平行四边形性质专题

合集下载

6.2.2平行四边形的判定与性质

6.2.2平行四边形的判定与性质

平行四边形的判定与性质(2012•德阳)如图,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点(不与点B 重合).以BD、BF 为邻边作平行四边形BDEF,又APBE(点P、E 在直线AB 的同侧),如果BD=AB,那么△PBC 的面积与△ABC 面积之比为()A.B.C.D.【考点】平行四边形的判定与性质.【专题】压轴题.【分析】首先过点P 作PH∥BC 交AB 于H,连接CH,PF,易得四边形APEB,BFPH 是平行四边形,又由四边形BDEF 是平行四边形,设BD=a,则AB=4a,可求得BH=PF=3a,又由S △HBC =S △PBC ,S △HBC :S △ABC =BH:AB,即可求得△PBC 的面积与△ABC 面积之比.【解答】解:过点P 作PH∥BC 交AB 于H,连接CH,PF,∵AP BE,∴四边形APEB 是平行四边形,∴PE∥AB,PE=AB,∵四边形BDEF 是平行四边形,∴EF∥BD,EF=BD,即EF∥AB,∴P,E,F 共线,设BD=a,∵BD=AB,∴PE=AB=4a,则PF=PE﹣EF=3a,∵PH∥BC,∴S △HBC =S △PBC ,∵PF∥AB,∴四边形BFPH 是平行四边形,∴BH=PF=3a,∵S △HBC :S △ABC =BH:AB=3a:4a=3:4,∴S △PBC :S △ABC =3:4.故选D.【点评】此题考查了平行四边形的判定与性质与三角形面积比的求解方法.此题难度较大,注意准确作出辅助线,注意等高三角形面积的比等于其对应底的比.(2015•盐城三模)如图,在10个边长都为1的小正三角形的网格中,点P 是网格的一个顶点,以点P 为顶点作格点平行四边形(即顶点均在格点上的四边形),请你写出所有可能的平行四边形的对角线的长1或或或2或3.【考点】平行四边形的判定与性质.【专题】计算题;压轴题.【分析】首先确定以P为顶点的平行四边形有哪几个,然后根据勾股定理即可求得对角线的长.【解答】解:平行四边形有:PABD,PACE,PMNE,PMQE,APMD,APNE,PQGA.平行四四边形PABD,平行四边形PMNE对角线长是1和;平行四边形PACE和PMQE的对角线长是:和;平行四边形APNE的对角线长是:2和;平行四边形PQGA的对角线长是3和.故答案为:1或或或2或3.【点评】本题主要考查了平行四边形的判定,正确找出以P为顶点的平行四边形有哪几个是解题关键.(2014•福州)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是5.【考点】平行四边形的判定与性质;直角三角形斜边上的中线;三角形中位线定理.【专题】压轴题.【分析】根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF 的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.【解答】解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.(2005•黑龙江)如图,E,F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:BE=DF(或BF=DE 或∠BAE=∠DCF),使四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】压轴题;开放型.【分析】用反推法,假如四边形是平行四边形,会推出什么结果,这结果就是要添加的条件.【解答】解:使四边形AECF是平行四边形.就要使AE∥CF,AE=CF,就要使△AEB≌△CFD,而在平行四边形中已有AB=CD,∠ABE=∠CDF,再加一个BE=DF,或BF=DE就可用SAS证△AEB≌△CFD,BE=DF,或BF=DE.故答案为:BE=DF或BF=DE或∠BAE=∠DCF.【点评】本题考查了平行四边形的判定与性质,本题是开放题,答案不唯一,可以针对各种特殊的平行四边形的判定方法,给出条件,本题主要是通过给出证明△AEB≌△CFD的条件来得到AE∥CF,AE=CF,根据四边形中一组对边平行且相等就可证明为是平行四边形.(2009•宁德)如图:点A、D、B、E在同一直线上,AD=BE,AC=DF,AC∥DF,请从图中找出一个与∠E相等的角,并加以证明.(不再添加其他的字母与线段)【考点】平行四边形的判定与性质.【专题】证明题;压轴题;开放型.【分析】根据平行四边形的判定先判断出四边形ADFC是平行四边形,再进一步判断出四边形BEFC是平行四边形即可.【解答】图中∠FCB=∠E.证明:∵AC=DF,AC∥DF,∴四边形ADFC是平行四边形.∴CF∥AD,CF=AD.∵AD=BE,CF∥AD,∴CF=BE,CF∥BE,∴四边形BEFC是平行四边形.∴∠FCB=∠E.【点评】本题考查的是平行线及平行四边形的性质与判定,属较简单题目.(2009•铁岭校级模拟)如图1,在Rt△ABC中,∠ACB=90°,分别以AB、AC为底边向△ABC的外侧作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.试探究线段FD、FE的数量关系,并加以证明.说明:如果你经历反复探索,没有找到解决问题的方法,可以从图2、3中选取一个,并分别补充条件∠CAB=45°、∠CAB=30°后,再完成你的证明.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】压轴题.【分析】本题的解题思路是通过利用等腰三角形的性质,构建平行四边形先根据平行四边形的判定,证明所构建的图形是平行四边形,从而得出答案.【解答】解:猜想:DF=FE.证明:过点D作DN⊥AB于N,连接NE.∵DA=DB,DN⊥AB,∴BN=AN,过N作NE⊥AC,于点G,∴∠NGA=90°,∵∠BCA=90°,∴NG∥BC,∵BN=AN,∴CG=GA,∵CE=AE,∴EG⊥AC,∴N、G、E在一条直线上,∵DA⊥CA,NE⊥AC,∴NE∥AD,又∵DN⊥AB,EA⊥BA,∴DN∥EA,∴四边形DNEA是平行四边形,∴DF=EF(平行四边形对角线互相平分).【点评】此题主要考查了平行四边形的性质与判定等知识点,在做题时要注意隐含条件的运用.(2008•临夏州)如图,在▱ABCD中,点E是CD的中点,AE的延长线与BC的延长线相交于点F.(1)求证:△ADE≌△FCE;(2)连接AC、DF,则四边形ACFD是下列选项中的()A、梯形;B、菱形;C、正方形;D、平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】压轴题.【分析】第(1)问由平行四边形的性质和中点的性质可证ASA.第(2)问在第(1)问的基础上,由平行四边形的判定可证.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BF,∴∠D=∠ECF.∵E是CD的中点,∴DE=CE.又∠AED=∠FEC,∴△ADE≌△FCE.(2)填“D”证明:由(1)可得:AD∥CF,AD=CF,∴四边形ACFD是平行四边形.【点评】此题是基础题,考查了全等三角形的判定和平行四边形的判定.(1998•河北)如图①,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点P是对角线BD上的一点,PQ∥BA交AD于点Q,PS∥BC交DC于点S,四边形PQRS是平行四边形.(1)当点P与点B重合时,图①变为图②,若∠ABD=90°,求证:△ABR≌△CRD;(2)对于图①,若四边形PRDS也是平行四边形,此时,四边形ABCD应是何种特殊的四边形?(按题中所给条件画出图形,不必说明理由)【考点】平行四边形的判定与性质;全等三角形的判定与性质;等腰梯形的判定.【专题】压轴题.【分析】(1)可先证CR⊥BD,根据等腰三角形“三线合一”的性质,求得∠BCR=∠DCR,进而求得∠BAR=∠DCR,又有AB=CR,AR=BC=CD,可证△ABR≌△CRD;(2)由PS∥QR,PS∥RD知,点R在QD上,故BC∥AD.又由AB=CD知∠A=∠CDA因为SR∥PQ∥BA,所以∠SRD=∠A=∠CDA,从而SR=SD.由PS∥BC及BC=CD知SP=SD.而SP=DR,所以SR=SD=RD故∠CDA=60度.因此四边形ABCD还应满足BC∥AD,∠CDA=60°【解答】(1)证明:如图②,∵∠ABD=90°,AB∥CR,∴CR⊥BD.∵BC=CD,∴∠BAR=∠BCR.∵四边形ABCR是平行四边形,∴∠BCR=∠DCR.∴∠BAR=∠DCR.又∵AB=CR,AR=BC=CD,∴△ABR≌△CRD(SAS).(2)解:四边形ABCD还应满足BC∥AD,∠CDA=60°的梯形,理由如下:由PS∥QR,PS∥RD知,点R在QD上,故BC∥AD.又由AB=CD,知∠A=∠CDA,因为SR∥PQ∥BA,所以∠SRD=∠A=∠CDA,从而SR=SD.由PS∥BC∴△DCB∽△DSP,∵BC=CD,∴SP=SD.而SP=DR,所以SR=SD=RD,故∠CDA=60°.因此四边形ABCD还应满足BC∥AD,∠CDA=60°.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.(2015•郫县模拟)如图所示,六边ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD⊥BD.已知FD=24cm,BD=18cm.则六边形ABCDEF的面积是432平方厘米.【考点】平行四边形的判定与性质;三角形的面积;勾股定理.【专题】压轴题.【分析】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【解答】解:连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∴EH=BG.平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=24×18=432.【点评】此题要熟悉平行四边形的判定和性质.注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.(2013•沈阳模拟)(2012•重庆模拟)如图,在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G,AF与BG交于点E.(1)求证:AF⊥BG,DF=CG;(2)若AB=10,AD=6,AF=8,求FG和BG的长度.【考点】平行四边形的判定与性质;勾股定理.【专题】压轴题.【分析】(1)由在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G,易求得2∠BAF+2∠ABG=180°,即可得∠AEB=90°,证得AF⊥BG,易证得△ADF与△BCG是等腰三角形,即可得AD=DF,BC=CG,又由AD=BC,即可证得DF=CG;(2)由(1)易求得DF=CG=8,CD=AB=10,即可求得FG的长;过点B作BH∥AF交DC的延长线于点H,易证得四边形ABHF为平行四边形,即可得△HBG是直角三角形,然后利用勾股定理,即可求得BG的长.【解答】(1)证明:∵AF平分∠BAD,∴∠DAF=∠BAF=∠BAD.∵BG平分∠ABC,∴∠ABG=∠CBG=∠ABC.∵四边形ABCD平行四边形,∴AD∥BC,AB∥CD,AD=BC,∴∠BAD+∠ABC=180°,即2∠BAF+2∠ABG=180°,∴∠BAF+∠ABG=90°.∴∠AEB=180°﹣(∠BAF+∠ABG)=180°﹣90°=90°.∴AF⊥BG;∵AB∥CD,∴∠BAF=∠AFD,∴∠AFD=∠DAF,∴DF=AD,∵AB∥CD,∴∠ABG=∠CGB,∴∠CBG=∠CGB,∴CG=BC,∵AD=BC.∴DF=CG;(2)解:∵DF=AD=6,∴CG=DF=6.∴CG+DF=12,∵四边形ABCD平行四边形,∴CD=AB=10.∴10+FG=12,∴FG=2,过点B作BH∥AF交DC的延长线于点H.