电动力学习题答案

合集下载

电动力学期中考试和答案

电动力学期中考试和答案

电动力学期中考试和答案一、选择题(每题3分,共30分)1. 电场强度的定义式为E=F/q,其中E表示电场强度,F表示电场力,q表示试探电荷。

根据定义式,下列说法正确的是()。

A. 电场强度与试探电荷的电量成正比B. 电场强度与试探电荷所受的电场力成正比C. 电场强度与试探电荷的电量和电场力无关D. 电场强度与试探电荷所受的电场力成反比答案:C2. 根据库仑定律,两个点电荷之间的静电力F与它们的电荷量q1和q2的乘积成正比,与它们之间的距离r的平方成反比。

下列说法正确的是()。

A. 静电力与电荷量的乘积成正比B. 静电力与电荷量成反比C. 静电力与距离的平方成正比D. 静电力与距离的平方成反比答案:D3. 电势差U=W/q,其中U表示电势差,W表示电场力做的功,q表示试探电荷的电量。

根据电势差的定义式,下列说法正确的是()。

A. 电势差与试探电荷的电量成正比B. 电势差与试探电荷所受的电场力成正比C. 电势差与试探电荷的电量和电场力无关D. 电势差与试探电荷所受的电场力成反比答案:C4. 电容器的电容C=Q/U,其中C表示电容,Q表示电容器所带的电荷量,U表示电容器两极板之间的电势差。

根据电容的定义式,下列说法正确的是()。

A. 电容与电容器所带的电荷量成正比B. 电容与电容器两极板之间的电势差成正比C. 电容与电容器所带的电荷量和电势差无关D. 电容与电容器所带的电荷量成反比答案:C5. 根据欧姆定律,导体两端的电压U与通过导体的电流I成正比,比例系数为导体的电阻R。

