值越小,表面流体阻力越小. 三、填料塔设计基本步骤 1.根据给定(de)设计条件,合理地选择填料; 2.根据给定(de)设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层(de)压降; 4.进行填料塔(de)结构设计,结构设计包括塔体设计及塔内件设计两部分. 四、填料塔设计 1.填料(de)选择 填料应根据分离工艺要求进行选择,对填料(de)品种、规格和材质进行综合考虑.应尽量选用技术资料齐备,适用性能成熟(de)新型填料.对性能相近(de)填料,应根

相关主题
相关文档
最新文档