∴∠GBH=∠AEB=90°.∵AF∥BH,AB∥FH,∴四边形ABHF为平行四边形.∴BH=AF=8,FH=AB=10.∴GH=FG+FH=2+10=12,∴在Rt△BHG中:BG==.∴FG的长度为2,BG的长度为4.【点评】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质、垂直的定义以及勾股定理等知识.此题综合性较强,难度较大,注意掌握数形结合思想的应用,注意掌握辅助线的作法.(2011•北京)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;菱形的判定与性质.【专题】几何综合题;压轴题.【分析】(1)根据AF平分∠BAD,可得∠BAF=∠DAF,利用四边形ABCD是平行四边形,求证∠CEF=∠F即可.(2)根据∠ABC=90°,G是EF的中点可直接求得.(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案【解答】(1)证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵,∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.(3)解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∵∠ABC=120°,AF平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°∴△DAF为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ADH,△DHF为全等的等边三角形∴DH=DF,∠BHD=∠GFD=60°∵FG=CE,CE=CF,CF=BH,∴BH=GF在△BHD与△GFD中,∵,∴△BHD≌△GFD,∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°【点评】此题主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.同学们在解决此类问题时,可以通过以下的步骤进行思考和分析:(1)通过测量或特殊情况的提示进行猜想;(2)根据猜想的结果进行联想(如60度角可以联想到等边三角形,45度角可以联想到等腰直角三角形等);(3)在联想的基础上根据已知条件利用几何变换(如旋转、平移、轴对称等)构造全等解决问题.(2011•厦门)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?【考点】平行四边形的判定与性质;全等三角形的判定与性质;等腰三角形的性质;勾股定理;相似三角形的判定与性质.【专题】几何综合题;压轴题.【分析】(1)推出AD∥BC,AB∥DC,根据平行四边形的判定推出即可;(2)求出AC,当P在BC上时,①BP=EB=2,②BP=PE,作PM⊥AB于M,根据cosB求出BP,③BE=PE=2cm,作EN⊥BC于N,根据cosB求出BN;当P在CD上不能得出等腰三角形;当P在AD上时,过P作PQ⊥BA于Q,证△QAP∽△ABC,推出PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPN中,由勾股定理得出方程(3x+1)2+(4x)2=22,求出方程的解即可.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四边形ABCD是平行四边形.(2)解:∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,设经过ts时,△BEP是等腰三角形,当P在BC上时,①BP=EB=2cm,t=2时,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC===,∴BP=cm,t=时,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,则BP=2BN,∴cosB==,∴=,BN=cm,∴BP=,∴t=时,△BEP是等腰三角形;当P在CD上不能得出等腰三角形,∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQ⊥BA于Q,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=,AP=5x=cm,∴t=5+5+3﹣=,答:从运动开始经过2s或s或s或s时,△BEP为等腰三角形.【点评】本题主要考查对平行四边形的性质和判定,相似三角形的性质和判定.全等三角形的性质和判定,勾股定理,等腰三角形的性质,勾股定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.(2011•鞍山)已知如图,D是△ABC中AB边上的中点,△ACE和△BCF分别是以AC、BC为斜边的等腰直角三角形,连接DE、DF.求证:DE=DF.【考点】平行四边形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.【专题】证明题;压轴题.【分析】分别取AC、BC中点M、N,连接MD、ND,再连接EM、FN,利用在直角三角形中:直角三角形斜边上的中线等于斜边的一半和已知条件证明四边形MDNC为平行四边形,再利用平行四边形的性质和已知条件证明△EMD≌△DNF即可.【解答】证明:分别取AC、BC中点M、N,连接MD、ND,再连接EM、FN,∵D为AB中点,∠AEC=90°,∠BFC=90°,∴EM=AC,FN=BC,∵D是△ABC中AB边上的中点,∴DN是△ABC的中位线.∴DN=AC,∴EM=DN=AC,FN=MD=BC,∵DN∥CM且DN=CM,∴四边形MDNC为平行四边形,∴∠CMD=∠CND.∵∠EMC=∠FNC=90°,∴∠EMC+∠CMD=∠FNC+∠CND,即∠EMD=∠FND,∴△EMD≌△DNF(SAS).∴DE=DF.【点评】本题考查了平行四边形的判定和性质、全等三角形的判定和性质以及直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,题目难度中等综合性不小.(2010•盘锦)如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF ∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【专题】证明题;压轴题.【分析】(1)根据△ABC和△AED是等边三角形,D是BC的中点,ED∥CF,求证△ABD≌△CAF,进而求证四边形EDCF是平行四边形即可;(2)在(1)的条件下可直接写出△AEF和△ABC的面积比;(3)根据ED∥FC,结合∠ACB=60°,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC.【解答】(1)证明:∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,且∠BAD=∠BAC=30°,∵△AED是等边三角形,∴AD=AE,∠ADE=60°,∴∠EDB=90°﹣∠ADE=90°﹣60°=30°,∵ED∥CF,∴∠FCB=∠EDB=30°,∵∠ACB=60°,∴∠ACF=∠ACB﹣∠FCB=30°,∴∠ACF=∠BAD=30°,在△ABD和△CAF中,,∴△ABD≌△CAF(ASA),∴AD=CF,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD.(2)解:△AEF和△ABC的面积比为:1:4;(3)解:成立.理由如下:∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB ∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC.【点评】此题主要考查学生对平行四边形的判定和性质、全等三角形的判定和性质、等边三角形的性质的理解和掌握.此题涉及到的知识点较多,综合性较强,难度较大.(2010•滨州模拟)(2013•钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙【考点】平行四边形的判定与性质.【专题】应用题;压轴题.【分析】延长ED和BF交于C,如图2,延长AG和BK交于C,根据平行四边形的性质和判定求出即可.【解答】解:图1中,甲走的路线长是AC+BC的长度;延长AD和BF交于C,如图2,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;延长AG和BK交于C,如图3,与以上证明过程类似GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙,故选D.【点评】本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.(2013•明溪县质检)图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AJ>JB.判断三人行进路线长度的大小关系为()A.甲=乙=丙B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲【考点】平行四边形的判定与性质.【专题】压轴题.【分析】由角的度数可以知道(2)(3)中的两个三角形的对应边都是平行的,所以图二,图三中的三角形都和图一中的三角形相似.而且图二三角形全等,图三三角形相似.【解答】解:根据以上分析:所以图二可得AE=BE,AD=EF,DE=BE,∵AE=BE=AB∴AD=EF=AC,DE=BE=BC.∴甲=乙图三与图一中,三个三角形相似,所以,==,∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC∴甲=丙.∴甲=乙=丙.故选A.【点评】此题考查的知识点是平行四边形的性质,关键本题主要利用三角形的相似和全等,可求得线段的关系.(2011•柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有()A.12个B.9个C.7个D.5个【考点】平行四边形的判定与性质.【专题】压轴题.【分析】根据平行四边形的定义即可求解.【解答】解:根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边AEOH,HOFD,EBNO,ONCF,AEFD,EBCF,ABNH,HNCD,ABCD都是平行四边形,共9个.故选B.【点评】此题考查的知识点是平行四边形的判定,本题可根据平行四边形的定义,直接从图中数出平行四边形的个数,但数时应有一定的规律,以避免重复.(2015•柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?【考点】平行四边形的判定与性质;勾股定理的逆定理;直角梯形.【专题】压轴题;动点型.【分析】(1)已知AD∥BC,添加PD=CQ即可判断以PQDC为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.【解答】解:(1)当PQ∥CD时,四边形PDCB是平行四边形,此时PD=QC,∴12﹣2t=t,∴t=4.∴当t=4时,四边形PQDC是平行四边形.(2)过D点,DF⊥BC于F,∴DF=AB=8.FC=BC﹣AD=18﹣12=6,CD=10,①当PQ⊥BC,则BQ+CQ=18.即:2t+t=18,∴t=6;②当QP⊥PC,此时P一定在DC上,CP1=10+12﹣2t=22﹣2t,CQ2=t,易知,△CDF∽△CQ2P1,∴,解得:t=,③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.∴当t=6或时,△PQC是直角三角形.【点评】此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.。