下列说法正确的是()。

A. 电压与电流成正比B. 电压与电流成反比C. 电压与电阻成正比D. 电压与电阻成反比答案:A6. 根据焦耳定律,电流通过导体产生的热量Q与电流的平方I^2、导体的电阻R和通电时间t成正比。

下列说法正确的是()。

A. 热量与电流的平方成正比B. 热量与电流的平方成反比C. 热量与电阻成正比D. 热量与电阻成反比答案:A7. 根据基尔霍夫电压定律,电路中任意闭合回路的电压之和为零。

电动力学考试题及答案3

电动力学考试题及答案3

电动力学考试题及答案3一、单项选择题(每题2分,共20分)1. 电场中某点的电场强度方向是()。

A. 正电荷在该点受力方向B. 负电荷在该点受力方向C. 正电荷在该点受力的反方向D. 负电荷在该点受力的反方向答案:A2. 电场强度的单位是()。

A. 牛顿B. 牛顿/库仑C. 伏特D. 库仑答案:B3. 电场中某点的电势为零,该点的电场强度一定为零。

()A. 正确B. 错误答案:B4. 电场线与等势面的关系是()。

A. 互相平行B. 互相垂直C. 互相重合D. 以上都不对答案:B5. 电容器的电容与()有关。

A. 电容器的两极板面积B. 电容器的两极板间距C. 电容器的两极板材料D. 以上都有关答案:D6. 电容器充电后断开电源,其电量()。

A. 增加B. 减少C. 不变D. 无法确定答案:C7. 电容器两极板间电压增大时,其电量()。

A. 增加B. 减少C. 不变D. 无法确定答案:A8. 电容器两极板间电压增大时,其电场强度()。

A. 增加B. 减少C. 不变D. 无法确定答案:A9. 电容器两极板间电压增大时,其电势差()。

A. 增加B. 减少C. 不变D. 无法确定10. 电容器两极板间电压增大时,其电势能()。

A. 增加B. 减少C. 不变D. 无法确定答案:A二、多项选择题(每题3分,共15分)11. 电场强度的物理意义包括()。

A. 描述电场的强弱B. 描述电场的方向C. 描述电场的性质D. 描述电场的作用12. 电场中某点的电势与()有关。

A. 该点的电场强度B. 参考点的选择C. 电场线的方向D. 电场线的形状答案:B13. 电容器的电容与()有关。

A. 电容器的两极板面积B. 电容器的两极板间距C. 电容器的两极板材料D. 电容器的电量答案:A|B|C14. 电容器充电后断开电源,其()。

A. 电量不变B. 电压不变C. 电场强度不变D. 电势差不变答案:A|B|C|D15. 电容器两极板间电压增大时,其()。

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案
解:忽略边缘效应,平行板电容器内部场强方向垂直于极板,且介质中的场强分段均匀,分别设为 和 ,电位移分别设为 和 ,其方向均由正极板指向负极板。当介质不漏电时,介质内没有自由电荷,因此,介质分界面处自由电荷面密度为
取高斯柱面,使其一端在极板A内,另一端在介质1内,由高斯定理得:
同理,在极板B内和介质2内作高斯柱面,由高斯定理得:
因此
即 只有切向分量,从而 只有切向分量,电场线与导体表面平行。
14.内外半径分别为a和b的无限长圆柱形电容器,单位长度荷电为 ,板间填充电导率为 的非磁性物质。
(1)证明在介质中任何一点传导电流与位移电流严格抵消,因此内部无磁场。
(2)求 随时间的衰减规律。
(3)求与轴相距为 的地方的能量耗散功率密度。
在介质1和介质2内作高斯柱面,由高斯定理得:
所以有 ,
由于E
所以 E
当介质漏电时,重复上述步骤,可得:
, ,
介质1中电流密度
介质2中电流密度
由于电流恒定, ,
再由E 得
E
E E
E
E
12.证明:
(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足
其中 和 分别为两种介质的介电常数, 和 分别为界面两侧电场线与法线的夹角。
其中 和 为球面的极化面电荷激发的电势,满足拉普拉斯方程。由于对称性, 和 均与 无关。考虑到 时 为有限值; 时 ,故拉普拉斯方程的解为:
由此 (1)
(2)
边界条件为: (3)
(4)
将(1)(2)代入(3)和(4),然后比较 的系数,可得:
于是得到所求的解为:
在均匀介质内部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体内部,只有球心处存在极化电荷。

电动力学习题集答案-1

电动力学习题集答案-1

电动力学第一章习题及其答案1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立.2. 若a为常矢量, k z z j y y i x x r )'()'()'(-+-+-=为从源点指向场点的矢量,k E,0为常矢量,则)(2a r ⋅∇=a r a r a r a r a r r r dr dr ⋅=⋅=⋅∇=⋅∇=⋅∇22))()(222,=⨯∇r0'''=---∂∂∂∂∂∂z z y y x x e e e zyxxxx, 3)z'-(z )y'-(y )x'-(x =++=⋅∇∂∂∂∂∂∂z y x r ,)()(=⨯∇⋅=⨯⋅∇r a r a ,0)(3211=⨯=⨯=⨯∇+⨯∇=⨯∇∇r r r r r r r r r rrr,a k j i r a za ya xa z y x =++=⋅∇∂∂∂∂∂∂)]z'-(z [)]y'-(y [)]x'-(x [)(,r r rr r rrr r r r 23113=+⋅-=⋅∇+⋅∇=⋅∇ ,=⨯∇⋅∇)(A __0___. =⋅⋅∇)]sin([0r k E )cos(0r k E k ⋅⋅, 当0≠r 时,=⨯∇)/(3r r __0__. =⋅∇⋅)(0r k i e E )exp(0r k i E k i ⋅⋅, =⨯∇)]([r f r _0_. =⋅∇)]([r f r dr r df r r f )()(3+3. 矢量场f的唯一性定理是说:在以s 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散度,以及该矢量在边界上的切向或法向分量,则f在V内唯一确定.4. 电荷守恒定律的微分形式为0=∂∂+⋅∇tJ ρ,若J为稳恒电流情况下的电流密度,则J满足0=⋅∇J.5. 场强与电势梯度的关系式为,ϕ-∇=E.对电偶极子而言,如已知其在远处的电势为)4/(30r r P πεϕ ⋅=,则该点的场强为()⎪⎪⎭⎫ ⎝⎛-⋅=350341r P rr r P Eπε.6. 自由电荷Q 均匀分布于一个半径为a 的球体内,则在球外)(a r >任意一点D的散度为 0,内)(a r <任意一点D的散度为 34/3a Q π.7. 已知空间电场为b a rrb r r a E ,(32 +=为常数),则空间电荷分布为______.8. 电流I 均匀分布于半径为a 的无穷长直导线内,则在导线外)(a r >任意一点B的旋度的大小为 0 , 导线内)(a r <任意一点B的旋度的大小为20/a Iπμ.9. 均匀电介质(介电常数为ε)中,自由电荷体密度为f ρ与电位移矢量D的微分关系为f D ρ=⋅∇ , 束缚电荷体密度为Pρ与电极化矢量P 的微分关系为P P ρ-=⋅∇,则P ρ与f ρ间的关系为fP ρρεεε0--=.10. 无穷大的均匀电介质被均匀极化,极化矢量为P,若在介质中挖去半径为R 的球形区域,设空心球的球心到球面某处的矢径为R,则该处的极化电荷面密度为R R P /⋅-.11. 电量为q的点电荷处于介电常数为ε的均匀介质中,则点电荷附近的极化电荷为q )1/(0-εε.12. 某均匀非铁磁介质中,稳恒自由电流密度为f J,磁化电流密度为M J ,磁导率μ,磁场强度为H ,磁化强度为M ,则=⨯∇H f J ,=⨯∇M M J ,M J 与f J 间的关系为()f M J J1/0-=μμ.13. 在两种电介质的分界面上,E D ,所满足的边值关系的形式为()f D D n σ=-⋅12,()012=-⨯E E n.14. 介电常数为ε的均匀各向同性介质中的电场为E . 如果在介质中沿电场方向挖一窄缝,则缝中电场强度大小为E . 15. 介电常数为ε的无限均匀的各项同性介质中的电场为E ,在垂直于电场方向横挖一窄缝,则缝中电场强度大小为RR P P P P n n P ⋅-=--=--=)0cos ()(12θ,/0sin 00011201212εεθεετττE E E E E E E E D D n n =⇒⎩⎨⎧===⇒⎩⎨⎧=-=-缝缝. 16. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,则锥体中的场强与介质中的场强之比为_1:1_.17. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质附近导体壳上的自由电荷密度之比为εε/0.18. 在两种磁介质的分界面上, B H,所满足的边值关系的矢量形式为()fH H n α=-⨯12,()012=-⋅B B n.19. 一截面半径为b 无限长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能为__________________.20. 在同轴电缆中填满磁导率为21,μμ的两种磁介质,它们沿轴各占一半空间。

