实数经典例题及习题[1](1)
(完整版)直线和圆基础习题和经典习题加答案

【知识网络】综合复习和应用直线和圆的基础知识,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题,提高分析问题和解决问题能力.【典型例题】[例1]( 1)直线x+ y=1与圆X2+ y2—2ay=0(a>0)没有公共点,贝V a的取值范围是()A. (0, 2 —1) B . ( 2 —1, 2 + 1)C. (—2 —1 , 2 —1)D. (0, 2 +1(2)圆(x —1)2+ (y +•, 3 )2=1的切线方程中有一个是()A. x—y=0B. x + y=0C. x=0 D . y=0(3)a=b”是直线y x 2与圆(x a)2(y b)22相切”的()A .充分不必要条件B .必要不充分条件C.充分必要条件 D •既不充分又不必要条件(4)已知直线5x + 12y + a=0与圆x2+ y2—2x=0相切,则a的值为 ___________ .(5)过点(1, ,2 )的直线I将圆(x —2)2+ y2=4分成两段弧,当弧所对的圆心角最小时,直线I的斜率k= ___________ .[例2]设圆上点A (2, 3)关于直线x+ 2y=0的对称点仍在圆上,且圆与直线x —y+ 1=0相交的弦长为2 2 ,求圆的方程.[例3]已知直角坐标平面上点Q (2, 0)和圆C: x2+ y2=1,动点M到圆C的切线长与|MQ| 的比等于入(心0).求动点M的轨迹方程,并说明它表示什么曲线.[例4]已知与曲线C: x2+ y2—2x —2y +仁0相切的直线I叫x轴,y轴于A , B两点, |OA|=a,|OB|=b(a > 2,b > 2).(1) 求证:(a—2)(b —2)=2 ;(2) 求线段AB中点的轨迹方程;(3 )求厶AOB面积的最小值.【课内练习】51 .过坐标原点且与圆x2+ y2—4x + 2y +2 =0相切的直线的方程为()2. 圆(x — 2)2 + y 2=5关于原点(0,0)对称的圆的方程为()A . (x + 2)2+ y 2=5B . x 2 + (y — 2)2=5C . (x — 2)2+ (y — 2)2=5D . x 2 + (y + 2)2=53.对曲线凶一|y|=1围成的图形,下列叙述不正确的是()A .关于x 轴对称B .关于y 轴对称C .关于原点轴对称D .关于y=x 轴对称4. 直线11: y=kx + 1与圆x 2 + y 2+ kx — y — 4=0的两个交点关于直线 I 2: y + x=0对称,那么这两个交点中有一个是()A . (1, 2)B . (— 1, 2)C . (— 3, 2)D . (2, — 3)5. ____________________________________________________________________________ 若直线y=kx + 2与圆(x — 2)2 + (y 一 3)2=1有两个不同的交点,则k 的取值范围是 ________________6.已知直线ax + by + c = 0与圆O : x 2 + y2= 1相交于A 、B 两点,且|AB| = ■.. 3 ,则OA OB7. ___________________________________________________________ 直线11: y= — 2x + 4关于点M (2, 3)的对称直线方程是 _____________________________________ . & 求直线11: x + y — 4=0关于直线1: 4y + 3x —仁0对称的直线|2的方程.9.已知圆 C : x 2 + y 2 + 2x — 4y + 3=0(1) 若C 的切线在x 轴,y 轴上的截距的绝对值相等,求此切线方程;(2) 从圆C 外一点P (X 1,y 1)向圆引一条切线,切点为 M , O 为原点,且有|PM|=|PO|,求 使|PM|最小的P 点的坐标.10 .由动点P 引圆x 2 + y 2=10的两条切线PA , PB ,直线PA , PB 的斜率分别为k 1,k 2 . (1)若k 1+ k 2+ k 1k 2=— 1,求动点P 的轨迹方程;(2)若点P 在直线x + y=m 上,且PA 丄PB ,求实数m 的取值范围.1y= — 3x 或 y=3 x 1B . y=3x 或 y= — § x、 1 y= — 3x 或 y= — 3 x 、 1D . y=3x 或 y=3 x11 . 5直线与圆的综合应用1. 设直线过点(0, a),其斜率为1,且与圆x2+ y2=2相切,则a的值为 ()A. ±,2 B . ± C. i2 2 D . ±42. 将直线2x —y+ X= 0,沿x轴向左平移1个单位,所得直线与圆x2+y2+2x —4y=0相切,则实数入的值为A. —3 或7 B . —2 或8 C. 0 或10 D . 1 或113. 从原点向圆x2+ y2—12y+ 27=0作两条切线,则该圆夹在两条切线间的劣弧长为()A. nB. 2 nC. 4 nD. 6 n1 14. 若三点A (2, 2), B (a,0), C ( 0, b) (a, b均不为0)共线,^U ——的值等于______________ .a b5. 设直线ax—y + 3=0与圆(x —1)2+ (y—2)2=4有两个不同的交点A , B,且弦AB的长为2 3,则a等于_____________ .6. 光线经过点A (1, 7),经直线| : x+ y +仁0反射,反射线经过点B (1, 1).(1 )求入射线所在的方程;(2)求反射点的坐标.7. 在厶ABC中,BC边上的高所在的直线方程为x—2y +仁0, / A的平分线所在直线方程为y=0,若B点的坐标为(1 , 2),求点A和点C的坐标.& 过圆O: x2+ y2=4与y轴正半轴的交点A作这个圆的切线I, M为I上任意一点,过M 作圆O的另一条切线,切点为Q,当点M在直线I上移动时,求△ MAQ垂心H的轨迹方程.B组1. 已知两定点A (—2, 0), B (1 , 0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A. n B . 4 n C . 8 n D . 9 n2•和x轴相切,且与圆x2+ y2=i外切的圆的圆心的轨迹方程是()A. x2=2y + 1 B . x2= —2y + 1 C. x2=2y —1 D. x2=2|y| + 13.设直线的方程是Ax By 0,从1, 2, 3, 4, 5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是A . 20B . 1918D . 1624.设直线2x 3y 1 0和圆x2x 3 0相交于点A 、B ,则弦AB 的垂直平分线方程是 _____5. 已知圆M : A .对任意实数B .对任意实数C .对任意实数D .对任意实数 其中真命题的代号是 6. 已知点A , B 的坐标为(一3 , 0), (3 , 0), C 为线段AB 上的任意一点,P , Q 是分别 以AC , BC 为直径的两圆01 , O 2的外公切线的切点,求 PQ 中点的轨迹方程. 7.已知△ ABC 的顶点A (— 1, — 4),且/ B 和/ C 的平分线分别为I BT : y +仁0,I CK :X + y +仁0,求BC 边所在直线的方程.&设a,b,c,都是整数,过圆x 2 + y 2= (3a + 1)2外一点P (b 3 — b,c 3— c)向圆引两条切线,试证 明:过这两切点的直线上的任意一点都不是格点(纵横坐标均为整数的点)(x + cos e 2) (y — sin 02=1, k 和e 直线l 和圆M 都相切; k 和e 直线l 和圆M有公共点; e ,必存在实数k ,使得直线I 和圆M 相切; k ,必存在实数 e,使得直线I 和圆M 相切. 写出所有真命题的代号)直线I : y=kx ,下面四个命题 11. 5直线与圆的综合应用【典型例题】 例1(1) A .提示:用点到直线的距离公式.(2) C .提示:依据圆心和半径判断. (3) A .提示:将直线与圆相切转化成关于ab 的等量关系.(4) — 18或&提示:用点到直线的距离公式,注意去绝对值符号时的两种可能情况. (5)石-.提示:过圆心(2 , 0)与点(1, ,2 )的直线m 的斜率是—2 ,要使劣弧所 对圆心角最小,只需直线 I 与直线m 垂直.例2、设圆的方程为(x — a)2 + (y — b)2=r 2,点A (2 , 3)关于直线x + 2y=0的对称点仍在圆 上,说明圆心在直线 x + 2y=0上,a + 2b=0 ,又(2— a)2 + (3 — b)2=r 2,而圆与直线x — y + 1=0 相交的弦长为2 .2 ,,故r 2— ()2=2,依据上述方程解得:b 1= — 3 a 1=6 或r 12=52b 2=— 7 a 2=14 r 22=244•••所求圆的方程为(x — 6)2 + (y + 3)2=52,或(x — 14)2+ (y + 7)2=224. 例 3、设切点为 N ,则 |MN|2=|MO|2 — |ON|2=|MO|2 — 1 ,设 M ( x,y),则y 2 1 J (x 2)2y 2,整理得(於一1) (x 2+ y 2) — 4 入 X (1 + 4 心=05 当入=1时,表示直线x=5;当入工时,方程化为(x 二 )2 21坨,它表示圆心在(罕,。
上饶市七年级数学下册第六单元《实数》经典习题(含答案)(1)

一、选择题1.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为()A.﹣40 B.﹣32 C.18 D.10D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.2.下列各数中,无理数有()3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A.0个B.1个C.2个D.3个D解析:D【分析】直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D.【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.3.-18的平方的立方根是()A.4 B.14C.18D.164B解析:B【分析】先根据题意列出代数式,然后再进行计算即可.【详解】14==.故答案为B.【点睛】本题考查了平方和立方根,弄清题意、根据题意列出代数式是解答本题的关键.4.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4;)A.1 B.2 C.3 D.4A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A.【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等C解析:C【分析】根据实数的定义和运算法则、绝对值的意义进行分析.【详解】A),故错误;B、实数与数轴上的点一一对应,故错误;C、垂线段最短,正确;D、如果两个实数的绝对值相等,那么这两个实数相等或互为相反数;故选:C.【点睛】本题考查实数的定义和运算法则、绝对值的意义等,熟练掌握基础知识是关键.6.下列说法中,正确的是()A.正数的算术平方根一定是正数B.如果a表示一个实数,那么-a一定是负数C.