专题 平行四边形的性质与判定(学生版)

专题  平行四边形的性质与判定(学生版)

专题 平行四边形的性质与判定【能力提升】例1.如图已知△ABC ,分别以△ABC 的三边为边在△ABC 的同侧作三个等边三角形:△ABE .△BCD .△ACF ,求证:四边形DEAF 是平行四边形.例2.(1)如图,在平行四边形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE =4,AF =6,AD +CD =20,则平行四边形ABCD 的面积为 .(2)在平面直角坐标系中,以O (0,0),A (1,1),B (3,0),C 为顶点构造平行四边形,请你写出满足条件的点C 坐标为 .例3.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是_______. 例4.如图,Rt △ABC 中,∠C =90°,点D 、点E 为边AB 上的点,且AD =BE ,点M 、N 分别为边AC 、BC 上的点.已知:AB =a ,DE =b ,则四边形DMNE 的周长的最小值为 .例5.如图,平行四边形ABCD 中,AB =8cm ,AD =12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有多少次?例6.理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.(1)如图1:当点M与B重合时,S△DCM=;(2)如图2,当点M与B与A均不重合时,S△DCM=;(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=;拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.【课后巩固】1.如图,▱ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果△CDM 的周长为8,那么▱ABCD 的周长是 .2.△D、G上,点E 、F分别在边BC 上,若BE =DE ,CF =FG ,则∠A 的大小为 度.3.在△ABC 中,∠C =90°,AC =6,BC =8,若以A ,B ,C ,D 为顶点的四边形是平行四边形,则此平行四边形的周长为( )A .28或32B .28或36C .32或36D .28或32或364.如图,△ABC 是等边三角形,P 是形内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为18,则PD +PE +PF =( )A .18B .9C .6D .条件不够,不能确定5.如图,已知▱ABCD 的顶点A 是直线l 上一定点,过点B 作BM ⊥l 于点M ,过点D 作DN ⊥l 于点N ,AM =1,MN =3,则对角线AC 长的最小值为 .。

第06讲平行四边形存在性问题专题探究(原卷版)

第06讲平行四边形存在性问题专题探究(原卷版)

第6讲 平行四边形存在性问题专题探究【知识点睛】❖ 知识储备:①平行四边形是中心对称图形②中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分③中点公式: ❖ 方法策略: (1)有3个定点,找第4个点形成平行四边形时:①设第4个点的坐标②以3个定点组成的3条线段为对角线分类讨论③以中心对称图形的性质为等量关系列式求解例,如图所示,平面直角坐标系内有A 、B 、C 三点,在平面内找第4个点,构成平行四边形;(2)有2个定点,且另外两个动点均在特殊的位置上时,方法策略同上。

类型一 几何背景下的平行四边形存在性问题1.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,BD =12cm ,AC =6cm ,点E 在线段BO 上从点B 以1cm /s 的速度运动,点F 在线段OD 上从点O 以2cm /s 的速度运动.若点E ,F 同时运动,设运动时间为t 秒,当t = 时,四边形AECF 是平行四)2,2),(),,(21212211y y x x P y x B y x A ++坐标为(,则其中点若如,当A 、B 已知,点C 在直线y=x 上,点D 在另一直线上,则设C (a,a );分类还分别分①以AB 为对角线,②以AC 为对角线,③以BC 为对角线;依其性质分别表示出D 点坐标;将点D 坐标再分别带入另一直线解析式,即可求出a 的值,C 、D 坐标就都能求出来了。

