电动力学第三版课后答案
(完整版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)

电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
郭硕鸿《电动力学》第三版 课后解答详细解释

电动力学答案
第一章 电磁现象的普遍规律
1. 根据算符 的微分性与向量性,推导下列公式: ( A B) B ( A) (B ) A A ( B) ( A )B
A (
A)
1 2
A2
(A )A
解:(1) ( A B) ( A Bc ) (B Ac )
Bc ( A) (Bc ) A Ac ( B) ( Ac )B
可见 r 'r
○2
1 r
d dr
1 r
r
1 r2
r
r r3
'
1 r
d dr
1 ' r r
1 r2
' r
r r3
可见 1/ r '1/ r
○3 (r / r 3 ) [(1/ r 3 )r] (1/ r 3 ) r (1/ r 3 ) r
d dr
1 r3
r r
第1页
电动力学习题解答
从源点指向场点。 (1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:
r ' r r / r ; (1/ r) '(1/ r) r / r 3 ; (r / r 3 ) 0 ; (r / r 3 ) '(r / r 3 ) 0 , (r 0) 。 (2)求 r , r , (a )r , (a r) , [E0 sin(k r)] 及 [E0 sin(k r)] ,其中 a 、 k 及 E0 均为常向量。
M
1 2r1
M dl 0
在 r r2 处,磁化面电流密度为
M
0 1 2r2
M
dl
( 0
1) (r22 r12 ) 2r22
电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)

电动力学答案第一章电磁现象得普遍规律1、根据算符得微分性与向量性,推导下列公式:2。
设就是空间坐标得函数,证明:,,证明:3。
设为源点到场点得距离,得方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商得关系:; ; ;, 。
(2)求,,, ,及,其中、及均为常向量。
4。
应用高斯定理证明,应用斯托克斯(Stokes)定理证明5、已知一个电荷系统得偶极矩定义为,利用电荷守恒定律证明p得变化率为:6。
若m就是常向量,证明除点以外,向量得旋度等于标量得梯度得负值,即,其中R为坐标原点到场点得距离,方向由原点指向场点、7、有一内外半径分别为与得空心介质球,介质得电容率为,使介质球内均匀带静止自由电荷,求:(1)空间各点得电场;(2)极化体电荷与极化面电荷分布。
8. 内外半径分别为与得无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体得磁导率为,求磁感应强度与磁化电流。
9.证明均匀介质内部得体极化电荷密度总就是等于体自由电荷密度得倍。
10、证明两个闭合得恒定电流圈之间得相互作用力大小相等方向相反(但两个电流元之间得相互作用力一般并不服从牛顿第三定律)11。
平行板电容器内有两层介质,它们得厚度分别为与,电容率为与,今在两板接上电动势为E得电池,求:(1)电容器两极板上得自由电荷面密度与;(2)介质分界面上得自由电荷面密度。
(若介质就是漏电得,电导率分别为与当电流达到恒定时,上述两物体得结果如何?)12、证明:(1)当两种绝缘介质得分界面上不带面自由电荷时,电场线得曲折满足其中与分别为两种介质得介电常数,与分别为界面两侧电场线与法线得夹角。
(2)当两种导电介质内流有恒定电流时,分界面上电场线得曲折满足其中与分别为两种介质得电导率。
13。
试用边值关系证明:在绝缘介质与导体得分界面上,在静电情况下,导体外得电场线总就是垂直于导体表面;在恒定电流情况下,导体内电场线总就是平行于导体表面。
电动力学 第三版_郭硕鸿_课后答案[第3章]
![电动力学 第三版_郭硕鸿_课后答案[第3章]](https://img.taocdn.com/s3/m/96c1ce326fdb6f1aff00bed5b9f3f90f77c64d45.png)
电动力学习题解答参考 第三章 静磁场1. 试用A r 表示一个沿z 方向的均匀恒定磁场0B r写出A r的两种不同表示式证明两者之差是无旋场解0B r 是沿z 方向的均匀的恒定磁场即ze B B r r =0且AB r r×∇=0在直角坐标系中zx y y z x x y z e yA x A e x A z A e z A y A A r r rr )()()(∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇如果用A r 在直角坐标系中表示0B r 即=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂000y A x A x A z A z A y A xy zx yz 由此组方程可看出A r有多组解如解1)(,00x f y B A A A x Z y +−=== 即 xe xf y B A rr )]([0+−= 解2)(,00y g x B A A A Y z x +=== 即 ye y g x B A rr )]([0+=解1和解2之差为yx e y g x B e x f y B A r r r )]([)]([00+−+−=∆则zx y y z x x y z e y A xA e x A z A e z A y A A r r r r ])()([])()([])()([)(∂∆∂−∂∆∂+∂∆∂−∂∆∂+∂∆∂−∂∆∂=∆×∇这说明两者之差是无旋场2.