八年级数学_实数习题精选(含答案)
八年级数学上册《第三章 实数》练习题-含答案(湘教版)

八年级数学上册《第三章实数》练习题-含答案(湘教版) 一、选择题1.下列各数:1.414,2和-13,0,其中是无理数的是( )A.1.414B. 2C.-13D.02.3的相反数是()A. 3B.33C.﹣ 3D.﹣333.在实数-13,-2,0,3中,最小的实数是( )A.-2B.0C.-13D. 34.与3最接近的整数是( )A.0B.2C.4D.55.估计20的算术平方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.已知实数x,y,m满足2x+|3x+y+m|=0,若y为负数,则m的取值范围是( ) A.m>6 B.n<6 C.m>-6 D.m<-67.利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是( )A.2.5B.2.6C.2.8D.2.98.在如图所示的数轴上,AB=AC,A,B两点对应的实数分别是3和-1,则点C所对应的实数是()A.1+ 3B.2+ 3C.23-1D.23+1 二、填空题9.在实数中,无理数有________个.10.若a +-a 有意义,则a = 11.化简:|3-10|+(2-10)=______.12.把无理数17,11与5和-3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是 .13.如图,在数轴上点A 和点B 之间的整数是 .14.已知2018≈44.92,201.8≈14.21,则20.18≈________.三、解答题15.计算:;16.计算:.17.计算:9-327+3641-(-13)2;18.计算:.19.已知表示实数a,b的两点在数轴上的位置如图所示,化简:|a-b|+(a+b)2.20.若5+11的小数部分为x,5-11的小数部分为y,求x+y的值.21.阅读理解∵4<5<9,即2<5<3.∴1<5﹣1<2∴5﹣1的整数部分为1.∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣3的整数部分,b是17﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.22.现有一组有规律排列的数:其中这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2027个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?参考答案1.B2.C3.A4.B5.C6.A7.B8.D9.答案为:210.答案为:0.11.答案为:-1.12.答案为:11.13.答案为:2.14.答案为:4.49215.解:原式=8.25.16.解:原式=9.17.解:原式=-13 36 .18.解:原式=-319.解:由图知b<a<0,∴a-b>0,a+b<0.故|a-b|=a-b,(a+b)2=-(a+b)=-a-b∴原式=a-b-a-b=-2b.20.解:∵ 3<11<4∴8<5+11<9,1<5-11<2∴ x=11-3,y=4-11∴ x+y=11-3+y+4-11=1.21.解:∵<<∴4<17<5∴1<17﹣3<2∴a=1,b=17﹣4∴(﹣a)3+(b+4)2=(﹣1)3+(17﹣4+4)2=﹣1+17=16∴(﹣a)3+(b+4)2的平方根是:±4.22.解:(1)∵50÷6=8……2,∴第50个数是-1.(2)∵2027÷6=337……5,1+(-1)+2+(-2)+3= 3 ∴从第1个数开始的前2027个数的和是 3.(3)∵12+(-1)2+(2)2+(-2)2+(3)2+(-3)2=12520÷12=43……4且12+(-1)2+(2)2=4.∴43×6+3=261,即共有261个数的平方相加。
八年级上册数学《实数》(含答案)

第1节 实数、平方根【基本知识】1、 有理数 包括有限小数和循环小数,有理数都可以表示为分数形式;2、 无限不循环小数,成为 无理数 ;3、平方根:(1)定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
(2)性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)算术平方根:正数a 的正的平方根叫做a 。