边形.2.如图,四边形ABCD中,AB∥DC,DC=6cm,AB=9cm.点P以1cm/s的速度由A点向B点运动,同时点Q以2cm/s的速度由C点向D点运动,其中一点到达终点时,另一点也停止运动,当线段PQ将四边形ABCD截出一个平行四边形时,此时的运动时间为s.3.如图,在▱ABCD中,AB=10cm,F是AB的中点,E为边CD上一点,DE=4cm.点M 从D点出发,沿D→C以1cm/s的速度匀速运动到点C;同时点N从点B出发,沿B→A 以2cm/s的速度匀速运动到点A.一个点停止运动后,另一个点也随之停止运动.当点M 运动时间是秒时,以点M,E,N,F为顶点的四边形是平行四边形.4.如图,在▱ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM =∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点O也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.3B.3或5C.5D.4或55.如图所示,在平行四边形ABCD中,AB=5cm,AD=9cm.点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时,P、Q同时停止运动,设运动时间为t(s)且t>0,当以P,D,Q,B为顶点的四边形是平行四边形时,则t的所有可能值为.6.如图,在平面直角坐标系中,已知点A的坐标为(9,0),点C的坐标为(3,3),四边形OABC是平行四边形,点D、E份别在边OA、BC上,且OD=OA,CE=4.动点P、Q在平行四边形OABC的一组邻边上,以点D、E、P、Q为顶点的四边形是平行四边形时,其面积为.7.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,动点P、Q分别从A、C 同时出发,点P以1cm/s的速度由A向D运动,点Q以3cm/s的速度由C向B运动,其中一动点到达终点时,另一动点随之停止运动,设运动时间为t秒.(1)AP=,BQ=,(分别用含有t的式子表示);(2)当四边形PQCD的面积是四边形ABQP面积的2倍时,求出t的值.(3)当点P、Q与四边形ABCD的任意两个顶点所形成的四边形是平行四边形时,直接写出t的值.类型二“三定一动”求平行四边形的顶点坐标1.在平面直角坐标系xOy中,已知A(1,﹣1),B(4,2),C(0,3),下列坐标不能与A、B、C构成平行四边形的是()A.(﹣3,0)B.(5,﹣2)C.(3,6)D.(﹣3,﹣2)2.在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在x轴上方找到点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.3.在平面直角坐标系中,已知点A(4,0),点B(﹣3,2),点C(0,2),点P从点B出发,以2个单位每秒的速度沿射线BC运动,点Q从点A出发,开始以1个单位每秒的速度向原点O运动,到达原点后立刻以原来3倍的速度沿射线OA运动,若P,Q两点同时出发,设运动时间为t秒,则当t=时,以点A,Q,C,P为顶点的四边形为平行四边形.4.如图,在平面直角坐标系的第一象限找一点A,第二象限找一点B,使OA=,OB=2,AB=5,且A,B都是格点,连接OA,OB,AB.(画出一个△OAB即可).(1)判断△OAB的形状,并说明理由;(2)是否存在点C,使得O,A,B,C四点构成的四边形为平行四边形?如果存在,请直接写出点C的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx﹣4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.类型三“两定两动”求平行四边形的顶点坐标1.在平面直角坐标系中,已知A(﹣4,2),B(2,5),在x轴、y轴上分别有两动点C、D,若以点A,B,C,D为顶点的四边形是平行四边形,则点C的坐标为.2.在平面直角坐标系中,A(﹣1,1),B(3,2),C(2m,3m+1),点D在直线y=﹣1上,若以A,B,C,D四点为顶点的四边形是平行四边形,则点D的坐标为.3.如图,在平面直角坐标系xOy,直线y=x+1与y=﹣2x+4交于点A,两直线与x轴分别交于点B和点C,D是直线AC上的一个动点,直线AB上是否存在点E,使得以E,D,O,A为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到线段CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)请直接写出点D的坐标,并求出直线BC的函数关系式;(3)若点P是x轴上的一个动点,点Q是线段CB上的点(不与点B、C重合),是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的P 点坐标.若不存在,请说明理由.5.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A 在x轴上,点C在y轴上,OA=6,∠CAO=30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.(1)求点D的坐标;(2)在线段AC上有一动点P,连接EP和OP,求当△OPE周长最小时,点P的坐标,若M,N是x轴上两动点(M在点N左侧)且MN=1,求当四边形CMNP周长最小时,M点的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.。

专题训练(二) 平行四边形的性质与判定的灵活运用

专题训练(二) 平行四边形的性质与判定的灵活运用

专题训练(二) 平行四边形的性质与判定的灵活运用►类型之一平行四边形与全等三角形1.用两个全等三角形最多能拼成________个不同的平行四边形.[答案] 32.平行四边形中的一条对角线把平行四边形分成________个全等三角形,两条对角线把平行四边形分成________对全等三角形.[答案] 2 43.如图2-ZT-1所示,E,F是▱ABCD的对角线AC上的两点,且BE∥DF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又∵BE∥DF,∴∠BEF=∠DFE,∴∠AEB=∠CFD,∴△ABE≌△CDF.(2)由(1)知△ABE≌△CDF,∴BE=DF.又∵BE∥DF,∴四边形BFDE是平行四边形.4.如图2-ZT-2,E,F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.图2-ZT-2解:(1)证明:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB.(2)四边形ABCD是平行四边形.理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.[点评] 在平行四边形中,本身就包含着全等三角形,平行四边形中的对角线可以将平行四边形分成全等三角形,反之,用两个全等三角形也可以拼成平行四边形.在解决有关问题时,需要灵活运用平行四边形的性质找出判定三角形全等的条件,反之,利用全等三角形也可以找出判定四边形是平行四边形的条件.►类型之二平行四边形与等腰三角形5.如图2-ZT-3所示,在▱ABCD中,AC的垂直平分线交AD于点E,且△CDE的周长为8,则▱ABCD的周长是( )图2--3A.10B.12C.14D.16 [答案] D6.如图2-ZT-4所示,在△ABC中,AB=AC=7 cm,D是BC上一点,且DE∥AC,DF∥AB,则DE+DF=________.[答案] 7 cm图2--57.如图2-ZT-5所示,在▱ABCD中,AB=5 cm,AD=8 cm,∠BAD,∠ADC的平分线分别交BC于点E,F,则EF的长为________. [答案] 2 cm8.在▱ABCD中,∠A的平分线分对边BC为3和4两部分,求▱ABCD的周长.图2--6解:如图2-ZT-6,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA. 又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE.当AB=BE=3时,▱ABCD的周长2(AB+BC)=2×(3+7)=20.当AB=BE=4时,▱ABCD的周长2(AB+BC)=2×(4+7)=22.即▱ABCD的周长为20或22.9.如图2-ZT-7所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD 各内角的度数.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∠DAE=∠BEA. 又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE.又∵AE=BE,∴AB=BE=AE,∴∠B=60°,∴∠D=60°,∠BAD=∠C=120°.[点评] 当平行四边形中有角平分线、线段垂直平分线或特殊角(30°,60°角等)时,通常可以转化出等腰三角形,反之亦然.►类型之三平行四边形中的中点问题图2--810.如图2-ZT-8所示,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8cm[答案] C11.已知:如图2-ZT-9,四边形ABCD中,AC=7,BD=8,E,F,G,H分别是边AB,BC,CD,DA的中点,则四边形EFGH的周长=________.[答案] 15[解析] ∵EF是△ABC的中位线,∴EF=12AC,同理,HG=12AC,∴EF∥HG,∴四边形EFGH是平行四边形.∴四边形EFGH的周长=2(EF+FG)=2×(12×7+12×8)=15.图2--9 图2--1012.如图2-ZT-10所示,▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD=__________. [答案] 2 213.如图2-ZT-11,AC,BD是四边形ABCD的对角线,E,F分别是AD,BC的中点,M,N 分别是BD,CA的中点,求证:EF,MN互相平分.图2--11证明:如图2-ZT-12,连接EM,MF,FN,NE.∵FN是△ABC的中位线,∴FN=12AB,同理,EM=12AB,∴FN∥EM,∴四边形EMFN是平行四边形,∴EF ,MN 互相平分.图2--1214.如图2-ZT -12所示,在▱ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,求▱ABCD 的面积.解:如图2-ZT -13,延长BC 至点E ,使CE =CM ,连接DE.∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD ∥ME. 又∵M 是BC 的中点,∴BC =2CM =2CE =2BM , ∴AD =ME =10,BE =15,∴四边形AMED 是平行四边形, ∴DE =AM =9.又∵BD 2+DE 2=122+92=225=152=BE 2, ∴BD ⊥DE ,∴▱ABCD 的面积=2(△BDE 的面积-△DCE 的面积)=2(12×9×12-12×9×12×13)=72. [点评] 在平行四边形的对角线互相平分这一性质中,体现出了线段中点的特点,有中点时就有可能有三角形的中线、中位线、线段垂直平分线等,需灵活处理,积累经验.类型之四 平行四边形中的开放性问题15.如图2-ZT -14,在▱ABCD 中,延长AB 到点E ,使BE =AB ,连接DE 交BC 于点F ,则下列结论不一定成立的是( )图2--14A .∠E =∠CDFB .EF =DFC .AD =2BF D .BE =2CF[答案] D 16.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ; ②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC ;⑤∠A =∠C ,∠B =∠D ; ⑥∠A +∠B =180°,∠A +∠D =180°.其中一定能判定这个四边形是平行四边形的条件共有( )A .3组B .4组C .5组D .6组[答案] C。