和数轴上的点一一对应的数是有理数D.1的平方根是1A解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A、正数的算术平方根一定是正数,故选项正确;B、如果a表示一个实数,那么-a不一定是负数,例如a=0,故选项错误;C、和数轴上的点一一对应的数是实数,故选项错误;D、1的平方根是±1,故选项错误;故选:A.【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质.7.数轴上表示下列各数的点,能落在A,B两个点之间的是()A.3B7C11D13解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A点对应的数是1,B点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.-的整数部分相8.已知无理数m55π同,则m为()π-A5B10C51D.5解析:C【分析】5m的整数部分与小数部分,进而可得答案.【详解】解:因为23, 3.14π≈,2,5π-的整数部分为1,所以无理数m 的整数部分是12,所以121m =+=.故选:C .【点睛】m 的整数部分与小数部分是解题的关键.9.下列有关叙述错误的是( )AB 是2的平方根C .12<<D .2是分数D 解析:D【分析】根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB 是2的平方根,此项叙述正确;C 、12<<,此项叙述正确;D 、2是无理数,不是分数,此项叙述错误; 故选:D .【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键. 10.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227分数,是有理数,选项不符合题意; B 、1.2012001是有理数,选项不符合题意; C 、2π是无理数,选项符合题意;D ,9是整数是有理数,,选项不符合题意.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.(1)9334;(2)这个数用十进制表示为51或102【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得化简成24a+b=12c 根据abc 的取值范围分别将a 从1开始取值验证即可得到答案【详解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴240c d d ++=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.±3【分析】结合平方根的定义以及估算无理数大小的方法得出abc 的值进而得出答案【详解】解::由题意得:2a−1=1解得:a=13a+b−1=4解得:b=2因为<<所以c=8所以b ﹣a +c =2﹣1+8解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.14.(22-平方根然后进行加减运算即可【详解】解:===【点睛】此题考查了实数的运算熟练掌握算术平方根和立方根的性质是解本题的关键解析:8-【分析】先化简绝对值、立方根、算术平方根,然后进行加减运算即可.【详解】(22=2243--⨯+()=412-=8-【点睛】此题考查了实数的运算,熟练掌握算术平方根和立方根的性质是解本题的关键.15.已知10x ,小数部分是y ,求x ﹣y 的相反数_____.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】解:∵12<, ∴1,∴1010+1=11,即x =11,∴101011﹣1,即y 1,∴x ﹣y =111)=111=12∴x ﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间.16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=. 故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.一个四位正整数的千位、百位、十位、个位上的数字分别为a,b,c,d,如果a b c d≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.(1)8888;(2)1134【分析】(1)根据进步数的定义分别求出四位正整数中的最大进步数与最小进步数即可得解;(2)根据进步数的定义可以推得所求数为1114112411341144中的某一个再根解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.18.(1)求x的值:2490x-=;(2(1)或;(2)4【分析】(1)利用开方要根的概念求出x的值即可;(2)根据实数混合运算的法则进行计算即可【详解】解:(1)或(2)原式=5+2﹣3=4【点睛】本题考查的是实数的运算熟知实数混合运算解析:(1)32x=或32x=-;(2)4【分析】(1)利用开方要根的概念求出x的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.19.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).③④【分析】①x)示小于x 的最大整数由定义得x)x≤x)+1)<<-8)=-9即可②由定义得x)x 变形可以直接判断③由定义得x≤x)+1变式即可判断④由定义知x)x≤x)+1由x≤x)+1变形的x-解析:③,④【分析】①[x) 示小于x 的最大整数,由定义得[x )<x≤[x )+1,[385-)<385-<-8,[385-)=-9即可, ②由定义得[x )<x 变形可以直接判断,③由定义得x≤[x )+1,变式即可判断,④由定义知[x )<x≤[x )+1,由x≤[x )+1变形的x-1≤[x ),又[x )<x 联立即可判断.【详解】由定义知[x )<x≤[x )+1, ①[385-)=-9①不正确,②[x )表示小于x 的最大整数,[x )<x ,[x ) -x <0没有最大值,②不正确③x≤[x )+1,[x )-x≥-1,[x )–x 有最小值是-1,③正确,④由定义知[x )<x≤[x )+1,由x≤[x )+1变形的x-1≤[x ),∵[x )<x ,∴x 1-≤[x )<x ,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算 ,阅读题给的定义,理解其含义,掌握性质[x )<x≤[x )+1,利用性质解决问题是关键.20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).515【分析】由已知条件可得:①中各数都符合2n的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.三、解答题21.计算:(1)7|2|--(2)2 311 5422⎛⎫⎛⎫⨯-÷-⎪ ⎪⎝⎭⎝⎭解析:(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2;(2)2 311 5422⎛⎫⎛⎫⨯-÷-⎪ ⎪⎝⎭⎝⎭=1 5144⨯÷=5.【点睛】此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.22.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2,∴325-=,∴)257x y -=-=, ∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.23.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2的平方根和立方根.解析:(1)441或49;(2)2± 【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数; (2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a ==若4a =4==,4的平方根是2±.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法. 24.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-0,4-解析:数轴见解析, 1.5-<04-.【分析】根据用数轴表示数的方法,在数轴上先表示出各数,再由“数轴上右边的数总比左边的数大”把这些数用“<”连接即可.【详解】解:在数轴上表示各数如图:∴13 1.5-<0384-.【点睛】本题主要考查了实数的大小比较的方法,掌握利用数轴比较实数的大小是解题的关键. 25.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键.26.3=,31a b -+的平方根是4±,c 3a b c ++的平方根.解析:5±【分析】3=求出a 的值,根据3a +b -1的平方根是±4求出b 的值,根据c 数部分求出c 的值,把求得的值代入a +b +3c ,然后求出入a +b +3c 的平方根即可.【详解】 ∵3=,∴219a -=,解得:5a =,∵31a b +-的平方根是4±,∴15116b +-=,解得:2b =,∵c67<<∴6c =,∴3521825a b c ++=++=∴3a b c ++的平方根是5±【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.27.定义一种新运算,观察下列式子: 212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键.28.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯ 解析:(1)①1189-,②111n n -+;(2)20152016【分析】 (1)仔细观察所给式子的结构,发现规律111=(1)1n n n n -⨯++,即可解答; (2)根据发现的规律变形原式,进行合并化简即可解答.【详解】(1)仔细观察,发现111=(1)1n n n n -⨯++,则1118989=-⨯, 故答案为:①1189-,②111n n -+; (2)根据111=(1)1n n n n -⨯++, 则112⨯+123⨯+134⨯+............+120152016⨯ =1111111(1)()()()2233420152016-+-+-++-=1 12016=2015 2016.【点睛】本题考查数字规律的探索、有理数的混合运算,解答的关键是发现式子的变化规律,根据规律变形原式,从而使计算简单化.。
实数_知识点+题型归纳

第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。
数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。
数a的相反数是-a。
正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。
2.绝对值:表示点到原点的距离,数a 的绝对值为3.倒数:乘积为1的两个数互为倒数。
非0实数a的倒数为1a. 0没有倒数。
4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。