(4)一个非负数x 有两个平方根a 和b ,则a+b = 0(5)运算:2a = ||a 2)(a = a ;2)(a -= a类型1A :【求下列各数的平方根】(1)324 (2)9624 (3)3.61 (4)971 (5)289【答案】(1)18± (2)21± (3)9.1± (4)34± (5)17±类型1B :【求下列各数的算术平方根】(1)64 (2)2)3(- (3)49151(4) 21(3)- 【答案】(1)8 (2)3 (3)78 (4)31类型2:【已知平方数或平方根,求数】(1)平方等于256的数是 16±(2)若3是x 的一个平方根,则x = 9(3)若一个正数的平方根为12-a 和a -4,则a = -3 ,这个正数为 49 .(4)一个数的平方等于9,则这个数是 3±(5)一个负数的平方等于100,则这个负数是 10-(6)已知2a -1的平方根是3±,3a+b -1的平方根是4±,则a = ,b = 2 5类型3:【开平方,求下列各式中x 的值】(1)09252=-x (2)x 2-144 = 0 (3)(2x )2 = 16【解】 (1)53±=x (2)12±=x (3)2±=x(4)32-=x (5)32=x (6)225360x -=【解】(4)无实根 (5)3±=x (6)56±=x(7)9x 2-1= 0 (8)16)1(2=+x (9)(21x )2 = 1【解】(7)31±=x (8)35或-=x (9)2±=x类型4:【计算】(1)= 3= 5= 7(2) =-2)4( 4 =2)182( 91 =2)5( 5(3)94±=32±-169.= -1.3102-=101(4)81±= 9± 16-= -4 259= 53(5)44.1= 1.2 36-= -6 4925± =75±(6)2)25(-= 25 2)4(-= 4类型5:【化简】(1)已知|x -4|+y x +2= 0,那么x =_______4_,y =________-8(2)=________π-4,)2x ≤=________x -2类型6:【根式的意义】1、如果1-x +x -9有意义,那么代数式|x -1|+2)9(-x 的值为 8.类型6:【平方数与平方根相关训练】(1)21++a 的最小值是 ________2,此时a 的取值是 ________-1(2)如果一个正数的两个平方根为1a +和27a -,则这个正数是 9(3)若2+x = 2,则2x + 5的平方根是 3±(4)若14+a 有意义,则a 能取的最小整数为 0类型7:【能力提升训练】(1)已知501.6=x ,650.12 = 422630,则x = 42.263(2)已知2+x =3,则2)2(+x 等于 81(3)已知12++-b a =0,则a +b 的值是 1(4)一个自然数的算术平方根是x(5)一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是 22+m(6)自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =,有一铁球从19.6米高的建筑物上自由下落,到达地面需要 2 秒(7)若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,则a b +的平方根 为 0或1±类型8:【比较实数大小】1、平方法:(1; (2)534< 11; (3) 2、求差法:215- < 13、求商法:23平方根 (作业)一、写出下列各数的平方根:(1)2)6(- (2)2)36(- (3)8116(4)16 (5)2)7(-【解】(1)6± (2)6± (3)94±(4)2± (5)7± 二、已知平方数或平方根,求数:(1)一个数的平方为719,这个数为 34±(2)一个数x 的平方根为9±,则x = 81(3)若一个正数的平方根是12-a 和2+-a ,则a = -1 ,这个正数是 9三、开平方,求下列各式中x 的值:(1)2732=x (2)2516902x -= (3)()12892-=x【解】(1)3±=x (2)513± (3)1816或-=x(4)(x +5)2 = 144 (5)009.02=-x【解】(4)177-=或x (5)3.0±=x(6)(x +1)2=36 (7)27(x +1)3=64【解】(6)75-=或x (7)31=x四、化简:1、若x <2,化简|3|)2(2x x -+-的正确结果是 x 25-2、当21≤a 时,化简|12|4412-++-a a a = a 42-3、已知实数a 、b 在数轴上表示的点如上图,b a ++2)1(+-b a = 12-b化简五、平方数与平方根相关训练:(1)若2m -10与3m 是同一个数的平方根,则m 的值是 2(2)使3+-x 有意义的x 的取值范围是 3≤x。
北师大版八年级上第2章《实数》练习题及答案解析

第二章实数2.1认识无理数专题无理数近似值的确定1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数B.x取0和1之间的实数C.x不存在 D.x取1和2之间的实数2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.答案:1.D 【解析】 ∵面积为3的正方形的边长为x ,∴x 2=3,而12=1,22=4,∴1<x 2<4,∴1<x <2,故选D. 2.解:(1)边长为5cm.(2)设大正方形的边长为x ,∵大正方形的面积=32+32=18,而42=16,52=25,∴16<x 2<25,∴4<x <5,故正方形的边长不是整数,它的值在4和5之间.3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.2.2平方根专题一 非负数问题1. 