均匀无穷长直圆柱形螺线管每单位长度线圈匝数为n电流强度为I 试用唯一性定理求管内外磁感应强度B解根据题意得右图取螺线管的中轴线为z 轴本题给定了空间中的电流分布故可由∫×='43dV r rJ B rr r πµ求解磁场分布又J r 在导线上所以∫×=34r r l Jd B r r r πµ1 螺线管内由于螺线管是无限长理想螺线管故由电磁学的有关知识知其内部磁内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场场是均匀强磁场故只须求出其中轴线上的磁感应强度即可知道管内磁场 由其无限长的特性不妨取场点为零点以柱坐标计算x y x e z e a e a r r r r r ''sin 'cos −−−=ϕϕyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−=)''sin 'cos ()'cos ''sin '(x y x y x e z e a e a e ad e ad r l d r r r r r r r −−−×⋅+⋅−=×∴ϕϕϕϕϕϕ zy x e d a e d az e d az rrr'''sin '''cos '2ϕϕϕϕϕ+−−= 取由'''dz z z +−的以小段此段上分布有电流'nIdz ∫++−−=∴232220])'([)'''sin '''cos '('4z a e d a e d az e d az nJdz B z y x rr r r ϕϕϕϕϕπµ I n az a z d nI e nI z a dz a d z 0232023222200]1)'[()'(2])'([''4µµϕπµπ=+=⋅+=∫∫∫∞+∞−∞∞−r 2)螺线管外部:由于是无限长螺线管不妨就在xoy 平面上任取一点)0.,(ϕρP 为场点)(a >ρ 222')'sin sin ()'cos cos ('z a a x x r +−+−=−=∴ϕϕρϕϕρrr )'cos(2'222ϕϕρρ−−++=a z a ('=−=x x r r r r x e a r )'cos cos ϕϕρ−zy e z e a rr ')'sin sin (−−ϕϕρyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−= zy x e d a a e d az e d az r l d r r r r r ')]'cos([''sin '''cos '2ϕϕϕρϕϕϕϕ−−+−−=×∴+−+−⋅=∴∫∫∫∫∞∞−∞∞−'''sin '''''cos ''[43203200dz e r d az d dz e r d az d nI B y x rr r ϕϕϕϕϕϕπµππ]')'cos('3220∫∫∞∞−−−+z e dz r a a d rϕϕρϕπ由于磁场分布在本题中有轴对称性而螺线管内部又是匀强磁场且螺线管又是无限长故不会有磁力线穿出螺线管上述积分为0所以0=B r内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场3. 设有无穷长的线电流I 沿z 轴流动以z<0空间充满磁导率为µ的均匀介质z>0区域为真空试用唯一性定理求磁感应强度B 然后求出磁化电流分布解本题的定解问题为×∇=×∇=<−=∇>−=∇===010020212201211)0(,)0(,z z z A A AA z J A z J A r r r rrr rr µµµµ由本题具有轴对称性可得出两个泛定方程的特解为∫∫==rl Id x A rl Id x A rr r rr r πµπµ4)(4)(201由此可推测本题的可能解是<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 验证边界条件1)(,12021=−⋅==B B n A A z r rr r r 即 题中,=⋅=θe e e n z z rr r r 且所以边界条件1满足2)(,11120102=−××∇=×∇==H H n A A z z r r rr r即µµ本题中介质分界面上无自由电流密度又θθπµπµe r I B H e rI B H r r r r r r 2222011====,012=−∴H H r r 满足边界条件0)(12=−×H H n r r r综上所述由唯一性定理可得本题有唯一解<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 在介质中MB H r r r −=0µ故在z<0的介质中22H B M r rr −=µ内部资料料料内部资料内部即θθθµππµπe r e r e r M )1(22200−=−⋅= ∴介质界面上的磁化电流密度r z M e r I e e r I n M r r r r r r )1(2)1(200−=×−=×=µµπµµπαθ总的感应电流)1()1(20200−=⋅⋅⋅−=⋅=∫∫µµϕµµππθθI e d r e r I l d M J Mr r rr 电流在z<0的空间中沿z 轴流向介质分界面4. 