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习一、平行四边形的性质1. 定义:平行四边形是一种具有两对对边平行的四边形。

定义:平行四边形是一种具有两对对边平行的四边形。

2. 性质1:平行四边形的对边相等。

性质1:平行四边形的对边相等。

3. 性质2:平行四边形的对角线相等。

性质2:平行四边形的对角线相等。

4. 性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

5. 性质4:平行四边形的两组对边分别互相平行并且相互等长。

性质4:平行四边形的两组对边分别互相平行并且相互等长。

二、平行四边形的判定1. 判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

2. 判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

三、经典例题练1. 例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

2. 例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

3. 例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

- (a)根据对边平行和相等的判定方法,若AB = CD且AD与BC互相垂直,则四边形ABCD是平行四边形。

专题 平行四边形性质与判定五种考法

专题 平行四边形性质与判定五种考法

专题09平行四边形性质与判定常见的五种考法【考法一平行四边形判定填条件】例题:(2022·黑龙江·克东县第三中学一模)如图,点E、F在ABCD的对角线AC上,连接BE、DE、DF、BF,请添加一个条件使四边形BEDF是平行四边形,那么需要添加的条件是______.(只填一个即可)【变式训练】1.(2022·全国·八年级课前预习)ABCD中,已知AB=CD=4,BC=6,则当AD=________时,四边形ABCD 是平行四边形.2.(2022·人大附中北京经济技术开发区学校八年级期中)在四边形ABCD中,AD=BC,要使四边形ABCD是平行四边形,还需添加一个条件,这个条件可以是_____.(只要填写一种情况)3.(2021·全国·八年级课时练习)点A、B、C、D在同一平面内,从(1)AB//CD,(2)AB=CD,(3)BC//AD,(4)BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有_______种4.(2022·全国·八年级)如图,在△ABC中,D、E分别是AB、BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是.5.(2021·全国·八年级课时练习)如图,点E、F是ABCD的对角线BD上的点,要使四边形AECF是平行四边形,还需要增加的一个条件是(只需要填一个正确的即可).【考点二平行四边形性质与判定综合考】例题:(2022·浙江绍兴·八年级期中)如图,等边ABC中,D,E分别是AB,AC的中点,延长BC到点F,使12CF BC=,连接DE,CD,EF.(1)求证:四边形DCFE是平行四边形.(2)若6AB=,求四边形DCFE的周长.【变式训练】1.(2022·河南新乡·八年级期中)如图,平行四边形ABCD的对角线AC,BD相交于点O,AC⊥AB,点E是CD 的中点,若AB=6,OE=5.(1)求BC的长;(2)求平行四边形ABCD的面积2.(2022·山东烟台·一模)已知,如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形.(2)连结BD交AC于点O,若BD=12,AE=EF-CF,求EG的长.3.(2022·新疆昌吉·一模)如图,在Rt△ABC中,∠ACB=90°,D、E分别是边AC、AB的中点,连接CE、DE,过D点作DF∥CE交BC的延长线于F点.(1)证明:四边形DECF是平行四边形;(2)若AB=13cm,AC=5cm,求四边形DECF的周长.4.(2022·山东济南·八年级期末)点E 是▱ABCD 的边CD 上的一点,连接EA 并延长,使EA =AM ,连接EB 并延长,使EB =BN ,连接MN ,F 为MN 的中点,连接CF ,DM .(1)求证:四边形DMFC 是平行四边形;(2)连接EF ,交AB 于点O ,若OF =2,求EF 的长.5.(2022·山东·济宁学院附属中学八年级期末)已知:△ABC ,AD 为BC 边上的中线,点M 为AD 上一动点(不与点A 重合),过点M 作ME ∥AB ,过点C 作CE ∥AD ,连接AE .(1)如图1,当点M 与点D 重合时,求证:①△ABM ≌△EMC ;②四边形ABME 是平行四边形(2)如图2,当点M 不与点D 重合时,试判断四边形ABME 还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;(3)如图3,延长BM 交AC 于点N ,若点M 为AD 的中点,求MN AE的值.【考点三平行四边形动点问题】例题:(2022·湖北宜昌·八年级期末)如图,ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A,C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE AB于点E,连接PQ交AB于点D.(1)若设AP=x,则PC=,QC=;(用含x的式子表示)(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE的长;如果变化,请说明理由.【变式训练】1.(2021·浙江·衢州市菁才中学八年级期中)如图,在平行四边形ABCD中,AB=8cm,BC=12cm,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F.若动点P以1cm/s的速度从点B出发,沿BC向终点C运动;与此同时,动点Q以2cm/s的速度从点C出发,沿CB向终点B运动;当有其中一点到达终点时,另一点也将停止运动.当点P运动_________秒时,以点P、Q、E、F为顶点的四边形是平行四边形.2.(2022·安徽·宣州市雁翅乡初级中学二模)如图1,在梯形ABCD 中,90A B ∠=∠=,AD BC ∥,12,21,AB AD ==,16BC =,一动点P 从点A 出发,在线段AD 上以每秒2个单位长度的速度向点D 运动,动点Q 同时从点B 出发在线段BC 上以每秒1个单位长度的速度向点C 运动,当点P 运动到点D 时,点Q 随之停止运动,设运动时间为t (秒),(1)当t 为何值时,四边形PQCD 是平行四边形;(2)当t 为何值时,PQC △是以PQ 为腰的等腰三角形3.(2021·福建·三明一中九年级开学考试)如图,点B 是∠MAN 的边AM 上的定点,点C 是边AN 上的动点,将△ABC 绕点逆时针旋转得到△,且点A 的对应点D 恰好落在边AB 上,连结CE .当BC =AC 时,(1)求证:四边形ABEC 是平行四边形;(2)若AB =15,AD =18,求AC 的长.4.(2021·四川·达州市通川区第八中学八年级阶段练习)已知在▱ABCD中,动点P在AD边上,以每秒0.5cm的速度从点A向点D运动.(1)如图1,在运动过程中,若CP平分∠BCD,且满足CD=CP,求∠B的度数.(2)在(1)的条件下,若AB=4cm,求△PCD的面积.(3)如图2,另一动点Q在BC边上,以每秒2cm的速度从点C出发,在BC间往返运动,P,Q两点同时出发,当点P到达点D时停止运动(同时Q点也停止),若AD=6cm,求当运动时间为多少秒时,以P,D,Q,B四点组成的四边形是平行四边形.5.(2021·山东青岛·八年级期中)如图,△ABC是边长为6的等边三角形,P是AC边上一动点(与A,C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),连接PQ交AB 于D.(1)设AP的长为x,则PC=,QC=;(2)当∠BQD=30°时,求AP的长;(3)过点Q作QF⊥AB交AB延长线于点F,过点P作PE⊥AB交AB延长线于点E,则EP,QF有怎样的关系?说明理由;(4)在运动过程中,线段ED的长是否发生变化?如果不变,求出线段ED的长【考点四平行四边形动点最值问题】例题:(2022·广东·九年级专题练习)如图,在平行四边形ABCD 中,∠B =60°,AD =8,AB =4,点H 、G 分别是边DC 、BC 上的动点,其中点H 不与点C 重合.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF ,则EF 的最大值与最小值的差为_____________.【变式训练】1.(2022·安徽·九年级专题练习)如图,在平行四边形ABCD 纸片中,∠BAD =45°,AB =10.将纸片折叠,使得点A 的对应点A '落在BC 边上,折痕EF 交AB 、AD 、AA '分别于点E 、F 、G .继续折叠纸片,使得点C 的对应点C '落在A 'F 上.连接GC ',则GC '的最小值为()A .52B .2C .54D 2.(2021·贵州·仁怀市教育研究室二模)如图,在Rt ABC 中,90C ∠=︒,4AB =,3BC =,点D 在AC 边上,以AB 为对角线的平行四边形ADBN 中,M 是对角线的交点,DN 的最小值是__________.3.(2021·全国·九年级专题练习)如图,在Rt△ABC中,∠B=90°,AC=5,BC=4,点D在线段BC上一动点,以AC为对角线的ADCE中,则DE的最小值是______.【考点五平行四边形中无刻度作图】例题:(2021·湖北恩施·九年级阶段练习)如图,平行四边形ABCD中,点E在BC上,且AE=EC,试分别在下列两个图中按要求使用无刻度直尺画图.(保留作图痕迹)(1)在图1中,画出∠DAE(2)在图2中,画出∠AEC的平分线.【变式训练】1.(2021·全国·八年级专题练习)在图1,图2中,点E是ABCD边AD上的中点,请仅用无刻度直尺按要求画图,(保留作图痕迹)(1)在图1中,以BC为边作三角形,使其面积等于ABCD的面积;(2)在图2中,以BE,ED为邻边作四边形,使其面积等于ABCD面积的一半.2.(2022·江苏省锡山高级中学实验学校八年级期末)如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AC的中点,请仅用无刻度的直尺........分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AD上的中线CM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.3.(2021·江西赣州·八年级期末)在平行四边形ABCD中,点E在AD上,仅用无刻度的直尺按要求作图(保留作图痕迹).(1)如图1,在BC上找一点F,使AE=CF.(2)如图2,若AB=AE,作∠D的平分线DG.4.(2020·江西南昌·八年级期中)如图1,2,平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列作图.(1)在图1中,在四边形外部画一个与三角形ABE全等的三角形.(2)在图2中,在四边形内部画一个与三角形ABE全等的三角形.5.(2020·江西南昌·八年级期中)如图,在▱ABCD中,AC为对角线,AC BC,AE是△ABC的中线,请使用无刻度的直尺分别按下列要求画图.(1)在图1中,过点E画出CD的平行线EF;(2)在图2中,画出△ABC的高CH.6.(2021·江西·九年级)请分别在下列图中使用无刻度的直尺按要求画图.(1)在图1中,点P是▱ABCD边AD上的中点,过点P画一条线段PM,使PM=12 AB;(2)在图2中,点A、D分别是▱BCEF边FB和EC上的中点,且点P是边EC上的动点,画出△PAB的一条中位线.11。