若2(2)a +与1+b 互为相反数,则a b -的值为( )A .2B .21+C .21-D .12-2. 设a ,b ,c 都是实数,且满足(2-a )2+2a b c +++|c+8|=0,ax 2+bx+c=0,求式子x 2+2x 的算术平方根.3. 若实数x ,y ,z x 1y -2z -= 14(x+y+z+9),求xyz 的值.专题二 探究题 4. 研究下列算式,你会发现有什么规律?131⨯+=4 =2;241⨯+=9=3;351⨯+=16=4;461⨯+=25=5;…请你找出规律,并用公式表示出来.5.先观察下列等式,再回答下列问题: ①2211112++=1+ 11111-+- =112;②2211123++ =1+ 11221-+=116; ③2211134++=1+ 11331-+=1112. (1)请你根据上面三个等式提供的信息,猜想2211145++的结果,并验证; (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).答案:1.D 【解析】 ∵2(2)a +与|b+1|互为相反数,∴2(2)a ++|b+1|=0, ∴2+a =0且b+1=0, ∴a=2,b=﹣1,a b -=12-,故选D.2.解:由题意,得2-a=0,a 2+b+c=0,c+8=0. ∴a=2,c=-8,b=4. ∴2x 2+4x-8=0. ∴x 2+2x=4.∴式子x 2+2x 的算术平方根为2.3.解:将题中等式移项并将等号两边同乘以4得x-4x +y-41y -+z-42z -+9=0,∴(x-4x +4)+(y-1-41y -+4)+(z-2-42z -+4)=0, ∴(x-2)2+(1y --2)2+(2z --2)2=0,∴x-2=0且1y --2=0且2z --2=0, ∴x=21y -=2 2z -=2,∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.∴xyz=120.4.解:第n 项a n =(2)1n n ++=2(1)n +=n+1,即a n =n+1. 5.解:(1)2211145++=1+ 11441-+=1120. 验证:2211145++=1111625++=25161400400++=441400=1120. (2)22111(1)n n +++=1+111n n -+=1+1(1)n n +(n 为正整数).2.3立方根专题 立方根探究性问题1. (1)填表:a 0.000001 0.001 1 1000 10000003a(2)由上表你发现了什么规律(请你用语言叙述出来);(3)根据发现的规律填空:①已知33=1.442,则33000=_____________;②已知30.000456=0.07696,则3456=_____________.2.观察下列各式:(1)223=223;(2)338=338;(3)4415=4415.探究1:判断上面各式是否成立.(1)________;(2)________;(3)________ .探究2:猜想5524= ________ .探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展:3227=2327,33326=33326,34463=43463,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.答案:1.解:(1)直接开立方依次填入:0.01;0.1;1;10;100.(2)从表中发现被开方数小数点向右移动三位,立方根向右移动一位.(3)①14.42 ②7.6962.解:探究1:(1)成立 (2)成立 (3)成立 探究2:5524探究3:21n nn -=21nn n -(n≥2,且n 为整数).理由如下: 21n n n -=321n n n n -+-=221n n n ⨯-=21n n n -. 拓展:331n nn -=331n n n -.理由如下: 331n n n -=4331n n n n -+-=3331n n n ⨯-=331n n n -.2.4估算专题 比较无理数大小1. 设a=1003+997,b=1001+999,c=21001,则a ,b ,c 之间的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2 )(3- 2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1…(1)观察上面的规律,计算下列式子的值. (121++132++143++…+ 120132012+)•( 2013+1).(2)利用上面的规律,试比较1211-与1312-的大小.3. 先填写下表,通过观察后再回答问题.问:(1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?(3)试比较a 与a 的大小.