数a的平方根记作(a>=0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。
负数没有平方根。
正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。
开平方:求一个数的平方根的运算,叫做开平方。
2.立方根:如果一个数的立方等于a,则称这个数为a立方根。
数a的立方根用3a表示。
任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。
开立方:求一个数的立方根(三次方根)的运算,叫做开立方。
四、实数的运算有理数的加法法则:a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。
绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。
2.有理数的减法法则:减去一个数等于加上这个数的相反数。
3.乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.a| |ab)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c)几个数相乘,只要有一个因数为0,积就为04.有理数除法法则:a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。
初一数学下册知识点《实数的定义》经典例题与解析

实数的定义一、选择题(本大题共80 小题,共 240.0 分)1.实数 a, b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A. -2a+bB. 2a-bC. -bD. b【答案】 A【解析】解:由图可知:a< 0, a-b< 0,则|a|+=-a-( a-b)=-2 a+b.故选: A.直接利用数轴上 a,b 的位置,进而得出 a< 0, a-b< 0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.2. 实数 a,b, c,d 在数轴上对应的点的位置如图所示,这四个数中最大的是()A. aB. bC. cD. d【答案】 D【解析】解:由数轴可得:a< b< c< d,故选: D.根据实数的大小比较解答即可.此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.关于的叙述正确的是()A. 在数轴上不存在表示的点C.=±2【答案】 D B.D.=+与最接近的整数是 3【解析】解: A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D 、与最接近的整数是3,故选项正确.故选: D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.4.下列各数中是有理数的是()A. πB. 0C.D.【答案】 B【解析】解: A、π是无限不循环小数,属于无理数,故本选项错误;B、 0 是有理数,故本选项正确;C、是无理数,故本选项错误;D 、无理数,故本选项错误;故选: B.根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.5. 已知实数a,b 在数轴上的位置如图所示,下列结论中正确的是()A.a >bB.|a|<|b|C.ab>D.>-a b【答案】 D【解析】解:由数轴可得,-2< a< -1< 0<b< 1,∴a< b,故选项A 错误,|a|> |b|,故选项 B 错误,ab< 0,故选项 C 错误,-a> b,故选项 D 正确,故选: D.根据数轴可以判断 a、 b 的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.6.关于的叙述不正确的是()A.=2B. 面积是8的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点【答案】 C【解析】解: A、=2,所以此选项叙述正确;B、面积是8 的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D 、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选: C.=2 ,是无理数,可以在数轴上表示,还可以表示面积是8 的正方形的边长,由此作判断.本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.7.下列实数中,属于有理数的是()A. B. C. π D.【答案】 D【解析】解: A、-是无理数,故 A 错误;B、是无理数,故 B 错误;C、π是无理数,故C 错误;D 、是有理数,故 D 正确;故选: D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.8. 如图,已知数轴上的点A、 B、 C、 D 分别表示数 -2、 1、2、 3,则表示数3-的点P 应落在线段()A.AO上B.OB上C.BC上D.CD上【答案】 B【解析】解:∵2<<3,∴0< 3-<1,故表示数3-的点P应落在线段OB 上.故选: B.根据估计无理数的方法得出0< 3-<1,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.9. -的相反数是()A. B. - C. - D. -2【答案】 A【解析】解: -的相反数是.故选: A.根据只有符号不同的两个数叫做互为相反数解答.本题考查了实数的性质,熟记相反数的定义是解题的关键.10.实数a,b在数轴上的位置如图所示,则化简-+b 的结果是()A. 1B. b+1C. 2aD. 1-2a【答案】 A【解析】解:由数轴可得:a-1< 0, a-b< 0,则原式 =1-a+a-b+b=1 .故选 A.利用数轴得出a-1< 0, a-b< 0,进而利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.11.下列说法错误的是()A. B.正整数和正分数统称正有理数两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D. 3.1415926是小数,也是分数【答案】 B【解析】解: A、正整数和正分数统称为正有理数,正确;B、两个无理数相乘的结果不可能为零,错误;C、正整数, 0 负整数统称为整数,正确;D 、3.1415926 是小数,也是分数,正确,故选 B利用有理数,整数,无理数,以及分数的定义判断即可.此题考查了实数,涉及的知识有:有理数,无理数,整数与分数,熟练掌握各自的定义是解本题的关键.12.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在 1 和 3 之间的无理数有且只有这4个;④ 是分数,它是有理数.⑤近似数 7.30 所表示的准确数 a 的范围是: 7.295 ≤a< 7.305.其中正确的个数是()A. 1B.2C. 3D. 4【答案】 B【解析】解:①任何无理数都是无限小数,故说法正确;②实数与数轴上的点一一对应,故说法错误;③在 1 和 3 之间的无理数有无数个,故说法错误;④ 不是分数,它不是有理数,故说法错误.⑤近似数 7.30 所表示的准确数 a 的范围是: 7.295 ≤a< 7.305,故说法正确.故选 B.①根据无理数就是无限不循环小数即可判定;②根据有理数与数轴上的点的对应关系即可的;③根据无理数的定义及开平方运算的法则即可判定;④根据无理数、有理数的定义即可判定;⑤根据近似数的精确度即可判定.此题主要考查了实数的定义及其分类.注意分数能表示成的形式,其中A、 B 都是整数.因而像不是分数,而是无理数.13.下列说法中正确的是()A. 实数-a2是负数B.C. |-a|一定是正数D. 实数-a的绝对值是a【答案】 B【解析】【分析】本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意 0 既不是正数,也不是负数.分别根据平方运算的特点,平方根的性质和绝对值的性质进行逐一分析即可.【解答】解: A、实数 -a2是负数, a=0 时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、 |-a|不一定是正数,a=0 时不成立,故选项错误;D 、实数 -a 的绝对值不一定是a, a 为负数时不成立,故选项错误.故选 B.14. 在,, 0,,, 227,,相邻两个6之间 1的个数逐次加中,有理数的个数为( )A. 4B. 5C. 6D. 7【答案】 C【解析】【分析】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.分别根据实数的分类及有理数、无理数的概念进行解答.【解答】在- 3,,0,-3.5,﹣10%,227,π,0.61611611 6⋯(相邻两个 6 之间 1 的个数逐次加 1)中,有理数为:-3,,0,-3.5,10%,227,共有6个.故选 C.15.下列说法正确的是()A.无限小数都是无理数B.9 的立方根是 3C.平方根等于本身的数是 0D.数轴上的每一个点都对应一个有理数【答案】 C【解析】解: A、无限不循环小数都是无理数,故 A 错误;B、 9 的立方根是,故B错误;C、平方根等于本身的数是0,故 C 正确;D 、数轴上的每一个点都对应一个实数,故 D 错误;故选: C.根据实数的分类、平方根和立方根的定义进行选择即可.本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.16.关于的叙述,错误的是()A.是有理数B. 面积为12的正方形边长是C.=2D. 在数轴上可以找到表示的点【答案】 A【解析】解: A、是无理数,原来的说法错误,符合题意;B、面积为12 的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D 、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选: A.根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.17.下列语句中正确的是()A.正整数和负整数统称为整数B.有理数和无理数统称为实数C. D.开方开不尽的数和π统称为无理数正数、 0、负数统称为有理数【答案】 B【解析】解: A、正整数和负整数,还有零统称为整数,故 A 错误;B、有理数和无理数统称为实数,故 B 正确;C、开方开不尽的数和π都是无理数,故 C 错误;D 、整数、分数统称为有理数,故 D 错误;故选 B.根据实数的分类进行选择即可.本题考查了实数,掌握实数的分类是解题的关键.18. 下列说法:;数轴上的点与有理数成一一对应关系;是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,正确的个数有A. 2个B. 3个C.4个D.5个【答案】 B【解析】【分析】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如,等,也有π这样的数.①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①,故说法错误;②数轴上的点与实数成一一对应关系,故说法错误;③-2 是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是③④⑥共 3 个.