平行四边形知识点及经典例题

平行四边形知识点及经典例题

第十八章平行四边形18.1.1 平行四边形的性质第一课时平行四边形的边、角特征知识点梳理1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。

2、平行四边形的对边相等,对角相等,邻角互补。

3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。

知识点训练1.(3分)如图,两X对边平行的纸条,随意穿插叠放在一起,转动其中一X,重合的局部构成一个四边形,这个四边形是________.2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )A.6个B.7个C.8个D.9个3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,那么□ABCD的周长为cm.4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,那么较长的边的长度为cm.5.(4分)在□ABCD中,假设∠A∶∠B=1∶5,那么∠D=;假设∠A+∠C=140°,那么∠D=.6.(4分)(2014·XX)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,那么□ABCD 的周长是.7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,假设∠EAD =53°,那么∠BCE的度数为( )A.53°B.37°C.47°D.123°8.(8分)(2013·XX)如下图,在平行四边形ABCD中,BE=DF.求证:AE=CF.9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,假设△EBC的面积为10 cm²,那么△DCF的面积为。

10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,那么S1,S2的大小关系是( )A.S1>S2 B.S1=S2 C.S1<S2 D.无法比拟11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( )A.1∶2∶3∶4 B.1∶2∶2∶1C.2∶2∶1∶1 D.2∶1∶2∶112.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,以下说法正确的选项是( )A.①②都对B.①②都错C.①对②错D.①错②13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,那么□ABCD的周长为__.14.(2013·XX)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,那么∠DAE的度数为。