答案:1. D 【解析】 ∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1 000 000-9=999 991,1001×999=1 000 000-1=999 999,10022=1 004 004. ∴c >b >a .故选D .2.解:(1)由上面的解题规律可直接写出111n n n n=+-++,则(121++132++143++…+ 120132012+)•( 2013+1) =[(2-1)+ (3- 2)+(4-3)+…+(2013-2012)](2013+1) =( 2013-1) ( 2013+1) =.(2)∵11211-=1211+,11312-=1312+,又1211+<1312+,∴11211-<11312-, ∴1211->1312-.3.解:依次填:0.001,0.01,0.1,1,10,100,1000. (1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位,即a=3240000; (3)当0<a <1时,a >a ;当a=1或0时,a =a ;当a >1时,a <a .2.6实数专题 实数与数轴1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( ) A .2 B .22 C .12 D .122.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处 A .17 B .55 C .72 D .853. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .(1)化简:|a-b|+|c-b|+|c-a|; (2)若a=4x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.答案:1.B 【解析】由勾股定理得:正方形的对角线为2,设点A表示的数为x,则2-x=2,解得x=2-2.故选B.2.B 【解析】根据题意,数轴上刻度15,18的位置分别对准A,B两点,而AB两点间距离157-140=17(公里),即数轴上的3个刻度对应实际17公里的距离.又有数轴上刻度0与15之间有15个刻度,故刻度0的位置对准地图上公路的位置距A点有15×173=85(公里), 140-85=55,故刻度0的位置对准地图上公路的55公里处.故选B.3.3+22【解析】在直角△ABC中,AC=CB=2,根据勾股定理可以得到AB=22,则当顶点C下一次落在数轴上时,所在的位置表示的实数是4+22-1=3+22.故答案为:3+22.4.解:(1)由数轴可知:a-b>0,c-b<0,c-a<0,所以原式=(a-b)-(c-b)-(c-a)=a-b-c+b-c+a=2a-2c.(2)由题意可知:x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4,∴98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7、3,它们的和为-4.2.7二次根式专题一 与二次根式有关的规律探究题1.将1、2、3、6按如图所示的方式排列.若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( )A.1B.2C. 23D.6 2. 观察下列各式及其验证过程:322322=+,验证:228222223333⨯+===. 333388+=,验证:2327333338888⨯+===.(1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3 =( + 3)2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简 4. 化简二次根式22a aa 的结果是( ) A.2a B.2a C. 2a D.2a5.如图,实数a .b 在数轴上的位置, 化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2)所表示的数是6.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、2、3、6的顺序循环出现,212÷4=53,∴(21,2)表示的数是6.∴(4,2)与(21,2)表示的两数之积是666⨯=.2.解:(1)44441515+=.验证:24644444415151515⨯+===. (2)2211a a a a a a +=--(a 为任意自然数,且2a ≥). 验证:3322221111a a a a a aa aa a a a -++===----. (3)333311-=-+a a a a a a (a 为任意自然数,且2a ≥). 验证:33334433331111aa a aa aa aa a a a -++===----. 11nnn na aa a a a +=--(a 为任意自然数,且2a ≥). 验证:n n n n n n n n n n a a a a a a a a a a a a 111111-=-=-+-=-+++. 3. 解:(1)223n m + 2mn (2)21 12 3 2(3) ∵223n m a +=,4=2mn, ∴mn=2. ∵ m,n 为正整数,∴m=1,n=2或m=2,n=1, ∴a=13或a=7.4.B 【解析】若二次根式有意义,则22a a+-≥0,-a-2≥0,解得a≤-2,∴原式=2a a a=2a .故选B .5.解:由图知,a <0,b >0,∴a ﹣b <0,∴222)(b a b a -+-=|a |﹣|b |+|a ﹣b |=(﹣a )﹣b +(b ﹣a )=﹣2a .。