故选 B.19. 在实数范围内,下列判断正确的是()A. 若|m|=|n|,则m=nB. 若a2>b2,则a>bC. 若=()2,则 a=bD. 若= ,则 a=b【答案】 D【解析】解: A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如 a=-3, b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选: D.解答此题的关键是熟知以下概念:( 1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0.( 2)如果一个数的平方等于a,那么这个数叫作 a 的平方根.20. 对于-3. 7,下列说法不正确的是()A. 是负数B. 是分数C. 是有理数D. 是无理数【答案】 D【解析】解: -3. 7 是无限循环小数,是负数,是分数,是有理数,不是无理数故选: D.根据有理数的定义可得.本题主要考查实数,熟练掌握有理数的定义是解题的关键.21. 在数-2,,,,+3,中,属于整数的个数为()π 0 2.6A. 4B. 3C. 2D. 1【答案】 B【解析】解:在数 -2,π, 0, 2.6, +3,中,整数有 -2, 0, +3,属于整数的个数, 3.故选: B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和 0.22. 下列数轴上的点 A 都表示实数a,其中,一定满足|a|>2 的是()A. ①③B. ②③C. ①④D. ②④【答案】 B【解析】【分析】本题考查了有理数比较大小,根据绝对值的大小解题是关键.根据绝对值是数轴上的点到原点的距离,图示表示的数,可得答案.【解答】解:一定满足|a|> 2 的, A 在 -2 的左边,或A 在 2 的右边,故选: B.23. 下列说法正确的是()①0 是绝对值最小的实数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④带根号的数是无理数A. ①②③④B. ①②③C. ①③D. ①②【答案】 D【解析】解:① 0 是绝对值最小的实数,故①正确;②相反数大于本身的数是负数,故②正确;③数轴上原点两侧且到原点距离相等的数互为相反数,故③错误;④带根号的数不一定是无理数,故④错误.故选: D.依据绝对值、相反数、无理数的概念进行判断即可.本题主要考查的是实数的相关概念,熟练掌握相关知识是解题的关键.24. 如图,半径为1的圆从表示 3 的点开始沿着数轴向左滚动一周,圆上的点 A 与表示3的点重合,滚动一周后到达点B,点 B 表示的数是()A. ﹣B. ﹣C. ﹣﹣D. ﹣2π 3 2π 3 2π3+2π【答案】 B【解析】解:由题意得:AB=2πr =2π,点 A 到原点的距离为3,则点 B 到原点的距离为2π-3,∵点 B 在原点的左侧,∴点 B 所表示的数为 -(2π-3) =3- 2π,故选: B.线段 AB=2πr =2π,点 A 到原点的距离为3,则点 B 到原点的距离为2π-3,点 B 在原点的左侧,因此点 B 所表示的数为 -( 2π-3) =3- 2π,于是得出答案.考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.25. 下列说法,正确的有()个①m 是一个实数, m2的算术平方根是 m;② m 是一个实数,则 -m 没有平方根;③带根号的数是无理数;④无理数是无限小数.A.0B.1C.2D.3【答案】 B【解析】解:①如果 m 是一个实数, m2的算术平方根是 |m|,当 m 是非负数时, m2的算术平方根是 m;所以此说法不正确;②如果 m 是一个正数,则-m 没有平方根;所以此选项不正确;③带根号的数不一定是无理数,如=2,是有理数;所以此选项说法不正确;④无理数是无限不循环小数,所以无理数是无限小数,所以此选项说法正确;所以本题说法正确的有 1 个:④,故选 B.①根据算术平方根的定义进行判断;②根据平方根的定义进行判断;③带根号的数不一定是无理数,开方开不尽的数是无理数;④根据无理数的定义进行判断.此题主要考查了实数的定义、平方根及算术平方根的定义、无理数的定义.属于基础知识,熟练掌握这些基本概念是解题的关键.26.已知实数 a 在数轴上的位置如图,则化简 |1-a|+ 的结果为()A. 1B. -1C. 1-2aD. 2a-1【答案】 C【解析】解:由数轴可得:-1< a< 0,则|1-a|+ =1-a-a=1-2a.故选: C.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.27. 下列说法错误的是()A.的平方根是±2C.是有理数【答案】 D B.D.是无理数是分数【解析】【分析】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数 .A.根据算术平方根、平方根的定义即可判定; B.根据无理数的定义即可判定;C.根据无理数和立方根的定义即可判定;D.根据开平方和有理数、无理数和分数的定义即可判定 .【解答】解:,,故A正确;是无理数,故 B 正确;是有理数,故 C 正确;不是分数,它是无理数,故 D 选项错误 .故选 D.28. 有以下说法:其中正确的说法有()(1)开方开不尽的数是无理数;(2)无理数是无限循环小数(3)无理数包括正无理数和负无理数;(4)无理数都可以用数轴上的点来表示;(5)循环小数都是有理数A.1个B.2个C.3个D.4个【答案】 D【解析】解:( 1)开方开不尽的数是无理数,该说法正确;(2)无理数是无限不循环小数,原说法错误;(3)无理数包括正无理数和负无理数,该说法正确;(4)无理数都可以用数轴上的点来表示,该说法正确;(5)循环小数都是有理数,该说法正确.正确的有 4 个.故选: D.根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29. 如图,数轴上点P 表示的数可能是()A. B. C. D.【答案】 B【解析】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选: B.根据被开方数越大算术平方根越大,可得答案.本题考查了实数与数轴,利用被开方数越大算术平方根越大得出<<<<<是解题关键.30. 如图,数轴上,AB=AC,A,B两点对应的实数分别是和-1,则点C所对应的实数是()A. 1+B. 2+C.2 -1D. 2+1【答案】 D【解析】解: AC=AB= +1,C 点坐标 A 点坐标加 AC 的长,即 C 点坐标为+ +1=2 +1,故选: D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出AC 的长是解题关键.31. 下列各数中,属于有理数的是()A.B.C.πD.3.1313313331 ⋯⋯(两个“ 1”之间依次多一个 3)【答案】 A【解析】解: A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D 、3.1313313331 ⋯⋯(两个“1”之间依次多一个3)是无理数,故此选项错误;故选: A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.32. 下列各组数中互为相反数的是()A. -3与B.C.5与D.-( -2)与 -|-2| -2 与【答案】 B【解析】解: A、-3 与不符合相反数的定义,故选项错误;B、 -( -2) =2, -|-2|=-2 只有符号相反,故是相反数,故选项正确.C、无意义,故选项错误;D 、 -2=-2 ,=-2 相等,不符合相反数的定义,故选项错误.故选: B.首先根据绝对值的定义化简,然后根据相反数的定义即可解答.此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0 的相反数是其本身.33. 下列说法正确的是()A.1 的平方根是它本身B.是分数C.负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数【答案】 D【解析】解: A、1 的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D 、如果实数x、 y 满足条件 y=,那么x和y都是非负实数,正确;故选: D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.34. 下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④ 16.8万精确到十分位;⑤( -4)2的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】 D【解析】解: - < - ,故①错误;当 m=0 时,是0,不是正数,故②错误;无理数一定是无限小数,故③正确;16.8 万精确到千位,故④错误;(-4)2的算术平方根是 4.故⑤正确;即正确的有③⑤,故选: D.根据实数的大小比较,算术平方根的定义,无理数的定义,精确度逐个判断即可.本题考查了实数的大小比较,算术平方根的定义,无理数的定义,精确度等知识点,能熟记知识点的内容是解此题的关键.35.下列说法正确的是()A.立方根等于它本身的实数只有0 和 1B.平方根等于它本身的实数是0C.1 的算术平方根是D.绝对值等于它本身的实数是正数【答案】 B【解析】【分析】此题考查了立方根,平方根,算术平方根,绝对值,掌握这些概念是关键,逐项分析即可得到答案 .【解答】解: A.立方根等于它本身的数是0,-1, 1,故 A 错误;B.平方根等于它本身的实数是0,故 B 正确;C.1 的算术平方根是1,故 C 错误;D .绝对值等于它本身的实数是正数,0,故 C 错误;故选 B.a b36. 已知实数,在数轴上对应的点如图所示,则下列式子正确的是()A. -a<-bB. a+b<0C. |a|<|b|D. a-b>0【答案】 C【解析】解:根据点a、 b 在数轴上的位置可知-1< a< 0, 1<b< 2,则-a> -b, a+b>0, |a|< |b|, a-b< 0.故选: C.根据点 a、b 在数轴上的位置可判断出a、 b 的取值范围,即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.37.设面积为 6 的正方形的边长为 a.下列关于 a 的四种说法:① a 是有理数;② a 是无理数;③ a 可以用数轴上的一个点来表示;④2< a<3.其中说法正确的有()A.1个B.2个C.3个D.4个【答案】 C【解析】解:∵面积为 3 的正方形的边长为a,∴a=,故① a 是有理数,错误;② a 是无理数,正确;③a 可以用数轴上的一个点来表示,正确;④ 2< a<3,正确,则说法正确的是:②③④共 3 个.故选: C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.38.实数 a, b, c 在数轴上的位置如图所示,则化简|b|+|c-a|-|a+b|的结果为()A. 2a+2 b-cB. -cC. c-2aD. a-b-c【答案】 B【解析】解:从数轴上a、 b、 c 的位置关系可知:c< a< 0, b> 0 且 |b|> |a|,故 a+b> 0, c-a< 0,即有 |b|+|c-a|-|a+b|=b-( c-a) -( a+b) =b-c+a-a-b=-c.故选: B.