(完整版)初二平行四边形的性质和判定知识点整理

(完整版)初二平行四边形的性质和判定知识点整理

初二平行四边形的性质和判断专题1. 平行四边形的定义(1)定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义有两层意思:①是四边形;②两组对边分别平行.这两个条件缺一不可以.(2)表示方法: 平行四边形用符号“ 四边形 ABCD ”.”表示.平行四边形ABCD记作“ ABCD ”,读作“平行 (3)平行四边形的基本元素:边、角、对角线.平行四边形的定义的作用:平行四边形的定义既是性质,又是判断方法.① 由定义可知平行四边形的两组对边分别平行;② 由定义可知只要四边形中有两组对边分别平行,那么这个四边形就是平行四边形.【例 1】关于平行四边形 ABCD ,AC 与 BD 订交于点 O ,以下说法正确的选项是(A .平行四边形 ABCD 表示为“ ACDB ” B .平行四边形 ABCD 表示为“ ABCD ”C .AD ∥ BC , AB ∥ CD D .对角线为 AC , BO).解析: 两组对边分别平行的四边形是平行四边形,可知平行四边形的两组对边平行,应选 C. AD答案: C2. 平行四边形的性质(1) 平行四边形的对边平行且相等.比方:如图①所示,在BC.ABCD 中, ABCD ,由上述 性质可得,夹在两条平行线间的平行线段相等.如图2,直线l 1∥ l 2.AB , CD是夹在直线l 1, l 2 间的平行线段,则四边形ABCD是平行四边形,故ABCD. (2)平行四边形的对角相等,邻角互补.比方:如图①所示,在 ∠CDA , ∠ BAD = ∠ BCD .∠ ABC + ∠ BAD = 180°, ∠ ABC+ ∠ BCD ABCD 中,∠ ABC == 180°, ∠ BCD +∠CDA = 180°,∠ BAD +∠ CDA = 180°.(3)平行四边形的对角线互相均分.比方:如图①所示,在ABCD中, OA = OC , OB=OD .图③(4)经过平行四边形对角线的交点的直线被对边截得的两条线段相等,而且该直线均分平行四边形的面积.比方:如图③所示,在ABCD 中, EF 经过对角线的交点O,与 AD 和 BC 分别交于点E,F ,则 OE=OF ,且 S 四边形ABFE= S 四边形EFCD .【例 2】ABCD 的周长为30 cm,它的对角线AC 和 BD 交于 O,且△ AOB 的周长比△BOC 的周长大 5 cm,求 AB,AD 的长.解析:依题意画出图形,如图,△ AOB的周长比△BOC的周长大5 cm,即 AO+ AB+BO-(BO+OC+ BC)= 5(cm) .因为 OA =OC, OB 为公共边,因此 AB - BC=5(cm) .30由AB+ BC=2= 15(cm) 可求 AB ,BC,再由平行四边形的对边相等得AD 的长.解:∵△ AOB 的周长比△ BOC 的周长大 5 cm,∴AO+ AB+ BO-(BO+OC+ BC)= 5(cm) .∵四边形 ABCD 是平行四边形,∴AO= OC,∴ AB- BC= 5(cm) .∵ABCD 的周长为 30 cm,∴ AB+ BC= 15(cm).AB- BC= 5,AB= 10,∴得AB+ BC= 15,BC= 5.∴AB= 10 cm, AD =BC= 5 cm.3.平行四边形的判断(1)方法一: (定义判断法 )两组对边分别平行的四边形叫做平行四边形.平行四边形的定义是判断平行四边形的根本方法,也是其他判断方法的基础.关于边、角、对角线方面还有以下判判定理.(2)方法二:两组对边分别相等的四边形是平行四边形.如图,连接BD ,由AD =BC ,AB =CD ,可证明△ABD ≌△CDB ,因此∠CDB =∠ABD ,∠ CBD =∠ ADB ,从而获取 AB∥ CD , AD ∥BC.由定义获取四边形 ABCD 为平行四边形.其推理形式为:∵AB= DC ,AD = BC,∴四边形 ABCD 是平行四边形.(3)方法三:两组对角分别相等的四边形是平行四边形.如图,由∠ A=∠ C,∠ B=∠D ,∠ A+∠B+∠ C+∠ D=360°,可得∠ B +∠ C=180 °,∠ A+∠B=180° . 从而获取 AB∥DC , AD∥BC .由定义获取四边形ABCD 为平行四边形,其推理形式为:∵∠ A=∠ C,∠ B=∠ D ,∴四边形 ABCD 是平行四边形.(4)方法四:对角线互相均分的四边形是平行四边形.其推理形式为:如图,∵ OA=OC, OB=OD ,∴四边形 ABCD 是平行四边形.(5)方法五:一组对边平行且相等的四边形是平行四边形.其推理形式为:如图,∵ AD ∥ BC, AD = BC,∴四边形 ABCD 是平行四边形.(1)判断方法可作为“画平行四边形”的依照; (2) 一组对边平行,另一组对边相等的四边形不用然是平行四边形.【例 3】已知,如图,在四边形 ABCD 中, AC 与 BD 订交于点 O, AB∥ CD ,AO= CO. 四边形 ABCD 是平行四边形,请说明原由.解:因为 AB ∥CD ,因此∠ BAC=∠DCA .又因为 AO= CO,∠ AOB=∠COD ,因此△ABO≌△ CDO .因此 BO= DO.因此四边形ABCD 是平行四边形.4.三角形的中位线(1)定义:连接三角形两边中点的线段叫做三角形的中位线.(2)性质:三角形两边中点连线平行于第三边,而且等于第三边的一半.(1)一个三角形有三条中位线,每条中位线与第三边都有相应的地址关系和数量关系; (2) 三角形的中位线不同样于三角形的中线,三角形的中位线是连接两边中点的线段,而三角形的中线是连接三角形一边的中点和这边所对极点的线段.【例 4】以下列图,在△ ABC 中,点 D, E, F 分别是 AB,BC, CA 的中点,若△ ABC 的周长为 10 cm,则△ DEF 的周长是 __________cm.解析:由三角形的中位线性质得,11 1DF =2BC, EF =2AB,DE =2AC,1答案: 55.两条平行线间的距离定义:两条平行线中,一条直线上任意一点到另素来线的距离,叫做这两条平行线间的距离.以下列图, a∥ b,点 A 在直线 a 上,过 A 点作 AC⊥ b,垂足为 C,则线段 AC 的长是点 A到直线 b 的距离,也是两条平行线 a, b 之间的距离.(1)如图,过直线 a 上点 B 作 BD⊥ b,垂足为 D,则线段 BD 的长也是两条平行线a, b 之间的距离.于是由平行四边形的性质可知平行线的又一个性质:平行线间的距离各处相等.(2)两条平行线之间的距离是指垂线段的长度,当两条平行线的地址确准时,它们之间的距离也随之确定,它不随垂线段的地址的改变而改变,是一个定值.【例 5】以下列图,若是 l 1∥ l2,那么△ ABC 的面积与△ DBC 的面积相等吗?由此你还能够得出哪些结论?解:△ ABC 的面积与△ DBC 的面积相等.因为 l1∥ l2,因此它们之间的距离是一个定值.因此△ABC 与△ DBC 是同底等高的两个三角形.因此S ABC=S DBC.△△结论: l1上任意一点与 B, C 连接,构成三角形的面积都等于△ ABC 的面积,这样的三角形有无数个.6.平行四边形性质的应用平行四边形性质的应用特别广泛,能够利用它说明线段相等、证明线段平行、求角的度数、求线段的长度、求图形的周长、求图形的面积等.对平行四边形的性质、平行线的性质、勾股定理、含30°角的直角三角形、三角形的面积、三角形的内角和定理等知识点的理解和掌握,是解决此类问题的要点.【例 6】如图,ABCD 的对角线订交于点O,过 O 作直线 EF,并与线段AB, CD 的反向延长线交于E, F , OE 与 OF 可否相等,阐述你的原由.解: OE 与 OF 相等.原由:∵四边形 ABCD 是平行四边形,∴BE∥ DF , OB=OD,∴∠ FDO =∠ EBO,∠ E=∠ F .∴△ BOE≌△ DOF .∴OE= OF .7.平行四边形的判断的应用熟练掌握判判定理是平行四边形的判断的要点.已学了平行四边形的五种判断方法,记忆时要注意技巧,其中三种方法都与边相关:(1)一种关于对边的地址关系(两组对边分别平行的四边形是平行四边形);(2)一种关于对边的数量关系(两组对边分别相等的四边形是平行四边形);(3 )一种关于对边的数量与地址关系 ( 一组对边平行且相等的四边形是平行四边形 ).平行四边形的判断方法是今后解决平行四边形问题的基础知识,应该熟练掌握.判断平行四边形的一般思路:①考虑对边关系:证明两组对边分别平行;或两组对边分别相等;或一组对边平行且相等;②考虑对角关系:证明两组对角分别相等;③考虑对角线关系:证明两条对角线互相均分.【例7】如图,请在以下四个关系中,选出两个合适的关系作为条件,推出四边形....ABCD 是平行四边形,并予以证明.(写出一种即可)关系:① AD ∥ BC,② AB= CD ,③∠ A=∠ C,④∠ B+∠ C= 180°.已知:在四边形ABCD 中, __________ ,__________ ;求证:四边形ABCD 是平行四边形.解析:采纳①③ 关系时,证明两组对边分别平行的四边形是平行四边形;采纳①④ 关系时,证明两组对边分别平行的四边形是平行四边形;采纳②④ 关系时,证明一组对边平行而且相等的四边形是平行四边形;采纳③④ 关系时,证明两组对边分别平行的四边形是平行四边形.解:已知:①③ ,①④ ,②④ ,③④ 均可,其他均不可以够.举比以下:已知:在四边形ABCD 中,① AD∥BC,③∠ A=∠ C,求证:四边形ABCD 是平行四边形.证明:∵ AD ∥ BC,∴∠ A+∠B= 180 °.∵∠ A=∠ C,∴∠ C+∠ B= 180°.∴ AB∥ CD .∴四边形 ABCD 是平行四边形.8.平行四边形的性质和判断的综合应用平行四边形的性质和判断的应用主要有以下几种情况:(1)直接运用平行四边形的性质解决某些问题,如求角的度数、线段的长、证明角相等或互补、证明线段相等或倍分关系;(2)判断一个四边形为平行四边形,从而获取两角相等、两直线平行等;(3)综合运用:先判断一个四边形是平行四边形,尔后再用平行四边形的性质去解决某些问题;或先运用平行四边形的性质获取线段平行、角相等等,再判断一个四边四边形.【例 8】以下列图,在ABCD 中, E, F 分别是AD , BC 上的点,且形是平行AE= CF, AF与 BE 交于 G, DF 与 CE 交于 H,连接 EF, GH,试问 EF 与 GH 可否互相均分?为什么?解: EF 与 GH 互相均分.原由:在∵ ADABCD 中,BC, AE= CF,∴ AE CF.∴DE BF.∴四边形 AFCE , BEDF 都是平行四边形. (一组对边平行且相等的四边形是平行四边形 )∴AF∥ CE, BE∥ DF .∴四边形 EGFH 是平行四边形. (平行四边形的定义 )∴EF 与 GH 互相均分.9.三角形的中位线性质的应用三角形的中位线的性质不但反响了线段间的地址关系,而且还揭穿了线段间的数量关系,借助三角形中位线的性质能够进行几何求值 (计算角度、求线段的长度 )、证明 (证明线段相等、证明线段的不等、证明线段的倍分关系、证明两角相等 )、作图,且能解决生活实责问题.应用三角形中位线定理解决问题时,已知条件中经常给出两其中点,若已知条件只给出一其中点,必定要证明另一个点也是中点,才能运用此定理.【例 9】在△ ABC 中, AB= 12, AC= 10, BC= 9, AD 是 BC 边上的高.将△ABC图所示的方式折叠,使点 A 与点 D 重合,折痕为EF,则△ DEF 的周长为 ().按如A .B .C. 11 D.解析:∵△ EDF 是△EAF 折叠而形成的图形,∴△ EDF ≌△ EAF .∴∠ AEF =∠DEF .∵ AD 是 BC 边上的高,由折叠可知AD ⊥ EF ,∴EF∥ CB.∴∠ AEF =∠ B,∠ BDE =∠ DEF .∴∠ B=∠ BDE.∴ BE= DE = AE.∴ E 为 AB 的中点.同理点 F 是 AC 的中点.∴ EF 是△ ABC 的中位线.∴△ DEF 的周长为△ EAF 的周长,即AE+ EF+ AF =1× (AB+ BC+ AC)=1× (12+ 9+ 10)= 15.5.22答案: D10.平行四边形的性质研究题平行四边形是一类特其他四边形,它的特别性表现在对边相等、对角相等、邻角互补、对角线互相均分几方面,因此,由平行四边形能够获取很多相等线段、相等角.因此,要学会利用比较的方法正确区分平行四边形的判判定理和性质定理,正确地运用相关的结论解决相关的问题.平行四边形的研究型问题,要点是依照平行四边形的性质和判断,构造出平行四边形.【例 10】如图,已知等边△ ABC 的边长为 a, P 是△ ABC 内一点, PD ∥ AB, PE∥ BC,PF ∥ AC,点 D ,E, F 分别在 AC ,AB, BC 上,试试究 PD + PE+ PF 与 a 的关系.解:如图,作DG∥ BC 交 AB 于点 G,因为△ABC 为等边三角形,因此∠ A=∠ B=∠ C=60°.因此∠A=∠AGD =∠ ADG= 60 °.因此 GD= AG.又可得 EP =GD ,因此 EP =AG, DP = GE.同理可得 PF = EB,因此 PD +PE+ PF =a.11.平行四边形的判断的研究题平行四边形是一类特其他四边形,而且它是学习矩形、菱形、正方形和梯形的基础.在相关平行四边形判断的研究型问题中,要会判断一个四边形是平行四边形,运动型问题的要点是把运动的问题转变成静止的问题.运动变化题,这类题的解决技巧是把“ 运动” 的“ 静止” 下来,以静制动,同时注意不同样的情况.【例 11】以下列图,已知在四边形A 点以 1 cm/s 的速度向 D 点出发,同时点ABCDQ 从中, AD∥ BC(AD > BC), BC= 6 cm,点 P 从C 点以 2 cm/s 的速度向 B 点出发,设运动时间为 t 秒,问 t 为什么值时,四边形ABQP 是平行四边形?解:由题意知, AP= t, QC= 2t,则 BQ= 6- 2t,若四边形 ABQP 为平行四边形,因为AD ∥ BC,只要 AP = BQ 即可,即t= 6- 2t ,解得 t= 2.答:当 t 为 2 秒时,四边形ABQP 是平行四边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形基本定义:
1、平行四边形
定义:有两组对边分别平行得四边形就是平行四边形。