设x<0 半空间充满磁导率为µ的均匀介质x>0 空间为真空今有线电流I 沿z 轴流动求磁感应强度和磁化电流分布解假设本题中得磁场分布仍呈轴对称则可写作ϕπµe rI B vv 2′=其满足边界条件0)(0)(1212==−×=−⋅αvv v v v vv H H n B B n 即可得在介质中ϕµπµµe r I B H vv v 22′== 而Me r I M B H v v v v v −′=−=ϕµπµµ0022∴在x<0的介质中ϕµµµµπµe r I M vv 002−′= 则∫=ld M I Mvv 取积分路线为B A C B →→→的半圆,ϕe AB vQ ⊥ AB ∴段积分为零 002)(µµµµµ−′=I I M ϕπµe r I I B M v v 2)(0+=∴∴由ϕϕπµπµe rI B e r I I M v v v 22)(0′−==+可得02µµµµµ+=′内部资料料料内部资料内∴空间ϕπµµe rB 0+= I I M 0µµµµ+−=沿z轴5.某空间区域内有轴对称磁场在柱坐标原点附近已知)21(220ρ−−≈z C B Bz 其中B 0为常量试求该处的ρB 提示用,0=⋅∇B r 并验证所得结果满足0Hr×∇解由B v 具有轴对称性设zz e B e B B v v v +=ρρ其中 )21(220ρ−−=z c B B z 0=⋅∇B v Q 0)(1=∂∂+∂∂∴z B zB ρρρρ即02)(1=−∂∂cz B ρρρρ A cz B +=∴2ρρρ(常数) 取0=A 得ρρcz B =z e z c B e cz B vv v )]21([220ρρρ−−+=∴10,0==D j v vQ 0=×∇∴B v 即 0)(=∂∂−∂∂θρρe B z B z v2代入1式可得2式成立∴ρρcz B = c 为常数6. 两个半径为a 的同轴线圈形线圈位于L z ±=面上每个线圈上载有同方向的电流I1 求轴线上的磁感应强度2 求在中心区域产生最接近于均匀的磁场时的L 和a 的关系提示用条件022=∂∂z B z解1由毕萨定律L 处线圈在轴线上z 处产生得磁感应强度为内部资料料料内部资料内,11z z e B B = ∫∫−+==θπαπd L z a r B z 232231])([4sin 4 232220])[(121a z L Ia +−=µ同理L 处线圈在轴线上z处产生得磁感应强度为zz e B B vv 22=2322202])[(121a z L Ia B z++=µ∴轴线上得磁感应强度zz z e a z L a z L Ia e B B v v v++++−==2322232220])[(1])[(121µ 20=×∇B vQ 0)()(2=∇−⋅∇∇=×∇×∇∴B B B v v v 又0=⋅∇Bv0,0222=∂∂=∇∴z B zB v 代入1式中得62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−+−−++−+−−−+−−−62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−++−−++ ++++++−−0取z得)(12])(2)(2[)(22522212222122322=+++−+−+−L a L a L L a L a L 2225a L L +=∴内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场a L 21=∴7. 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上试解矢势A r的微分方程设导体的磁导率为0µ导体外的磁导率为µ解定解问题为×∇=×∇=∞<>=∇<−=∇外内内外内外内A A A A A a r A a r J A a a v v v vvv vv µµµ11)(,0)(,00202选取柱坐标系该问题具有轴对称性且解与z 无关令ze r A A v v )(内内=z e r A A vv )(外外代入定解问题得=∂∂∂∂−=∂∂∂∂0))(1))((10r r A r rr J r r A r r r 外内µ 得43212ln )(ln 41)(C r C r A C r C Jr r A +=++−=外内µ由∞<=0)(r r A 内 得01=C 由外内A A v v ×∇=×∇µµ110 得 232Ja C µ−=内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场由aaA A 内外v v =令0==aaA A 内外v v 得 a Ja C Ja C ln 2,4124202µµ==−=∴ra a J A r a J A ln 2)(412220v v v vµµ外内8.假设存在磁单极子其磁荷为Qm它的磁场强度为304r rQ H m r r πµ=给出它的矢势的一个可能的表示式并讨论它的奇异性解rm m e rQ r r Q H v v v 2030144πµπµ== 由rm e rQ H B A v v v v 204πµ===×∇ 得=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂0])([10)](sin 1[14])(sin [sin 12θφθπφθθθθφθφrr m A rA r r rA r A r r Q A A r (1)令,0==θA A r得rQ A m πθθθφ4sin )(sin =∂∂θθπθπθθφθφsin cos 144sin sin 0r Q A d rQ A mm −=∴=∴∫显然φA 满足1式∴磁单极子产生的矢势φθθπe r Q A m vv sin cos 14−=内部资料料料内部资料内部当2πθ→时φπe rQ A m v v 4→当πθ→时∞→A v故A v的表达式在πθ=具有奇异性A v不合理9. 