《电动力学》课后题答案_第三版_郭硕鸿

《电动力学》课后题答案_第三版_郭硕鸿
S
若 S → ∞, 则 ( xj ) ⋅ dS = 0, ( j 同理
(
r ∂ρ ) ∂t

r
r
r
S
= 0)
y
= ∫ j y dV ' , (
r ∂ρ ) z = ∫ j z dV ' ∂t

r r r dP = ∫ j ( x ' , t )dV ' V dt
r r r r r m ×R m⋅R r 的旋度等于标量 ϕ = 的梯 6. 若 m 是常矢量 证明除 R 0 点以外 矢量 A = R3 R3
l S
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
'
微商 (∇ = e x
r ∂ r ∂ r ∂ + ey + e z ) 的关系 ∂x ∂y ∂z r r r r r r 1 r r r ' ' 1 ' r ∇r = −∇ r = , ∇ = −∇ = − 3 , ∇ × 3 = 0, ∇ ⋅ 3 = −∇ 3 = 0.(r ≠ 0) r r r r r r r
而 dl φ = (φ i dl x + φ j dl y + φ k dl z )
l l

r

-3-

电动力学习题答案

电动力学习题答案

电动力学习题答案电动力学是物理学中研究电荷、电场、磁场和它们之间相互作用的分支。

以下是一些典型的电动力学习题及其答案。

# 习题一:库仑定律的应用问题:两个点电荷,一个带电为+3μC,另一个为 -5μC,它们之间的距离为 2m。

求它们之间的静电力大小。

解答:根据库仑定律,两个点电荷之间的静电力 \( F \) 由下式给出:\[ F = k \frac{|q_1 q_2|}{r^2} \]其中 \( k \) 是库仑常数,\( q_1 \) 和 \( q_2 \) 是电荷量,\( r \) 是它们之间的距离。