北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章实数测试题(含答案)一、选择题(共10小题,每小题3跟,共30分)1.下列式子正确的是()A.√9=±3B.√−19=−13C.√(−2)2=2D.√−93=﹣32.下列说法正确的是()A.1的平方根是1B.负数没有立方根C.√81的算术平方根是3D.(−3)2的平方根是−33.下列计算正确的是()A.√4=±2B.√36=6C.√(−6)2=﹣6D.﹣√−83=﹣24.下列四个实数中,是无理数的为()A.0B.√2C.﹣2D.。
125.下列根式中是最简二次根式的是()A.B.C.D.6.如图所示,在数轴上表示实数√10的点可能是()A.点M B.点N C.点P D.点Q 7.给出下列数-2.010010001…,0 ,3.14,237,π,0.333….其中无理数有()个A.1B.2C.3D.48.下列命题正确的是()A.同旁内角互补B.一组数据的方差越大,这组数据波动性越大C.若∠α=72°55′,则∠α的补角为107°45'D.对角线互相垂直的四边形是菱形9.下列运算正确的是()A.√10÷√2=5B.(t−3)2=t2−9C.(−2ab2)2=4a2b4D.x2⋅x=x210.下列运算正确的是()A .√4 =±2B .(−14)−2=﹣16C .x 6÷x 3=x 2D .(2x 2)3=8x 6二、填空题(共5小题,每小题3分,共15分)11.函数y =√2−x x−1的自变量x 的取值范围是 .12.如果 √a −1 有意义,那么a 的取值范围是 .13.一个正数的两个平方根分别是m −4和5,则m 的立方根是 . 14.请写出一个正整数m 的值使得√8m 也是整数,则m 的最小值是 . 15.49的平方根是 ;27的立方根是 .三、解答题(第16题10分,第17-18题每题7分,第19-21每题9分,第22-23每题12分,满分75分)16.在平面直角坐标系中,点P (- √3 ,-1)到原点的距离是多少?17.方老师想设计一个长方形纸片,已知长方形的长是 √140π cm ,宽是 √35π cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.18.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是 √8 的整数部分,求a +b +c 的平方根. 19.有一道练习题:对于式子2a-√a 2−4a +4先化简,后求值,其中a=√2。
八年级数学实数试卷【含答案】

八年级数学实数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是实数?A. √-1B. 3.14C. ∞D. 1/02. 两个实数相加,结果是什么类型的数?A. 自然数B. 整数C. 有理数D. 实数3. 下列哪个数是有理数?A. √2B. πC. 1/2D. √-14. 下列哪个数是无限不循环小数?A. 0.333B. 3.141592653C. 0.121212D. 1.4142135625. 下列哪个数是无理数?A. 0.5B. 1.333C. √3D. 1/3二、判断题(每题1分,共5分)1. 所有的有理数都是实数。
()2. 两个实数相乘,结果一定是实数。
()3. 0是实数。
()4. 所有的整数都是有理数。
()5. 两个无理数相加,结果一定是有理数。
()三、填空题(每题1分,共5分)1. 实数包括有理数和无理数,有理数包括整数和_________。
2. 两个实数相加,结果一定是_________。
3. 两个实数相乘,结果一定是_________。
4. 0的倒数是_________。
5. 两个实数相除,结果一定是_________。
四、简答题(每题2分,共10分)1. 请简述实数的定义。
2. 请简述有理数的定义。
3. 请简述无理数的定义。
4. 请简述实数的分类。
5. 请简述实数的性质。
五、应用题(每题2分,共10分)1. 已知a和b是实数,且a+b=5,ab=6,求a和b的值。
2. 已知x和y是实数,且x+y=3,x-y=1,求x和y的值。
3. 已知m和n是实数,且m+n=4,mn=3,求m和n的值。
4. 已知p和q是实数,且p+q=7,p-q=1,求p和q的值。