将一磁导率为µ半径为R 0的球体放入均匀磁场0H r内求总磁感应强度B r 和诱导磁矩mr解根据题意以球心为原点建立球坐标取0H v 的方向为zev此球体在外界存在的磁场的影响下极化产生一个极化场并与外加均匀场相互作用最后达到平衡保持在一个静止的状态呈现球对称本题所满足的定解问题为−=∞<=∂∂=∂∂=>=∇<=∇∞==θϕϕϕµϕµϕϕϕϕcos )(,,,0,0000002221212121R H R R R R R R R R R m R m m m m m m m 由泛定方程和两个自然边界条件得∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++−=010)(cos cos 2n nn nm P R d R H θθϕ由两个边界条件有+−−=+−=∑∑∑∑∞=+∞=−∞=+∞=0200001100100000)(cos )1(cos )(cos )(cos cos )(cos n n n nn n n n n nn n n n nn P R d n H P nR a P R d R H P R a θµθµθµθθθ得内部资料料料内部资料内≠==+−=+)1(,0223000101n d a R H d n n µµµµµµ>⋅+−+−=<+−=∴00230000000,cos 2cos ,cos 2321RR H R R R H R R R H m m θµµµµθϕθµµµϕ+==+=+−+=−∇=00011000000012323sin 23cos 231H H B H e H e H H r m v v v v vv v µµµµµµµµθµµµθµµµϕθ−⋅+−+==−⋅+−+=⋅+−−−⋅+−+=−∇=])(3[2])(3[2sin ]21[cos ]221[3050300000020230503000003300003300022R H R R R H R H H B R H R R R H R H e H R R e H R R H r m v v v v v v v vv v v v vv v µµµµµµµµµµµθµµµµθµµµµϕθ >−⋅+−+<+=∴)()(3[2)(,230305030000000000R R R H R R R H R H R R H B vv v v v vv µµµµµµµµµµ当B v在R>R 0时表达式中的第二项课看作一个磁偶极子产生的场θµµµµϕcos 20230002H RR m ⋅+−∴中可看作偶极子m v产生的势即R H R R H R R R Rm v v v v ⋅⋅+−=⋅+−=⋅⋅02300002300032cos 241µµµµθµµµµπ HR m v v300024⋅+−=∴µµµµπ10. 有一个内外半径为R 1和R 2的空心球位于均匀外磁场0H r内球的磁导率为µ求空内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场腔内的场Br讨论0µµ>>时的磁屏蔽作用解根据题意以球心为原点取球坐标选取0H v的方向为z e v在外场0H v的作用下 球壳极化产生一个附加场并与外场相互作用最后达到平衡B v的分布呈现轴对称定解问题−=∞<∂∂=∂∂∂∂=∂∂==>=∇<<=∇<=∇∞======θϕϕϕµϕµϕµϕµϕϕϕϕϕϕϕcos ,,,0,0,00000322121231223121232121321R H RR R R R R R R R R R R m R m R R m m R R m m R R m m R R m m m m m 由于物理模型为轴对称再有两个自然边界条件故三个泛定方程的解的形式为∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++=01)(cos (2n n n nn n m P Rc R b θϕ∑∞=++−=010)(cos cos 3n nn nm P Rd R H θθϕ因为泛定方程的解是把产生磁场的源0H v做频谱分解而得出的分解所选取的基本函数系是其本征函数系)}(cos {θn P 在本题中源的表示是)(cos cos 100θθRP H R H −=−所以上面的解中)0(,0≠====n d c b a n n n n 故解的形式简化为θθϕθϕθϕcos cos cos )(cos 2102111321RdR H Rc R b R a mm m +−=+==内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场代入衔接条件得−=−−−=+−=++=2(22(32113210031110122120221212111111R c b R d H R c b a R d R H R c R b R c R b R a µµµµµ解方程组得3200312032000320001)2)(2()(2)(3)2(3R R R H R H a µµµµµµµµµµµµ++−−−++= 32003120320001)2)(2()(2)2(3R R R H b µµµµµµµµµ++−−+= 3200312031320001)2)(2()(2)(3R R R R H c µµµµµµµµµ++−−−= 320320031203132000620001)2)(2()(2)(3)2(3R H R R R R H R H d +++−−−++=µµµµµµµµµµµµ而 )3,2,1(,00=∇−==i H B i m i i ϕµµvv ze a B v v 101µ−=∴ 003212000321])()(2)2)(2()(11[HR R R R v µµµµµµµ−−++−−=当0µµ>>时1)(2)2)(2(2000≈−++µµµµµµ 01=∴B v 即球壳腔中无磁场类似于静电场中的静电屏障11. 