表示:平行四边形用符号“□”来表示、
2、平行四边形性质:
3、扩展性质:
平行四边形得面积:
等于底与高得积,即S□ABCD=ah,其中a可以就是平行四边形得任何一边,h必须就是a边到其对边得距离,即对应得高。

平行四边形中得等积法使用:
三、总结:
(1)平行四边形得性质与扩展性质要能够理解并灵活运用。

(2)平行四边形中对角线就是常用辅助线。

例题1如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB得长为()A.4 B.3 C. D.2
例题2如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE得延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE就是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确得就是()A.①②③B。

①②④C.①②⑤D。

①③④
平行四边形得面积问题
实例:如图,已知四边形ABDE就是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.ﻫ(1)求证:△BAD≌△AEC; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE得面积。

平行四边形中得折叠
实例:如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.
求证:(1)∠1=∠2;
(2)DG=B′G.
DE=B′F,∴△DEG≌△B′FG,∴DG=B′G。

一、选择题
1、如图,平行四边形ABCD得对角线交于点O,且AB=5,△OCD得周长为23,则平行四边形ABCD得两条对角线得与就是()A、18 B.28 C.36 D、
46
A、246 B.216 C、-216D。

274
2如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线得所有▱ADCE中,DE最小得值就是( )A.2B、3 C.4 D、5
*3如图,在平行四边形ABCD中,AB〉CD,按以下步骤作图:以A为圆心,小于AD得长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF得长半径画弧,两弧交于点G;作射线AG交CD于点H、则下列结论:①AG平分∠DAB,②CH=DH,③△ADH就是等腰三角形,④S△ADH=S四边形ABCH、其中正确得有()A。

①②③B.①③④C、②④D、①③.
**4如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F就是BC得中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
A、3:4 B:2C:2 D。

2:
**5、如图,四边形ABCD就是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G、若使EF=AD,那么平行四边形ABCD应满足得条件就是()A.∠ABC=60°B.AB:BC=1:4C.AB:BC=5:2 D.AB:BC=5:8
**6如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确得就是( )①△CD F≌△EBC;②∠CDF=∠EAF;③△ECF就是等边△;④CG⊥AE。

A.只有①②B、只有①②③C.只有③④D、①②③④
二、填空题:
*7如图,过▱ABCD得对角线BD上一点M分别作平行四边形两边得平行线EF与GH,那么图中得▱AEMG得面积S1与▱HCFM得面积S2得大小关系就是
**8 在▱ABCD中,∠DAB得平分线分对边BC为3cm与5cm两部分,则▱ABCD 得周长为
**9、如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在得同一平面内,若点B得落点记为B′,则DB′得长为、
三、解答题:
*10如图,在▱ABCD中,点E就是AB边得中点,DE与CB得延长线交于点F、ﻫ(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE、试判断CE与DF得位置关系,并说明理由.
**11如图,在平行四边形ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE与△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连接AE、AF. (1)求证:△ABE≌△FDA;ﻫ(2)当AE⊥AF时,求∠EBG得度数.
**12(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F、若点P在BC边上(如图
1),此时PD=0,可得结论:PD+PE+PF=AB。

ﻫ请直接应用上述信息解决下列问题:ﻫ当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论就是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样得数量关系,请写出您得猜想,不需要证明、。

相关文档
最新文档