5. 已知r和s是实数,且r+s=8,rs=15,求r和s的值。
六、分析题(每题5分,共10分)1. 请分析实数与有理数的关系。
2. 请分析实数与无理数的关系。
七、实践操作题(每题5分,共10分)1. 请用计算器计算√2的值,并判断其是有理数还是无理数。
八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。
北师大版八年级数学上册《2.6 实数》练习题及答案

北师大版八年级数学上册《2.6 实数》练习题及答案学校:___________班级:___________姓名:___________考号:___________ 一、选择题1.下面说法中,正确的是()A.实数分为正实数和负实数B.带根号的数都是无理数C.无限不循环小数都是无理数D.平方根等于本身的数是1和02.在实数√5,227,0,π2,√36,−1.414有理数有()A.1个B.2个C.3个D.4个3.如图,数轴上M,N,P,Q四点中,与2−√5对应的点距离最近的是()A.点M B.点N C.点P D.点Q4.下列计算正确的是()A.√2×√3=√5B.√3−√2=1C.√3√2=1D.(√3+√2)(√3−√2)=15.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.√3B.2√2C.√5D.2.56.实数a,b,c,d在数轴上的对应点的位置如图所示.若b+d=0,则下列结论中正确的是()A.b+c>0B.ca>1C.ad>bc D.|a|>|d|7.如图,△ABC是直角三角形,点C在数轴上对应的数为−2,目AC=3,AB=1若以点C为圆心,CB为半径画弧交数轴于点M,则A,M两点间的距离为()A.0.4 B.√10−2C.√10−3D.√5−18.如图,长方形的长为3,宽为2,对角线为OB,且OA=OB,则下列各数中与点A表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.8二、填空题 9.如图,在数轴上点A 和点B 之间表示整数的点共有 个10.给出下列关于 √2 的判断:①√2 是无理数;②√2 是实数;③√2 是2的算术平方根;④1< √2 <2.其中正确的是 (请填序号).11.√1253−√9+|√5−2|= .12.如图,数轴上点A 表示的实数是 .13.如图,数轴上点 A , B 对应的实数分别为1, √2 点 B 关于点 A 的对称点为点 C ,则点 C 所表示的实数是 .三、解答题14.计算:(1)√(−5)2+√−273﹣(﹣1)2.(2)(−1)3+√83+√25+|−3|.(3)−22+√−643×(12)2+|√3−2|15.把下列各数填在相应的大括号里:整数:{ …};负分数:{ …};无理数:{ …}.16.把下列各数:-2.5,0和32-在数轴上表示出来,并将这些数用“<”连接.参考答案1.C2.D3.B4.D5.C6.D7.C8.B9.410.①②③④11.√512.√5﹣113.2−√23﹣(﹣1)214.(1)解:√(−5)2+√−27=5﹣3﹣1=1.3+√25+|−3|=−1+2+5+3=9. (2)解:(−1)3+√8+2−√3(3)解:原式=−4+(−4)×14=−4+(−1)+2−√3=−3−√315.解:由题意可知:整数包括:{0,√9,+5,⋯};,−3.1415,⋯};负分数包括:{−227π,√8,⋯}.无理数包括:{1216.解:3-<<<-2.502.2。
八年级数学实数综合测试题及参考答案(人教版)

八年级数学《实数》综合测试题一、选择题: 1. 在实数5757757775.0722、(相邻两个5之间7的个数逐次加1)、、、、02753- 32)2(0-、、ππ中,无理数的个数是( ) (A ) 3个 (B ) 4个 (C ) 5个 (D ) 6个2.以下语句或式子:①-3是81的平方根;②-7是2)7(-的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤ 0没有算术平方根.其中正确的个数是 [ ] (A )0个 (B )1个 (C )2个 (D )3个 3. 若32b -是b -2的立方根,那么( )A 2<bB 2=bC 2>bD b 能够为任意实数4.|-64|的立方根是 [ ](A )4± (B )4 (C )8± (D )8 5. 当14+a 的值为最小值时,a 的值为( )A 1-B 41- C 0 D 16.估量3124与26的大小关系是 [ ](A )3124>26 (B )3124=26(C )3124<26 (D )无法判定7.假设一个自然数的算术平方根是m ,那么此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是 [ ](A )12+m (B )12+m (C ) 1+m (D )1+m8.若33b a +=0,那么a 与b 的关系是 [ ](A )0==b a (B )b a = (C )0=+b a (D )ba 1= 9. 