设理想铁磁体的磁化规律为000,M M H B µµ+=rr 是恒定的与H r无关的量今将一个内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场理想铁磁体做成均匀磁化球0M为常值浸入磁导率为'µ的无限介质中求磁感应强度和磁化电流分布解根据题意取球心为原点做球坐标以0M v的方向为z e v本题具有球对称的磁场分布满足的定解问题为=∞<=∂∂′−∂∂=>=∇<=∇∞===0cos ,,0,021021021*******02R m R m R m m R R m m m m M R RR R R R ϕϕθµϕµϕµϕϕϕϕ ∴∑∞==0)(cos 1n n n nm P R aθϕ∑∞=+=01)(cos )(2n n n nm P R b θϕ代入衔接条件对比)(cos θn P 对应项前的系数得)1(,0≠==n b a nn µµµ+′=2001Ma 30012R M b µµµ+′=)(,cos 20001R R R M m <+′=∴θµµµϕ)(,cos 20230002R R RR M m>+′=θµµµϕ由此µµµµµµ+′′=+=<22,0000110M M H B R R v r v v ,0R R > )(3[2305030022RM R R R M R B m v r v v v −⋅+′′=∇′−=µµµµϕµ >−⋅+′′<+′′=∴)()(3[2)(,2203050300000R R R M R R R M R R R M B v r v v vv µµµµµµµµ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场又0)()(0120其中αααµv v v vv v+=−×M R B B n 代入B v的表达式得ϕθµµµαe M Mvv sin 230′′12. 将上题的永磁球置入均匀外磁场0H r中结果如何解根据题意假设均匀外场0H v 的方向与0M v的方向相同定为坐标z 轴方向定解问题为−=∞<=∂∂−∂∂=>=∇<=∇∞===θϕϕθµϕµϕµϕϕϕϕcos cos ,,0,00000002022102102121R H M R RR R R R R m R m R m m R R m m m m 解得满足自然边界条件的解是)(,cos 011R R R a m <=θϕ)(,cos cos 02102R R R d R H m >+−=θθϕ代入衔接条件0013010020100012M a R d H R d R H R a µµµµ=+++−=得到 0000123µµµµ+−=H M a 3000012)(R H M d µµµµµ+−+=)(,cos 23000001R R R H M m <+−=∴θµµµµϕ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场)(,cos 2)(cos 0230000002R R RR H M R H m>+−++−=θµµµµµθϕ]sin 23cos 23[000000000011θθµµµµθµµµµϕe H M e H M H r m v v v +−−+−−=−∇=∴ µµµµ+−−=0000023H M v v )(,22230002000001R R M H M H B <+++=+=v v v v v µµµµµµµµµ−+−+−−−=−∇=r m e R R H M H H v v )cos 22)(cos [(23000000022θµµµµµθϕ 350230000000)(3])sin 2)(sin (Rm R R R m H e R R H M H v v r r v v−⋅+=+−++−−θθµµµµµθ ])(3[3500202RmR R R m H H B v v r r v v v −⋅+==µµ030003000022H R R M m v vv µµµµµµµ+−++=13. 有一个均匀带电的薄导体壳其半径为R 0总电荷为Q今使球壳绕自身某一直径以角速度ω转动求球内外的磁场Br提示本题通过解m ϕ或A r的方程都可以解决也可以比较本题与5例2的电流分布得到结果解根据题意取球体自转轴为z 轴建立坐标系定解问题为=∞<=∂∂=∂∂−=∂∂−∂∂>=∇<=∇∞===0)(,4sin )(1,0,021211221000000202R m R m m m R R m m m m R R R R R Q R R R R R ϕϕϕµϕµπθωθϕθϕϕϕ其中4sin R Q πθωσ=是球壳表面自由面电流密度解得满足自然边界条件的解为内部资料料料内部资料内部)(,cos 0212R R Rb m >=θϕ代入衔接条件=+−=−024301102101R b a R Q R b R a πω解得 016R Q a πω−= πω12201R Q b =)(,cos 6001R R R R Q m <−=∴θπωϕ)(,cos 1202202R R R R Q m>=θπωϕ00016sin 6cos 61R Q e R Q e R Q H r m πωθπωθπωϕθv vv v =−=−∇=∴ωπµµvr v 001016R Q H B == ])(3[41sin 12cos 1223532032022Rm R R R m e R R Q e R R Q H r r m r v v v vv v −⋅=+=−∇=πθπωθπωϕ其中ωvv 320QR m =])(3[4350202RmR R R m H B r v v v v v −⋅==πµµ14. 