代入给定的数值:\[ F = 8.9875 \times 10^9 \frac{N \cdot m^2}{C^2} \times\frac{3 \times 10^{-6} C \times (-5 \times 10^{-6} C)}{(2 m)^2} \]\[ F = 37.5 N \]# 习题二:电场强度的计算问题:一个无限大均匀带电平面,电荷面密度为 \( \sigma \)。

求距离平面\( d \) 处的电场强度。

解答:对于无限大均匀带电平面,电场强度 \( E \) 垂直于平面,大小为:\[ E = \frac{\sigma}{2\epsilon_0} \]其中 \( \epsilon_0 \) 是真空电容率。

# 习题三:电势能的计算问题:一个点电荷 \( q \) 位于另一个点电荷 \( Q \) 产生的电场中,两者之间的距离为 \( r \)。

求点电荷 \( q \) 在该电场中的电势能。

解答:点电荷 \( q \) 在由点电荷 \( Q \) 产生的电场中的电势能 \( U \) 为:\[ U = -k \frac{qQ}{r} \]# 习题四:洛伦兹力的计算问题:一个带电粒子,电荷量为 \( q \),以速度 \( v \) 进入一个垂直于其运动方向的磁场 \( B \) 中。

【全】刘觉平电动力学课后习题答案

【全】刘觉平电动力学课后习题答案

第一章三維歐氏空間中的張量目录:习题1.1 正交坐标系的转动 (2)习题1.2 物理量在空间转动变换下的分类 (9)习题1.3 物理量在空间反演变换下的进一步分类 (10)习题1.4 张量代数 (15)习题1.5 张量分析 (21)习题1.6 Helmholtz定理 (35)习题1.7 正交曲线坐标系 (38)习题1.8 正交曲线坐标系中的微分运算 (42)习题1.11、 设三个矢量,,a b c r r r 形成右(左)旋系,证明,当循环置换矢量,,a b c r r r的次序,即当考察矢量,,(,,)b c a c a b r rr r r r 时,右(左)旋系仍保持为右(左)旋系。

证明:()V a b c =⨯⋅r r r,对于右旋系有V>0.当循环置换矢量,,a b c r r r次序时, ()V b c a '=⨯⋅r r r =()0c a b V ⨯⋅=〉rr r 。

(*)所以,右旋系仍然保持为右旋系 同理可知左旋系情况也成立。

附:(*)证明。

由于张量方程成立与否与坐标无关,故可以选取直角坐标系,则结论是明显的。

2、 写出矢量诸分量在下列情况下的变换矩阵:当Cartesian 坐标系绕z 轴转动角度α时。

解:变换矩阵元表达式为 ij i j a e e '=⋅r r1112212213233233cos ,sin ,sin ,cos ,0,1a a a a a a a a αααα===-===== 故()cos sin 0sin cos 0001R ααααα⎛⎫⎪=- ⎪ ⎪⎝⎭3、 设坐标系绕z 轴转α角,再绕新的y 轴(即原来的y 轴在第一次转动后所处的位置)转β角,最后绕新的z 轴(即原来的z 轴经第一、二次转动后所处的位置)转γ角;这三个角称为Euler 角。

试用三个转动矩阵相乘的办法求矢量诸分量的在坐标轴转动时的变换矩阵。

解:我们将每次变换的坐标分别写成列向量,,,X X X X '''''', 则 ()()(),,z y z X R X X R X X R X αβγ'''''''''''''===∴()()()z y z X R R R X γβα''''''=绕y '-轴转β角相当于“先将坐标系的y '-轴转回至原来位置,再绕原来的y-轴(固定轴)转β角,最后将y-轴转至y '-轴的位置”。

电动力学题库答案

电动力学题库答案

一.有一电荷均匀体分布的刚性小球,总电荷Q,半径,以角速度0R ω绕自身某直径旋转a) 求它的磁矩b) 假定认为电子是上述的一个小球,由电子经典半径,其固有磁矩,试证明:如果把自旋理解为经典球自转,将与狭义相对论相矛盾。

cm R 130108.2−×≈高斯尔格实/109.020−×≈m c) 解:a) 如图,小球绕z 轴旋转,则φθωπωπρe Rsin R 43Q R R 43Q v j 33=×==Z 022f R 00f e 5QR dr d sin r )j r (221dv j x 21m 0ωθθππ=××=×=∫∫∫b) 设2020109.0m 5QR −×==实ω则220109.05QR −××=ω其中Q 是电子电量= 库仑19106.1−×而电子赤道表面的线速度vC /10108.2101.6/10109.05QR 109.05R v 111519-3200200秒〉米米库仑特斯拉)(焦耳≈××××××=××==−−−−ω 所以这是违反相对论的。