首先从数轴上 a、 b、 c 的位置关系可知: c< a< 0, b> 0 且 |b|> |a|,接着可得 a+b> 0,c-a< 0,然后即可化简 |b|+|c-a|-|a+b|.此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.39. 我们知道有一些整数的算术平方根是有理数,如,,,⋯已知n=1,2,3,⋯,99,100,易知中共有10个有理数,那么中的有理数的个数是()A.20B.14C.13D.7【答案】 D【解析】解:∵是有理数,∴2n 是完全平方数,∵n=1, 2, 3,⋯, 99, 100,∴2n=2, 4,6,⋯, 198, 200,∴在 2, 4,6,⋯, 198, 200 的这组数据中,完全平方数有2, 8, 18, 36, 64, 100,144, 196,∴中的有理数的个数是 7,故选: D.在2, 4,6,⋯, 198, 200 的这组数据中,找出完全平方数即可.本题考查了实数,完全平方数,正确的找出完全平方数是解题的关键.40. 将四个数-,,,表示在数轴上,被如图所示的墨迹覆盖的数是()A.-B.C.D.【答案】 D【解析】解:,,,,因为盖住的数大于2小于 3,故选: D.盖住的数大于 2 小于 3,估计,,的值可确定答案.本题考查无理数值的大小估计.确定无理数在哪两个整数之间是解答的关键.41. 正方形ABCD在数轴上的位置如图所示,点D、A 对应的数分别为0 和 1,若正方形ABCD 绕顶点顺时针方向在数轴上连续翻转,翻转 1 次后,点 B 所对应的数为 2;按此规律继续翻转下去,则数轴上数2019 所对应的点是()A.点AB.点BC.点CD.点D【答案】 C【解析】解:当正方形在转动第一周的过程中, 1 所对应的点是A, 2 所对应的点是B,3 所对应的点是C, 4 所对应的点是 D ,∴四次一循环,∵2019 ÷4=504⋯ 3,∴2019 所对应的点是C.故选: C.由题意可知转一周后, A、B、 C、 D 分别对应的点为 1、 2、 3、 4,可知其四次一循环,由次可确定出 2019 所对应的点.本题主要考查实数与数轴以及正方形的性质,确定出点的变化规律是解题的关键.42. 下列格式中,化简结果与的倒数相同是()A. B. C. D.【答案】 A【解析】解:的倒数是.A、原式 = ,故本选项正确.B、原式 = ,故本选项错误.C、原式 =- ,故本选项错误.D 、原式 = ,故本选项错误.故选: A.的倒数是,根据实数的性质、绝对值的计算方法解答.考查了实数的性质,倒数的定义以及绝对值,属于基础题,熟记计算法则即可解题.43. 实数a.b在数轴上的位置如图所示,下列各式中不成立的是()A. -a>bB.C. a-b<a+bD.【答案】 D a+6 < 0|a|+|b|< |a+b|【解析】解:选项 A 正确:找出表示数 a 的点关于原点的对称点- a,与 b 相比较可得出-a> b.选项 B 正确: a+b<0;选项 C 正确: a-b<a+b;选项 D 正确的是 |a|+|b|> |a+b|,故这个选项不成立.故选: D.根据一对相反数在数轴上的位置特点,先找出与点 a 相对应的 -a,然后与 b 相比较,即可排除选项求解.本题考查了实数与数轴的关系.用字母表示数,具有抽象性.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.因为是选择题,也可以采用特值法,如:取a=-2 , b=1 ,代入四个选项,逐一检验,就可以得出正确答案.这样做具体且直观.44. 关于下列说法中不正确的是()A.是无理数B.的平方是 2C.2 的平方根是D.面积为 2 的正方形的边长可表示为【答案】 C【解析】解:A、是无理数,正确,故本选项不符合题意;B、的平方是 2,正确,故本选项不符合题意;C、 2 的平方根是,错误,故本选项符合题意;D 、面积为 2 的正方形的边长为,正确,故本选项不符合题意;故选: C.根据无理数、实数的乘方、平方根的定义、算术平方根的定义逐个判断即可.本题考查了实数及分类、无理数、实数的乘方、平方根的定义、算术平方根的定义,能熟记知识点的内容是解此题的关键,注意:实数包括无理数和有理数,无理数是指无限不循环小数.45. 下列结论正确的是()A.无限不循环小数叫做无理数B.有理数包括正数和负数C.0 是最小的整数D.两个有理数的和一定大于每一个加数【答案】 A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0 和负有理数,不正确,故本选项不符合题意;C、0 不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D 、一个数同 0 相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选: A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.46. ①倒数等于本身的数为1;②若a b互为相反数,那么a b1、、的商必定等于﹣;③对于任意实数x,|x|+x 一定是非负数;④一个数前面带有“﹣”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为 0和 1;⑧平方等于自身的数为0 和 1;其中正确的个数是()A. 0个B. 1个C.2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键 .直接利用倒数以及绝对值和相反数的性质分别分析得出答案。
初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
第三四讲 实数

第三四讲 实数(一)一.教学衔接1、3(6)-的平方根是( )A 、-6B 、6C 、±6D 、±62、下列命题:①(-3)2的平方根是-3 ;②-8的立方根是-2;③9的算术平方根是3;④平方根与立方根相等的数只有0; 其中正确的命题的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个3、若35,b a b ++的小数部分是a ,3-5的小数部分是则的值为( )A 、0B 、1C 、-1D 、2 4、已知5,14,0.063a b ===则( ) A 、10ab B 、310ab C 、100ab D 、3100ab 5、使等式2()x x --=成立的x 的值( )A 、是正数B 、是负数C 、是0D 、不能确定 6、如果30,aa -那么等于( )A 、a aB 、a a -C 、a a -D 、a a -- 二.教学新课 经典例题类型一.有关概念的识别1.下面几个数:0.23 ,1.010010001…,,3π,,,其中,无理数的个数有( )A 、1B 、2C 、3D 、4 举一反三:【变式1】下列说法中正确的是( )A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A、1B、1.4C、D、【变式3】类型二.计算类型题2.设,则下列结论正确的是()A. B. C. D.举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2) -27立方根是__________.3)___________,___________,___________.【变式2】求下列各式中的(1)(2)(3)类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1- C.2- D.-2 [变式2] 已知实数、、在数轴上的位置如图所示:化简类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4| (2) |π-3.142| (3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|举一反三:【变式1】化简:类型五.实数非负性的应用5.已知:=0,求实数a, b的值。
中考复习专题一 实数混合运算

专题一 实数的混合运算【知识要点】1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。
在正数前加上符号“-”(负)的数叫做负数。
0既不是正数,也不是负数。
(2)有理数正整数、0、负整数统称整数。
正分数、负分数统称分数。
整数和分数统称为有理数。
2、数轴规定了原点、正方向和单位长度的直线叫做数轴。
3、相反数代数定义:只有符号不同的两个数叫做互为相反数。
几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。
一般地,a 和-a 互为相反数。
0的相反数是0。
a =-a 所表示的意义是:一个数和它的相反数相等。
很显然,a =0。
4、绝对值定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。
a =|a |所表示的意义是:一个数和它的绝对值相等。
很显然,a ≥0。
5、倒数定义:乘积是1的两个数互为倒数。
1a a=所表示的意义是:一个数和它的倒数相等。
很显然,a =±1。
6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
7、乘方定义:求n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
如:a n na a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。
性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。
8、科学记数法定义:把一个大于10的数表示成a ×10n 的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。
小于-10的数也可以类似表示。
用科学记数法表示一个绝对值大于10的数时,n 是原数的整数数位减1得到的正整数。
2021年初中数学 7年级春季班03-实数的运算及分数指数幂-教师版