电荷按体均匀分布的刚性小球其总电荷为Q 半径为R 0它以角速度ω绕自身某以直径转动求1 它的磁矩2 它的磁矩与自转动量矩之比设质量M 0是均匀分布的 解1磁矩∫×=dV x J x m )(21v v v v内部资料料料内部资料内又 rR x e R == )(34)(30R R v x J ×==ωπρ∫∫×=××=∴φθθπωφθθωπφd drd R e e R Q d drd R R R R Q m r 2430230sin )(4321sin )(4321v v v v r v 又 )sin cos (cos sin y x z r e e e e e e vv v v v v φφθθθφ−−+=−=×∫∫∫−−+=∴ππφθθφφθθπω20243sin )sin cos (cos [sin 83R y x z d drd R e e e R Q m vv v v ωφθθπωππv v 5sin 8320200043300QR d drd R e R Q R z ==∫∫∫2)自转动量矩∫∫∫∫××=×=×==dV R R R M dm v R P d R L d L )(43300v v v v v v v v vωπ52sin 43sin )sin cos (cos [sin 43sin )(sin 43sin )sin (43sin )(43200203430200024302230022300223000ωφθθπωφθθφφθθπωφθθθωπφθθθωπφθθωπππππθφv v vv v v v v v v v R M d drd R R M d drd R e e e R M d drd R e R R M d drd R e e R R M d drd R e e e R R M R R y x z r r z r ==−−+=−=×−=××=∫∫∫∫∫∫∫∫∫ 0200202525M Q R M QR L m ==∴ωωv v v v15. 有一块磁矩为m r的小永磁体位于一块磁导率非常大的实物的平坦界面附近的真空中求作用在小永磁体上的力F r.内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场解根据题意因为无穷大平面的µ很大则可推出在平面上所有的H v均和平面垂直类比于静电场构造磁矩m r 关于平面的镜像m ′r则外场为=⋅=∇−=2304cos 4r m R R m B m m e πθπϕϕµv v v)sin cos (4]sin cos 2[430330θθθθαπµθθπµe e r m e r e r m B rr e vv r v v +=−−−=∴m v∴受力为za r ee a m B m F v v vv )cos 1(643)(24022απµαθ+−=⋅∇⋅===内部资料料料内部资料内部。
电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)(可编辑修改word版)

2 电动力学答案2. 设u 是空间坐标 x , y , z 的函数,证明:∇f (u ) = d fd u∇u ,∇ ⋅ A (u ) = ∇u ⋅ d A,d u第一章 电磁现象的普遍规律1. 根据算符∇ 的微分性与向量性,推导下列公式:∇( A ⋅ B ) = B ⨯ (∇ ⨯ A ) + (B ⋅ ∇) A + A ⨯ (∇ ⨯ B ) + ( A ⋅ ∇)BA ⨯ (∇ ⨯ A ) = 1 ∇A 2- (A ⋅ ∇) A ∇ ⨯ A (u ) = ∇u ⨯ d Ad u证明:⎰ 3. 设 r = 的距离, r 为源点 x ' 到场点 x 的方向规定为从源点指向场点。
4. 应用高斯定理证明 ⎰Vd V ∇ ⨯ f= d S ⨯ f ,应用斯托克斯S (1)证明下列结果,并体会对源变量求微商与对场变量求微 (Stokes )定理证明 ⎰d S ⨯ ∇= ⎰ d l商的关系:∇r = -∇' r = r / r ;SL∇(1/ r ) = -∇'(1/ r ) = -r / r 3; ∇ ⨯ (r / r 3 ) = 0 ;∇ ⋅ (r / r 3 ) = -∇'⋅(r / r 3 ) = 0 ,(r ≠ 0) 。
( 2) 求 ∇ ⋅r , ∇ ⨯ r , (a ⋅ ∇)r , ∇(a ⋅ r ) , ∇ ⋅[E 0 sin(k ⋅ r )] 及 ∇ ⨯[E 0 sin(k ⋅ r )],其中a 、 k 及 E 0 均为常向量。
(x - x ')2 + ( y - y ')2 + (z - z ')25. 已知一个电荷系统的偶极矩定义为 p (t ) =⎰V( x ', t )x ' d V ',∂6. 若 m 是常向量,证明除 R = 0 点以外,向量 A =(m ⨯ R )/ R 3的 旋 度 等 于 标 量 = m ⋅ R / R 3 的 梯 度 的 负 值 , 即利用电荷守恒定律 ∇ ⋅ J + ∂t= 0 证明 p 的变化率为:∇ ⨯ A = -∇,其中 R 为坐标原点到场点的距离,方向由原d p = ⎰ J ( x ', t )d V 点指向场点。
电动力学第三版答案