二.一枚铜币以其边缘为支点立于竖直方向的磁场B=20KG 中,给它一轻微的推力让其倒下,试估计倒下所需要的时间,设铜的,密度。

cm /1065Ω×=σ39−=gmcm ρ解:分析: 如果没有磁场,则铜币一旦偏离竖直位置,就会在重力矩的作用下有加速的倒下,若有磁场时,在人为让它偏离后,运动过程中,磁场使铜币感应而产生磁矩,磁矩在外场中有力矩,磁力矩阻此铜币倒下,二个力矩在运动中平衡,所以迟延了铜币倒下的时间,设在倒下的过程中,币面与竖直面的夹角为θ,磁场对铜币的感应可以看成许多小电流圈,考虑小圆环,r+dr,通过该环的磁通θπθφsin )(2B r =感生电动势==dtd φεdtd Bco r θθπ2感应电流hdr dtd Br hdr r dt d B r Rdi σθθσπθθπεcos 21/2cos 2===h 是铜币的厚度hdr电流环的磁力矩hdr dL m =铜币的总磁力矩(设铜币的半径为)0r h dt d B r dr hr dtd B dL L r r m m σθθπσθθπ22403220cos 81cos 2100===∫∫说明:磁力矩使铜币转向原来的竖直位置,因为电或磁偶极子在外场中总趋于能量最低的位置,在本题中磁偶极子是因外场感应而引起的,在运动过程中是变化的,例如处在竖直位置时,B m v m ⋅==,0,这跟纯磁偶极子不同,为要的运动中的电流圈磁矩不变,必须加外电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动力学习题答案
电动力学习题答案
电动力学是物理学中的一个重要分支,研究电荷和电场之间的相互作用以及电
流和磁场之间的关系。

在学习电动力学的过程中,我们经常会遇到一些练习题,下面我将为大家提供一些常见电动力学练习题的答案,希望能对大家的学习有
所帮助。

1. 一个带电粒子在电场中受到的力是多少?
答:一个带电粒子在电场中受到的力可以通过库仑定律来计算。

库仑定律表明,两个电荷之间的力与它们之间的距离的平方成反比,与它们的电荷量的乘积成
正比。

因此,一个带电粒子在电场中受到的力可以表示为F = qE,其中F是受力,q是电荷量,E是电场强度。

2. 一个带电粒子在电场中移动一段距离后,它的电势能发生了什么变化?
答:当一个带电粒子在电场中移动时,它的电势能会发生变化。

电势能的变化
可以通过电势差来计算,即ΔV = -W/q,其中ΔV是电势差,W是带电粒子所
受的力沿着移动方向的做功,q是电荷量。

如果带电粒子沿着电场方向移动,
那么电势能将减小;如果带电粒子与电场方向相反移动,电势能将增加。

3. 一个带电粒子在电场中沿着等势线移动,它的电势能是否发生变化?
答:当一个带电粒子沿着等势线移动时,它的电势能不会发生变化。

等势线表
示电势相等的点的连线,沿着等势线移动意味着电势不发生变化,因此电势能
也不会发生变化。

4. 一个电流通过一根导线,导线的两端产生了电压差。

这个电压差是由什么引
起的?
答:电流通过导线时,导线内部会产生电阻。

根据欧姆定律,电流通过导线时,导线两端产生的电压差与电流成正比。

这个电压差是由导线内部电阻引起的。

5. 两根平行的导线中分别有电流通过,它们之间是否会有相互作用?
答:两根平行的导线中分别有电流通过时,它们之间会产生相互作用,即磁场力。

根据安培定律,电流通过导线时会产生磁场,而磁场会对另一根导线产生力。

这个力的大小与电流的大小、导线之间的距离以及导线的方向有关。

以上是一些常见的电动力学练习题及其答案,希望对大家的学习有所帮助。


学习电动力学时,除了掌握基本的理论知识外,还需要通过练习题来加深对知
识的理解和运用能力。

因此,希望大家能够多做练习题,不断提高自己的电动
力学水平。

相关文档
最新文档