初一数学春季班(教师版)近似数的精确度、分数指数幂及运算知识结构.模块一:近似数的精确度知识精讲知识点:有关概念1.准确数概念:一般来说,完全符合实际地表示一个量多少的数叫做准确数.2.近似数概念:与准确数达到一定接近程度的数叫做近似数(或近似值).☆在很多情况下,很难取得准确数,或者不必使用准确数,而可使用近似数.☆取近似数的方法:四舍五入法,进一法,去尾法(根据具体实际情况使用)3.精确度概念:近似数与准确数的接近程度即近似程度,对近似程度的要求,叫做精确度.☆近似数的精确度通常有两种表示方法:(1)精确到哪一个数位;(2)保留几个有效数字.4.有效数字概念:对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字.【例1】 一个正数的平方是3,这个数的准确数_________;近似数(精确到千分之一位)是_______;近似数的有效数字有_______位,有效数字是_______. 【难度】★【答案】3; 1.732; 四; 1、7、3、2.【解析】3 1.732≈,所以有效数字是四位,有效数字是 1、7、3、2. 【总结】本题主要考查了准确度、近似数和有效数字的概念.【例2】 写出下列各数的有效数字,并指出精确到哪一位?1)2000;2)4.523亿 ;3)57.3310⨯;4)0.00125.【难度】★【答案】1)有效数字:2、0、0、0,精确到个位;2)有效数字:4、5、2、3,精确到十万位;3)有效数字:7、3、3,精确到千位;4)有效数字:1、2、5,精确到十万分位.【解析】对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的所有数字, 叫做这个近似数的有效数字.【总结】解答此题的关键在于掌握近似数、有效数字与科学记数法的知识点.【例3】 用四舍五入法,按括号内的要求对下列数取近似值.(1)0.008435(保留三个有效数字) ≈_________; (2)12.975(精确到百分位) ≈_________; (3)548203(精确到千位) ≈_________; (4)5365573(保留四个有效数字) ≈_________. 【难度】★【答案】(1)0.00844; (2)12.98; (3)55.4810⨯; (4)65.36610⨯. 【解析】(1)0.00844; (2)12.98; (3)55.4810⨯; (4)65.36610⨯. 【总结】解答本题的关键是理解有效数字的含义,利用科学记数法进行表示.例题解析【例4】 已知 3.1415926π=,按四舍五入法取近似值.(1)π≈__________(保留五个有效数字); (2)π≈_________(保留三个有效数字);(3)0.045267≈_________(保留三个有效数字).【难度】★★【答案】(1)3.1416; (2)3.14; (3)0.0453或24.5310-⨯. 【解析】(1)3.1416; (2)3.14; (3)0.0453或24.5310-⨯. 【总结】本题主要考查的是有效数字的含义,利用科学记数法进行表示.【例5】 用四舍五入法得到:小智身高1.8米与小智身高1.80米,两者有什么区别? 【难度】★★【答案】精确度不同,1.8精确到十分位,1.80精确到百分位.【解析】根据末尾数字所在的数位解答,精确度不同,1.8精确到十分位,1.80精确到百分位. 【总结】本题主要考查了精确度的概念.【例6】 下列近似数各精确到哪一位?各有几个有效数字? (1)3.201; (2)0.0010; (3)2.35亿; (4)107.6010⨯.【难度】★★【答案】(1)精确到千分位,有四个有效数字; (2)精确到万分位,有两个有效数字; (3)精确到百万位,有三个有效数字; (4)精确到亿位,有三个有效数字. 【解析】(1)精确到千分位,有四个有效数字; (2)精确到万分位,有两个有效数字; (3)精确到百万位,有三个有效数字; (4)精确到亿位,有三个有效数字. 【总结】本题主要考查了近似数和有效数字的概念.【例7】 废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水量用科学记数法表示为________立方米. 【难度】★★ 【答案】4310⨯.【解析】45060030000310⨯==⨯.【总结】本题主要考查了科学记数法的表示方法.1、有理数指数幂把指数的取值范围扩大到分数,我们规定:(0)m nmna a a =≥,1(0)m nnmaa a-=>,其中、n 为正整数,1n >.上面规定中的m na 和m na-叫做分数指数幂,a 是底数.整数指数幂和分数指数幂统称为有理数指数幂. 2、有理数指数幂的运算性质:设0a >,0b >,p 、q 为有理数,那么 (1)p q p q a a a +⋅=,p q p q a a a -÷=; (2)()p q pq a a =;(3)()pppab a b =,()pp p a a b b=.【例8】 把下列方根化为幂的形式:(1)32; (2)310-; (3)28(5)-;(4)37--;(5)3a -;(6)a -.【难度】★【答案】(1)132; (2)1310-; (3)145; (4)137; (5)13a -; (6)12()a -. 【解析】(1)13322=; (2)1331010-=-;(3)21822884(5)555-===; (4)1333777--==;(5)1333a a a -=-=-; (6)12()a a -=-.【总结】本题主要考查的是将方根化为分数指数幂的运算.模块二:分数指数幂知识精讲例题解析【例9】把下列分数指数幂化为方根形式:(1)131()27-;(2)238()27;(3)121()16-;(4)1132(64).【难度】★【答案】(1)(2(3)(4.【解析】(1)13127⎛⎫-=⎪⎝⎭;(2)23827⎛⎫=⎪⎝⎭(3)12116⎛⎫-=⎪⎝⎭(4)111362(64)64==【总结】本题考查了分数指数幂与根式之间的互换.【例10】化简:(1)111362a a a÷⋅;(2)8【难度】★【答案】(1)13a;(2)71338x y.【解析】(1)11111113623632a a a a a-+÷==;(2)1211111171 4423333336633 8888 x yx y x y xy x y x y===.【总结】本题主要考查根式与分数指数幂的互化及其化简运算.【例11】计算下列各值:(1;(2)201713(4aa+.【难度】★★【答案】(1)565;(2)1-.【解析】(1151362555⨯=;(2)因为3030a a-≥-≥,,所以3a=,所以3a=或3-,因为30a-≠,所以3a=-.故当3a=-时,原式()2017133143⎛⎫⨯-⎪==-⎪-⎪⎪⎝⎭.【总结】本题考查了平方根有意义的条件及混合运算.【例12】计算下列各值:(1)1225232---+(2)11222[(23)(23)]-++.【难度】★★【答案】(1)12-;(2)16.【解析】(1)1225232---+4923=---+12=-;(2)()()21122 22-⎡⎤++⎢⎥⎢⎥⎣⎦=16=.【总结】本题主要考查了实数的运算,注意利用公式进行.【例13】计算:(1;(2)1112444111()()()242a a a-⋅++;(3)1521216636333(2)(4)x y x y x y÷-⨯.【难度】★★【答案】(1)a;(2)144116a⎛⎫-⎪⎝⎭;(3)166x y-.【解析】(111113342341211121212a a a a aa aa a++===;(2)1114442111242a a a⎛⎫⎛⎫⎛⎫-++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1114442241114416a a a⎛⎫⎛⎫⎛⎫=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)231521166363324x y x y x y⎛⎫⎛⎫÷-⨯⎪ ⎪⎝⎭⎝⎭1225111633663666x y x y-+-+=-=-.【例14】 4249a b==,,求1222b a -的值.【难度】★★★.【解析】()112222242b a ba -=÷==. 【总结】本题主要考查了有理数指数幂的运算性质.【例15】 已知13x x -+=,求下列各式的值:(1)1122x x -+;(2)3322x x -+. 【难度】★★★【答案】(1; (2)【解析】(1)13x x -+=, 21112225x x x x --⎛⎫∴+=++= ⎪⎝⎭,又11220x x-+>, 1122x x-∴+=(2)()3311122221x xx x x x ---⎛⎫+=++-= ⎪⎝⎭【总结】本题主要考查有理数指数幂的化简求值.【例16】 若11112333342133a a a a ---=⨯⨯++,求的值. 【难度】★★★【答案】198.【解析】()111133334214212a =⨯⨯=⨯⨯=,1231111933332488a a a ---∴++=⨯+⨯+=.【总结】本题主要考查了积的乘方的逆运算及分数指数幂和负指数幂的综合运算.【例17】 化简:a b c 【难度】★★★ 【答案】0或1.【解析】当0x =时,原式0=;当0x ≠时,b c c a a bb ca c a bxx----++()()()()()()b c a c a b a b c a a b b c b c c a xxx+++------=⋅⋅2222220()()()1b c c a a b a b b c c a xx -+-+----===.【总结】本题主要考查了含根式的化简,注意要分类讨论.【例18】 已知122a =,132b =,123c =,133d =,试用a b c d 、、、的代数式表示下列各数值.(1 (2 (3 (4【难度】★★★【答案】(1)20a ; (2)10d; (3)23b ; (4)【解析】(11220220a =⨯=; (213131010d =⨯=;(312112333334323223b =⨯=⨯=⨯⨯=;(411114222232(3)22c c =⨯=⨯==. 【总结】本题考查了根式与分数指数幂的相互转化问题.【例19】 已知:210(0)x xxxxa a a a a a --+=>-,求的值. 【难度】★★★【答案】119.【解析】222112121021010x x x x a a a a --+=++=++=(), 又0x x a a -+>,x x a a -∴+=, 222181 21021010x x x x a a a a ---=+-=+-=(),又0x xa a-->, xxa a-∴-=, 119x x xx a a a a --+∴==-. 【总结】本题主要考查了负整数指数幂及乘法公式的综合应用.【例20】 材料:一般地,n 个相同的因数a 相乘:n a aa 个记为n a .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若n a b =(0a >且 1a ≠,0b >),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4);(1)计算以下各对数的值:log 24=______,log 216=______,log 264=______;(2)观察(1)中三数4、16、64之间满足怎样的关系式,log 24、log 216、log 264之间又 满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗? log log a a M N +=______;(且1a ≠,M >0,N >0). 【难度】★★★【答案】(1)2,4,6; (2)416=64⨯,222log 4log 16log 64+=;(3)log ()a MN . 【解析】(1)2log 42=,2log 16=4,2log 646=;(2)416=64⨯,222log 4log 16log 64+=; (3)log log log ()a a a M N MN +=.【总结】本题考查学生对新概念的理解及运用.在实数范围内,可以进行加、减、乘、除、乘方等运算,而且有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序与有理数运算顺序基本相同,先乘方.开方.再乘除,最后算加减,同级按从左到右顺序进行,有括号先算括号里的.实数运算的结果是唯一的.实数运算常用到的公式有:2a a =;(0,0)ab a b a b =≥≥;(0,0)a aa b b b=≥>;2()(0)a a a =≥. 知识精讲模块三:实数的运算【例21】 5的整数部分为a ,小数部分为b ,则a b =_________.【难度】★ 【答案】945-.【解析】253<<,2a ∴=,52b =-,2(52)945a b ∴=-=-. 【总结】本题主要考查了无理数的估算及完全平方公式的运用.