若m 是n 的算术平方根,那么n 的平方根是( )A mB m ±C m ±D m10.若a a -=2,那么实数a 在数轴上的对应点必然在 [ ](A )原点左侧 (B )原点右边 (C )原点或原点左侧 (D )原点或原点右边 二、填空题:11. 比较大小:215- 85(填“>”,“<”或“=”) 12.已知,10<<a 化简=-+-++2121aa a a _____.13.已知,2323,2323+-=-+=y x 那么代数式222y xy x +-的值为_____.14.计算:_______)25()25(20082007=+⨯-. 15.已知,04)1(222=-++y x 则22y x +______.16. 1,34,39,322,… 符合那个规律的第五个数是_____. 17.有四个实数别离是|3-|,2π,9,π4,请你计算其中有理数的和与无理数的积的差,其计算结果是_____. 18.实数a ,b 在数轴上的位置如图1所示,那么化简=-++2)(a b b a _____. 三、解答题: 19.计算:(1)91)3(220160+--⨯π (2) 36632223513459-⨯÷ (3) 432|2535|)2(2⨯÷-+- (3)|23|3)13(3)33(4801----+-- 20.已知13的整数部份为a ,小数部份为b ,试求)13(41a b +的值. 21. (1)已知实数z y x 、、知足0412311442=+-++++-z z z y y x ,求22)(x z y ⋅+的值; (2)已知,321,321-=+=y x 求xy y x -+2222的值.22. 阅读以下运算进程: ①3333331=⨯=,②3252525)25)(25(25251-=--=-+-=+ 数学上把这种将分母中的根号去掉的进程称作“分母有理化”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数单元测试题 姓名
一、填空题:(本题共10小题,每小题3分,共30分)
1、
()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________。
4、实数a ,b ,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0。
8、12-的相反数是_________。
9、 38-=________,38-=_________。
10、绝对值小于π的整数有__________________________。
二、选择题:(本题共10小题,每小题3分,共30分)
11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有(
)。
A 、1个 B 、2个 C 、3个 D 、4个
12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-
B 、x ≥ 37
- C 、x >37 D 、x ≥37
13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值(
)。
A 、0 B 、 21 C 、2 D 、不能确定
14、下列说法中,错误的是( )。
A 、4的算术平方根是2
B 、81的平方根是±3
C 、8的立方根是±2 D、立方根等于-1的实数是-1
15、64的立方根是( )。
A 、±4
B 、4
C 、-4
D 、16
16、已知04)3(2=-+-b a ,则b a 3
的值是( )
A 、 41
B 、- 41
C 、433
D 、4
3 17、计算33841627-+-+的值是( )。
A 、1
B 、±1
C 、2
D 、7
18、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
A 、-1
B 、1
C 、0
D 、±1
19、下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数
B 、无理数不是实数
C 、无理数是带根号的数
D 、无理数是无限不循环小数
20、下列命题中,正确的是( )。
A 、两个无理数的和是无理数
B 、两个无理数的积是实数
C 、无理数是开方开不尽的数
D 、两个有理数的商有可能是无理数
三、解答题:(本题共6小题,每小题3分,共15分)
21、求9
72
的平方根和算术平方根。
22、计算252826-+的值。
23、解方程x 3-8=0 (24)x 2 = 17
(25)x 2 -
12149
= 0
13.比较大小,并说理(每小题5分,共10分)
(1与6; (2)1与2
-
15.(本题7分)
+-
13 17.(本题8分)观察
===
=
===
=
实数单元测试题
1、6
2、1
3、±2
4、0
5、5
6、1,2
7、≤
8、21-
9、-2,-2 10、±3,,2,±1,0 11----20、ADCCB CDCDB 21、35
,35± 22、29 23、2 24、3
25、4 26、3、27、-2 28、-5。