电动力学第三版答案第一章:静电学1.1 静电场静电场是由电荷所产生的场,它是一种无时间变化的电磁场。
静电场的性质可以通过电场强度、电势和电荷分布来描述。
电场强度表示单位正电荷所受到的力,并且是一个向量量。
在任意一点的电场强度可以通过库仑定律计算。
电势是单位正电荷所具有的势能,它是一个标量量。
电势可以通过电势差来定义,电势差是两点之间的电势差别。
1.2 电场的高斯定律电场的高斯定律是描述电场在闭合曲面上的通量与该闭合曲面内的电荷有关系的定律。
它可以通过以下公式表示:\[ \oint \mathbf{E} \cdot \mathbf{n} \, ds =\frac{Q_{\text{enc}}}{\varepsilon_0} \]其中,\(\mathbf{E}\) 是电场强度,\(\mathbf{n}\) 是曲面上的单位法向量,\(ds\) 是曲面上的微元面积,\(Q_{\text{enc}}\) 是闭合曲面内的总电荷,\(\varepsilon_0\) 是真空电容率。
1.3 电势电势是单位正电荷所具有的势能,它是一个标量量。
它可以通过电势差来定义,电势差是两点之间的电势差别。
电势可以通过以下公式计算:\[ V = - \int \mathbf{E} \cdot d\mathbf{l} \]其中,\(V\) 是电势,\(\mathbf{E}\) 是电场强度,\(d\mathbf{l}\) 是路径上的微元长度。
1.4 静电场中的导体在静电场中,导体内部的电场强度为零。
当导体受到外部电场作用时,其表面会产生等效于外部电场的电荷分布,这种现象被称为静电感应。
静电感应可以通过以下公式来计算表面电荷密度:\[ \sigma = \mathbf{n} \cdot \mathbf{E} \]其中,\(\sigma\) 是表面电荷密度,\(\mathbf{n}\) 是表面法向量,\(\mathbf{E}\) 是外部电场强度。
《电动力学》课后题答案_第三版_郭硕鸿

若 S → ∞, 则 ( xj ) ⋅ dS = 0, ( j 同理
(
r ∂ρ ) ∂t
∫
r
r
r
S
= 0)
y
= ∫ j y dV ' , (
r ∂ρ ) z = ∫ j z dV ' ∂t
即
r r r dP = ∫ j ( x ' , t )dV ' V dt
r r r r r m ×R m⋅R r 的旋度等于标量 ϕ = 的梯 6. 若 m 是常矢量 证明除 R 0 点以外 矢量 A = R3 R3
l S
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
'
微商 (∇ = e x
r ∂ r ∂ r ∂ + ey + e z ) 的关系 ∂x ∂y ∂z r r r r r r 1 r r r ' ' 1 ' r ∇r = −∇ r = , ∇ = −∇ = − 3 , ∇ × 3 = 0, ∇ ⋅ 3 = −∇ 3 = 0.(r ≠ 0) r r r r r r r
而 dl φ = (φ i dl x + φ j dl y + φ k dl z )
l l
∫
r
∫
-3-
电动力学第三版答案 郭硕鸿著ppt课件

evr r ev evz
4. 旋度: av 1 1
r r r z
ar r a az
5. 二阶微分
2 () 1
(r )
1
2
2
r r r r 2 2 z 2
在 4,5 中都应用到了单位矢量的微商结果
二、球坐标 (r, , )
1. 梯度 (r, ,)
drv
v dl
evr dr
2、方向导数 方向导数是标量函数 (在x)一点P处沿任意方向
对距离的变化率,它的数值与所取的方向 l有关,
一般来说,在不同的方向上 的值是不同的,但 它并不是矢量。如图所示, l为l场P 中的任意方向,P1 是这个方向线上给定的一点,P2为同一线上邻近的一
点。
P2
l
P1
为l p2和p1之间的距离,从p1沿l到p2标量函数(x) 的
故得到:
o 坐标原点
r
ex
r x
ey
r y
ez
r z
ex
(x r
x)
ey
(y
r
y)
ez
(z
r
z)
1 r
ex
(x
x)
ey
(
y
y)
ez
(z
z)
r r
er
• 第二步:场点固定,r 是源点的函数,对源点求梯度用 r表
示。
r
ex
r x
ey
r y
ez
r z
• 而 r 1 (x x)2 ( y y)2 (z z)2 1 2 2(x x) (1) x 2
(c3
y
)
(c2
z
)
i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ε
0
)∇
⋅
[
(r
3− 3εr
r13
3
)
ρf
rr] =
−ε
−ε0 3ε
ρ f ∇ ⋅ (rr
−
r13 r3
rr)
=
−ε
−ε0 3ε
ρ
f
(3 − 0)
=
−(ε
− ε
ε
0
)
ρ
f
σ P = P1n − P2n
考虑外球壳时 r r2 n 从介质 1 指向介质 2 介质指向真空 P2n = 0
-5-
电动力学习题解答
4π 3ε 0
(r23
−
r13 )ρ
f
, (r
>
r2 )
∴
Er
=
(r23 − r13 ) 3ε 0r 3
ρ
f
rr, (r
>
r2 )
r < r1时 Er 0
2) Pr
ε 0 χ e Er
= ε0
ε
−ε0 ε0
Er
=
(ε
− ε 0 )Er
∴ρP
=
−∇ ⋅ Pr
=
−(ε
− ε 0 )∇ ⋅ Er
=
−(ε
−
源点指向场点
1
证明下列结果
并体会对源变数求微商 (∇'
=
erx
∂ ∂x '
+ ery
∂ ∂y '