【例22】 计算:(1)321232416(80.1)3(2)(2)81-⎡⎤-÷-⨯---+-⎣⎦; (2)20152014(76)(67)+-; (3)()()2356315-++-.【难度】★★【答案】(1)19; (2)76+; (3)6563-.【解析】(1)32123241683(2)(2)81-⎡⎤-÷⨯---+-⎣⎦(-0.1)221410982(6)1339=-÷-⨯++=-÷-⨯=()(-);(2)()()201520147667-+()()201520147676=+-()()2014767676=+-=+;(3)()()2356315-++-()()32352+35=⨯-+-()()=3235235⎡⎤⎡⎤⨯--+-⎣⎦⎣⎦()23235⎡⎤=⨯--⎢⎥⎣⎦()3232155=⨯-+-6563=-.【总结】本题主要考查了实数的混合运算,注意能简算时要简算.例题解析【例23】 计-.【难度】★★【答案】2==【总结】本题主要考查了实数的运算,注意利用因式分解的思想去化简.【例24】 计算:(1)11032238[1(0.2)]4271000π--+--⨯-(2112133211127883---⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎝⎭⎝⎭⎝⎭.【难度】★★【答案】(1)7208-; (2)32.【解析】(1)原式2111111()3125125167⎡⎤=+--⨯-÷⎢⎥⎣⎦ 11723721201688=⨯-⨯=-=-;(2)原式()9382296922=----=+-=. 【总结】本题主要考查了实数的混合运算.【例25】 设:73121(3)(3)(1)8433M =÷-⨯-÷-,42211(2)(2)5()0.25326N =-÷+⨯--试比较113M 与1N -的大小. 【难度】★★【答案】1113M N >-.【解析】∵73121(3)(3)(1)8433M =÷-⨯-÷-15151051541031843381535=-÷⨯÷=-⨯⨯⨯=-, 42211(2)(2)5()0.25326N =-÷+⨯-- 42211(2)(2)5()0.2532664111116()9264=-÷+⨯--=÷+⨯--91114124=-- 1312=, ∴11=1313M -,131111212N -=-=-, ∴1113M N >-.【总结】本题主要考查了有理数的综合运算及大小比较.【例26】 已知实数x 、y 满足1142(3)(5)0x y x y -+++-=,求51238x y -+的值. 【难度】★★ 【答案】5.【解析】14(3)0x y -+≥,12(5)0x y +-≥, 3050x y x y -+=⎧∴⎨+-=⎩,解得14x y =⎧⎨=⎩, 51238325x y -∴+=+=.【总结】本题主要考查了对算术平方根的理解及非负性的综合运用.【例27】 已知实数a 、b 、x 、y 满足21y a +=-,231x y b -=--,求22x y a b +++的值. 【难度】★★★ 【答案】17.【解析】21y x a +-=-,21y a ∴=-,231x y b -=--,2222311x a b a b ∴-=----=--,223+0x a b ∴-=,0a ∴=,0b =,3x =, 1y ∴=,40222+217x y a b ++∴+==.【总结】本题主要考查了学生对实数非负性的应用.【例28】 先阅读下列的解答过程,然后再解答:的化简,只要我们找到两个数a 、b ,使a b m +=,ab n =,使得22m +=()a b >,这里7m =,12n =,由于4+3=7,4312⨯=即227+=2=(12;(3. 【难度】★★★【答案】(1; (2)3; (3)【解析】(113m =,42n =,6713+=,6742⨯=,即2213+==;(211m =,24n =,3811+=,3824⨯=,即2211+=,3;(359m =,864n =,322759+=,3227864⨯=,即2259+=. 【总结】本题主要考查了利用新概念对复合平方根进行化简求值.【例29】 已知111333421a =++,求12333a a a ---++的值. 【难度】★★★【答案】1.【解析】设132b =,则3211111b a b b b b -=++==--, 11a b -∴=-, 11b a -∴=+,3131231=33+1b a a a a ----∴=+++(),12333211a a a ---∴++=-=.【总结】本题主要考查了实数的运算和立方和公式的综合运用.一、填空题:【习题1】 下列根式与分数指数幂的互化中,正确的是()A .12()(0)x x x -=-> B .1263(0)y y y =< C .33441()(0)xx x-=>D .133(0)xx x -=-≠【难度】★ 【答案】C【解析】12(0)x x x -=->,故选项A 错误; 1263(0)y y y =-<,故选项B 错误;1331xx-=,故选项D 错误.【总结】本题考查了根式与分数指数幂的互化.【习题2】 下列近似数各精确到哪一个数位?各有几个有效数字? (1)2015;(2)0.6180;(3)7.20万;(4)55.1010⨯.【难度】★【答案】(1)精确到个位,有四个有效数字; (2)精确到万分位,有四个有效数字;(3)精确到百位,有三个有效数字; (4)精确到千位,有三个有效数字.【解析】(1)精确到个位,有四个有效数字为2、0、1、5;(2)精确到万分位,有四个有效数字为6、1、8、0; (3)精确到百位,有三个有效数字为7、2、0; (4)精确到千位,有三个有效数字为5、1、0.【总结】本题主要考查了近似数和有效数字的概念.【习题3】 把下列带根号的数写成幂的形式,分数指数幂化为带根号的形式:()432,13-,()754,536, 322-,343,324-, 237.【难度】★随堂检测【答案】432;123--;754;356.【解析】4432=;1212133-=-=-;7754=;356;3232122-==;343=3232144-==237=【总结】本题主要考查了根式与分数指数幂的互化.【习题4】 比较大小:(1)与; (22+【难度】★★【答案】(1 (22>.【解析】(1)22- 8=-0=,;(2)22(2- 1110=+-10=>, 2+ 【总结】本题主要考查了利用平方法比较两个无理数的大小.【习题5】 把下列方根化为幂的形式. (1;(2(3)a .【难度】★★【答案】(1)582; (2)5766a b ; (3)111144a b . 【解析】(1582;(25766a b =; (3)311111124444aaaa ab a b =⋅=.【总结】本题主要考查了根式与分数指数幂的互化.62+53+(1)2334(9);(2)113339⨯;(3)1442(35)÷;(4)11632(32)-⨯;(5)833324(25)⨯;(6)7511266323(2)x y x y÷.【难度】★★【答案】(1)3;(2)3;(3)925;(4)98;(5)400;(6)116634x y.【解析】(1)231342(9)93==;(2)1112333339333⨯=⨯=;(3)1442229 (35)3525÷=÷=;(4)11623329 (32)328--⨯=⨯=;(5)83342324(25)251625400⨯=⨯=⨯=;(6)751752111266366366233(2)344x y x y x y xy x y ÷=÷=.【总结】本题主要考查了分数指数幂的运算,注意法则的准确运用.【习题7】利用幂的性质运算:(1)111222133()()()5525-⨯⨯;(2;(3).【难度】★★【答案】(1)15;(2)4;(3)18.【解析】(1)1111122222111222 1331331 ()()()552555525---⨯⨯=⨯⨯=;(2213236222224⨯÷==;(3)1211333362332239218=⨯⨯⨯⨯=⨯=.【总结】本题考查了根式与分数指数幂的混合运算,注意法则的准确运用.(1;(2)111111332222113113⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭;(3)20142015⋅; (4))11-+- 【难度】★★【答案】(1)763; (2)2; (3 (4)1-【解析】(1763;(2)11111113332222113113(113)2⎛⎫⎛⎫-⋅+=-= ⎪ ⎪⎝⎭⎝⎭;(3)201420152014(32)⋅=-=(4))11-+11=【总结】本题考查了根式与分数指数幂的混合运算,注意法则的准确运用.【习题9】 =,其中0ab ≠ 【难度】★★★【答案】57.【解析】(a a +=, 12a b ∴,120a b ∴=, 0∴=,=或=-, 16a b ∴=,165451647b b b b b b -+==++.【总结】本题考查了根式的化简求值问题,注意整体代入思想的运用.【习题10】化简求值:(1)已知:15a a-+=,求22a a-+;1122a a-+;1122a a--;(2)已知:223a a-+=,求88a a-+.【难度】★★★【答案】(1)23,7,3±;(2)18.【解析】(1)1222()225a a a a--+=++=,2223a a-∴+=;15a a-+=0a∴>,11220a a-∴+>,112122()27a a a a--+=++=,11227a a-∴+=;112122()23a a a a---=+-=,11223a a-∴-=±;(2)222(22)2229a a a a--+=++=,22227a a-∴+=,332288(2)(2)(22)(212)a a a a a a a a----+=+=+-+,883618a a-∴+=⨯=.【总结】本题主要考查了有理数指数幂的运算法则及其应用,综合性较强,注意对解题方法的归纳总结.【作业1】若25a=+,a的小数部分是b,则a b⋅的值是()A.0B.1C.-1D.2【难度】★【答案】B.【解析】4255<+<,452b a∴=-=-,(52)(52)1a b∴⋅=+-=.【总结】本题主要考查了无理数的整数部分与小数部分的综合运用.【作业2】 下列语句中正确的是() A .500万有7个有效数字B .0.031用科学记数法表示为33.110-⨯C .台风造成了7000间房屋倒塌,7000是近似数D .3.14159精确到0.001的近似数为3.141 【难度】★ 【答案】C .【解析】500万有三个有效数字,故选项A 错误;0.031用科学记数法表示为23.110-⨯,故选项B 错误; 3.14159精确到0.001的近似数为3.142,故选项D 错误.【总结】本题考查了科学记数法和有效数字的应用.【作业3】 按照要求,用四舍五入法对下列各数取近似值:(1)0.76589(精确到千分位);(2)289.91(精确到个位); (3)320541(保留三个有效数字);(4)41.42310⨯(精确到千位).【难度】★【答案】(1)0.766; (2)290; (3)53.2110⨯; (4)41.410⨯. 【解析】(1)0.765890.766≈; (2)289.91290≈;(3)5320541 3.2110≈⨯; (4)441.42310 1.410⨯≈⨯.【总结】本题主要考查的是近似数和有效数字以及科学记数法的综合运用.【作业4】 计算: (1;(2;(3.【难度】★★【答案】(1)565; (2)542; (3).【解析】(1151362555⨯=; (2315424222⨯=; (311136223323⨯÷=⨯= 【总结】本题主要考查了无理数的乘除运算.(1(2【难度】★★【答案】(1)7125;(2)132.【解析】(1111111732342412 55555+-=⋅÷==;(25151112262632222222+-+=⋅÷⋅==.【总结】本题主要考查了根式的乘除运算.【作业6】计算:(1)129()25-;(2)111344(882-⨯;(3)11123227()([(]64----+;(4)11222[(2(23)]-+.【难度】★★【答案】(1)365;(2)11-;(3)43-+(4)16.【解析】(1)129()25-3351655=++=;(2)111344(882--⨯31442(28)225=--⨯÷65=--11=-;(3)11123227()([(]64----+4433=-+=-+;(4)11222[(23)(2]-+211221(23)(2=⎡⎤++⎢⎥⎣⎦16==.【总结】本题主要考查了根式及有理数指数幂的混合运算.(1;(2.【难度】★★★【答案】(1)35x-;(2)1724a.【解析】(135x-===;(21724a==.【总结】本题主要考查了根式的运算及有理数指数幂的化简.【作业8】设的整数部分为,小数部分为,求的立方根.【难度】★★★【答案】2-.【解析】122<<,1a∴=,1b=,22168161)81)8ab b∴--=-⨯-⨯=-,2168ab b∴--的立方根是2-.【总结】本题主要考查的是估算无理数的大小、立方根的定义及完全平方公式的综合应用.【作业9】如果223311320x a x bx x⎛⎫⎛⎫-++++=⎪ ⎪⎝⎭⎝⎭,求232(43)a b b+-的值.【难度】★★★【答案】0.【解析】223311320x a x bx x⎛⎫⎛⎫-++++=⎪ ⎪⎝⎭⎝⎭,33130x ax∴-+=,120x bx++=,3313x ax∴+=,2211()(1)3x x ax x∴+-+=,即211()()33x x ax x⎡⎤∴++-=⎢⎥⎣⎦,120x bx++=,12x bx∴+=-,22(43)3b b a∴--=,232(43)0a b b∴+-=.【总结】本题主要考查了非负数的性质及立方和公式的综合应用.0)a>2a b2816bab--【作业10】 已知21xa =,求33x xx xa a a a --++的值.【难度】★★★【答案】1.【解析】33x x x xa a a a--++22()(1)x x x x x x a a a a a a ---+-+=+ 221x x a a -=-+,221x a =, 21x a -∴,2211111x x a a -∴-+-=.【总结】本题主要考查指数幂的化简与求值,利用立方和公式是解决本题的关键.【作业11】 若[]x 表示不超过x 的最大整数(如2[]3[2]33π=-=-,等),求++的值. 【难度】★★★ 【答案】2016.【解析】++⋅⋅⋅+=++⋅⋅⋅+⎣⎦⎣⎦⎣⎦111=++⋅⋅⋅+ 2016=.【总结】本题主要考查了取整计算,正确利用已知条件中的概念及相关性质进行化简.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的复习(四)一、细心填写:1、画圆时固定的一点是圆的(),()叫做半径,()叫做直径。
2、圆的周长总是直径的()倍多一些,它是一个固定不变的数,把它叫做(),用字母()表示。
1500多年前,我国伟大的数学家(),就精确地计算出它的值在()和()之间。
3、()叫做圆的周长。
()叫做圆的面积。
把一个圆沿半径平均分成若干份后可以拼成一个近似长方形,这个长方形的长等于(),宽等于()。
从而得到圆的面积计算公式是()。
4、用圆规画一个直径10厘米的圆,圆规两脚间的距离应是()厘米。
5、用铁丝在一个半径25厘米的圆柱形水桶外面加一圈箍,接头处多用5厘米,共需要()厘米长的铁丝。
6、一个圆的周长总是它半径的()倍。
二、谨慎选择:1、画圆时,()决定圆的位置,()决定圆的大小。
A 圆规B 半径C 圆心D 无法确定2、周长相等的长方形、正方形和圆,()面积最大。
A 长方形B 正方形C 圆D 无法确定3、小圆半径4厘米,大圆半径6厘米,大、小圆直径的比是();大、小圆周长的比是();大、小圆面积的比是()。
A 2:3B 3:2C 4:9D 9:44、把一个直径10厘米圆分成两个相等的半圆,两个半圆的周长的和是()A 31.4B 62.8C 41.4D 51.45、一根铁丝正好围成一个直径8分米的圆,如果围成正方形,它的边长是()A 25.12分米B 12.56分米C 6.28分米D 3.14分米三、解决问题:圆的复习(四)一、细心填写:1、画圆时固定的一点是圆的(),()叫做半径,()叫做直径。
2、圆的周长总是直径的()倍多一些,它是一个固定不变的数,把它叫做(),用字母()表示。
1500多年前,我国伟大的数学家(),就精确地计算出它的值在()和()之间。
3、()叫做圆的周长。
()叫做圆的面积。
把一个圆沿半径平均分成若干份后可以拼成一个近似长方形,这个长方形的长等于(),宽等于()。
从而得到圆的面积计算公式是()。
4、用圆规画一个直径10厘米的圆,圆规两脚间的距离应是()厘米。
5、用铁丝在一个半径25厘米的圆柱形水桶外面加一圈箍,接头处多用5厘米,共需要()厘米长的铁丝。
6、一个圆的周长总是它半径的()倍。
二、谨慎选择:1、画圆时,()决定圆的位置,()决定圆的大小。
A 圆规B 半径C 圆心D 无法确定2、周长相等的长方形、正方形和圆,()面积最大。
A 长方形B 正方形C 圆D 无法确定3、小圆半径4厘米,大圆半径6厘米,大、小圆直径的比是();大、小圆周长的比是();大、小圆面积的比是()。
A 2:3B 3:2C 4:9D 9:44、把一个直径10厘米圆分成两个相等的半圆,两个半圆的周长的和是()A 31.4B 62.8C 41.4D 51.45、一根铁丝正好围成一个直径8分米的圆,如果围成正方形,它的边长是()A 25.12分米B 12.56分米C 6.28分米D 3.14分米三、解决问题:1、一捆铁丝500圈,每圈直径40 厘米。
这捆铁丝长多少米?2、一个圆形喷水池的周长62.8米,在离水池边2米的外面围上栏杆。
栏杆长多少米?3、两个圆半径的和12厘米,一个圆直径10厘米,另一个圆的面积多少?4、画一个半径1.5厘米的圆,再求出圆的周长和面积。
圆的复习(五)圆的复习(四)一、细心填写:1、画圆时固定的一点是圆的(),()叫做半径,()叫做直径。
2、圆的周长总是直径的()倍多一些,它是一个固定不变的数,把它叫做(),用字母()表示。
1500多年前,我国伟大的数学家(),就精确地计算出它的值在()和()之间。
3、()叫做圆的周长。
()叫做圆的面积。
把一个圆沿半径平均分成若干份后可以拼成一个近似长方形,这个长方形的长等于(),宽等于()。
从而得到圆的面积计算公式是()。
4、用圆规画一个直径10厘米的圆,圆规两脚间的距离应是()厘米。
5、用铁丝在一个半径25厘米的圆柱形水桶外面加一圈箍,接头处多用5厘米,共需要()厘米长的铁丝。
6、一个圆的周长总是它半径的()倍。
二、谨慎选择:1、画圆时,()决定圆的位置,()决定圆的大小。
A 圆规B 半径C 圆心D 无法确定2、周长相等的长方形、正方形和圆,()面积最大。
A 长方形B 正方形C 圆D 无法确定3、小圆半径4厘米,大圆半径6厘米,大、小圆直径的比是();大、小圆周长的比是();大、小圆面积的比是()。
A 2:3B 3:2C 4:9D 9:44、把一个直径10厘米圆分成两个相等的半圆,两个半圆的周长的和是()A 31.4B 62.8C 41.4D 51.45、一根铁丝正好围成一个直径8分米的圆,如果围成正方形,它的边长是()A 25.12分米B 12.56分米C 6.28分米D 3.14分米三、解决问题:1、一捆铁丝500圈,每圈直径40 厘米。
这捆铁丝长多少米?2、一个圆形喷水池的周长62.8米,在离水池边2米的外面围上栏杆。
栏杆长多少米?3、两个圆半径的和12厘米,一个圆直径10厘米,另一个圆的面积多少?4、画一个半径1.5厘米的圆,再求出圆的周长和面积。
:- 1 -1、一个圆形花池,直径4.2米,它的周长和面积各多少?2、一个圆形牛栏的半径12米,需要多少米铁丝才能把牛栏围上5圈?(接头忽略不计)3、一种压路机的前轮直径1.5米,宽2米。
如果每分钟滚动5圈,它每分钟前进多少米?每分钟压路面多少平方米?4、学校圆形大钟的时针长80厘米,它的针尖转动一周走过的路程是多少米?5、一辆自行车轮胎的外直径70厘米,如果每分钟转100圈,通过一座1100米的大桥需要多少分钟?(保留整数)6、杂技演员表演独轮车走钢丝,车轮直径40厘米。
要骑过31.4米长的钢丝,车轮要滚动多少周?7 、求下图的周长和面积(单位:米)8、一只挂钟的分针长1.5米,经过45分钟后,分针针尖走过的路程是多少?《实数》经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A 的对称点为C,则点C表示的数是().A.-1 B.1-C.2-D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2) |π-3.142|(3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
解:(1) ∵=1.414…<1.4∴|-1.4|=1.4-(2) ∵π=3.14159…<3.142∴|π-3.142|=3.142-π(3) ∵<, ∴|-|=-(4) ∵x≤3, ∴x-3≤0,∴|x-|x-3||=|x-(3-x)|=|2x-3| =说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|∵(x+3)2≥0, ∴(x+3)2+1>0∴|x2+6x+10|= x2+6x+10举一反三:【变式1】化简:【答案】=+-=类型五.实数非负性的应用5.已知:=0,求实数a, b的值。
分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。
解:由题意得由(2)得a2=49 ∴a=±7由(3)得a>-7,∴a=-7不合题意舍去。
∴只取a=7把a=7代入(1)得b=3a=21∴a=7, b=21为所求。
举一反三:【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。
解:∵(x-6)2++|y+2z|=0且(x-6)2≥0, ≥0, |y+2z|≥0,几个非负数的和等于零,则必有每个加数都为0。
∴解这个方程组得∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65【变式2】已知那么a+b-c的值为___________【答案】初中阶段的三个非负数:,a=2,b=-5,c=-1; a+b-c=-2类型六.实数应用题6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。
解:设新正方形边长为xcm,根据题意得x2=112+13×8∴x2=225∴x=±15∵边长为正,∴x=-15不合题意舍去,∴只取x=15(cm)答:新的正方形边长应取15cm。
举一反三:【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。
(4个长方形拼图时不重叠)(1)计算中间的小正方形的面积,聪明的你能发现什么?(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.解析:(1)如图,中间小正方形的边长是:,所以面积为=大正方形的面积=,一个长方形的面积=。