+ erz
∂ ∂z
'
)
与对场变数求
微商 (∇
=
erx
∂ ∂x
+
ery
∂ ∂y
+
erz
∂ ) 的关系 ∂z
∇r
= −∇'r
=
rr r
,
∇
1 r
= −∇'
1 r
rr = − r3
,
∇
×
rr r3
=
0,
∇
⋅
rr r3
证明
∇×
Av
=
∇
×
(
mv
× Rv) R3
=
−∇ ×[mv × (∇
1 R
)]
=
(∇
⋅
mv )∇
1 r
+
(mv ⋅ ∇)∇
1 r
− [∇ ⋅ (∇
1 r
)]mv
− [(∇
1r ) ⋅ ∇]mv
-4-
电动力学习题解答
第一章 电磁现象的普遍规律
=
(mv
⋅ ∇)∇
1 r
, (r
≠
0)
∇ϕ
=
∇(
mv ⋅ Rv R3
Bv
=
µj f
(r 2 − r12 ) 2r
=
µ(r 2 − r12 ) 2r 2
rj f
× rr
当 r>r2 时 2πrH = πj f (r22 − r12 )
Br
=
µ0 (r22 − r12 ) 2r 2
rj f
× rr
JM
= ∇ × Mr
=
∇
×
(χ
M
Hr
)
=
∇
×
(
µ
− µ0 µ0
)
)Hr
=( µ µ0
第一章 电磁现象的普遍规律
=
(
dAr z du
∂u ∂y
−
dAr y du
∂u ∂z
)erx
+
(
dAr x du
∂u ∂z
−
dAr z du
∂u ∂x
)ery
+
(
dAr y du
∂u ∂x
−
dAr x du
∂u ∂y
)erz
= ∇u ×
dAr du
3. 设 r = (x − x' )2 + ( y − y ' )2 + (z − z ' )2 为源点 x' 到场点 x 的距离 r 的方向规定为从
−
x' )evx
+
(y
−
y' )ery
+
(z
−
z' )evz
]
=
(ax
∂ ∂x
+
ay
∂ ∂y
+
az
∂ ∂z
)[(x
−
x' )evx
+
(y
−
y' )ery
+ (z
−
z')evz ]
= axevx + a y evy + az evz = av ∇(av ⋅ rv) = av × (∇ × rv) + (av ⋅ ∇)rv + rr × (∇ × av) + (rv ⋅ ∇) ⋅ av
fy
−
∂ ∂y
f x )kr]dV
∫=
[
∂ ∂x
(
f
y
kr
−
fz
rj ) +
∂ ∂y
( f z ir
−
f x kr) +
∂ ∂z
( f x rj
−
f yir)]dV
∫ ∫ 又
dSr × fr =
S
[(
S
f z dS y
−
f y dS z )ir + ( f x dS z −
f z dS x ) rj + ( f y dS x − f x dS y )kr]
-2-
电动力学习题解答
第一章 电磁现象的普遍规律
=
[
∂ ∂x
sin(kr
⋅
rr)erx
+
∂ ∂y
sin(kr
⋅ rr)ery
+
∂ ∂z
sin(kr
⋅ rr)erz ]E0
= cos(kr ⋅ rr)(k xerx + k yery + k zerz )Er0 = cos(kr ⋅ rr)(kr ⋅ Er)
∫ ∫ ∇ ⋅ HrdV = dSr ⋅ Hr ,高斯定理
V
S
2)由斯托克斯公式有
∫l fr ⋅ dlr = ∫S ∇ × fr ⋅ dSr
∫ ∫ fr ⋅ dlr =
l
l ( f x dlx + f y dl y +
f z dlz )
则证毕
∫ ∫ ∇ × fr ⋅ dSr = S
(∂ S ∂y
fz
电动力学习题解答
第一章 电磁现象的普遍规律
1. 根据算符 ∇ 的微分性与矢量性 推导下列公式 ∇( Ar ⋅ Br) = Br × (∇ × Ar) + (Br ⋅ ∇) Ar + Ar × (∇ × Br) + ( Ar ⋅ ∇)Br
Ar ×
(∇ ×
Ar)
=
1 2
∇Ar 2
−
( Ar ⋅ ∇) Ar
⋅
∂u ∂z
=
∇u ⋅
dAr du
3
erx
∇ × Ar(u) =
∂ Ar∂xx(u )
ery ∂
Ar∂y (yu)
erz ∂
Ar∂z (zu)
=
( ∂Arz ∂y
−
∂Ar y ∂z
)erx
+
(
∂Ar x ∂z
−
∂Ar z ∂x
)ery
+
(
∂Ar y ∂x
−
∂Ar x ∂y
)erz
=
-1-
电动力学习题解答
第一章 电磁现象的普遍规律
σP
=
P1n
= (ε
−
ε
0
)
r
3− 3εr
r13
3
ρ f rr
r =r2
=
(1
−
ε0 ε
)
r23 − r13 3r23
ρf
考虑到内球壳时 r r2
σP
=
−(ε
−
ε
0
)
r
3− 3εr
r13
3
ρ f rr
r =r1
=0
8 内外半径分别为 r1 和 r2 的无穷长中空导体圆柱 沿轴向流有恒定均匀自由电流 Jf 导体
的磁导率为 µ 求磁感应强度和磁化电流
解
∫ ∫ l Hr ⋅ dlr = I f
+
d dt
Dr
S
⋅
dSr
=I
f
当 r < r1时, I f = 0,故Hr = Br = 0
∫ ∫ 当 r2>r>r1 时
Hr ⋅ dlr = 2πrH =
l
S rj f
⋅ dSr =
j f π (r 2 − r12 )
−
∂ ∂z
fy
)dS x
+
(
∂ ∂z
fx
−
∂ ∂x
f z )dS y
+
(
∂ ∂x
fy
−
∂ ∂y
f x )dS z
∫ ∫ 而
dlrφ =
l
l (φi dlx + φ j dl y + φk dlz )
-3-
电动力学习题解答
第一章 电磁现象的普遍规律
∫ ∫ dSr × ∇φ = S