最新人教版七年级下册数学《实数》典型例题
新人教版七年级数学下册《实数》考点归纳及常见考题

新人教版七年级数学下册《实数》考点归纳及常见考题【知识要点】1、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”.2、如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数).3、正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.4、平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个.联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根.(3)0的算术平方根与平方根同为0.5、如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数).6、正数有一个正的立方根;0的立方根是0;负数有一个负的立方根.7、求一个数的平方根(立方根)的运算叫开平方(开立方).8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9、一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如25==.2500,55010、平方表:(自行完成)1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1.2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同.30a≥0.4、公式:⑴2=a(a≥0=a取任何数).5、区分2=a (a ≥0),与 2a =a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0【典型例题】1.下列语句中,正确的是( )A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个 2. 下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C .16的平方根是±4D .27的立方根是±33. 已知实数x ,y 满足2=0,则x-y 的值为多少?4.求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-5. 已知实数x ,y 满足2=0,则x-y 等于6. 计算(1)64的立方根是 .(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±.其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个7.易混淆的三个数(自行分析它们)(1)2a (2)2)(a (3)33a综合演练 一、填空题1、(-0.7)2的平方根是2、若2a =25,b =3,则a+b=3、已知一个正数的两个平方根分别是2a ﹣2和a ﹣4,则a 的值是4、ππ-+-43= ___________ 5、若m 、n 互为相反数,则nm +-5=_________6、若 a a -=2,则a______0 7、若73-x 有意义,则x 的取值范围是 8、大于-2,小于10的整数有______个. 9、当_______x 时,3x -有意义. 10、一个正数x 的两个平方根分别是a+2和a-4,则a= ,x= .11、当_______x 时,32-x 有意义. 12、当_______x 时,x -11有意义. 二、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( ) A .4=±2 B .2(9)81-==9 C.636=± D.992-=-3.64的平方根是( )A .±8B .±4C .±2D .±2 4.4的平方的倒数的算术平方根是( )A .4B .18C .-14D .14三、利用平方根解下列方程.1、(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;四、解答题1、求972的平方根和算术平方根.2、计算33841627-+-+的值4、若a5、、b 、c 满足01)5(32=-+++-c b a ,求代数式a cb -的值.一、填空题:(每题3分,共30分)1、如图1,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是________________.2、如图2,AB ∥CD ,∠1=39°,∠C 和∠D 互余,则∠D=________,∠B=________.3、如图3,直线ba,与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠ 5+∠3=180°,其中能判断a∥b的是_______________(填序号).4、把命题“等角的余角相等”改写成“如果……,那么……”的形式是_________________.5、如图4,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______________.6、定点P在直线AB外,动点O在直线AB上移动,当PO最短时,∠POA=_______,这时线段PO所在的直线是AB的___________,线段PO叫做直线AB的______________.7、如图5,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1=∠2,则图中互相平行的直线是____________________.8、如图6,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是___________.9、在下列说法中:⑴△ABC在平移过程中,对应线段一定相等;⑵△ABC在平移过程中,对应线段一定平行;⑶△ABC在平移过程中,周长保持不变;⑷△ABC在平移过程中,对应边中点的连线段的长等于平移的距离;⑸△ABC在平移过程中,面积不变,其中正确的有( )A、⑴⑵⑶⑷B、⑴⑵⑶⑷⑸C、⑴⑵⑶⑸D、⑴⑶⑷⑸10、如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( )A、18°B、126°C、18°或126°D、以上都不对11、完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD 求证:∠EGF=90°。
(完整word)新人教版七年级数学下册第六章实数测试题及答案,推荐文档

第 6 章实数考点一、实数及其分类考点二、数轴、相反数、倒数、绝对值数轴:相反数倒数绝对值考点三、平方根、算术平方根、立方根平方根算术平方根立方根考点四、实数运算考点五、实数大小的比较(-1)2a 2 +110 164 5 6 7 8 2 3 16a 4 7 7 7 7 1、下列命题中,正确的是( )。
A 、无理数包括正无理数、0 和负无理数B 、无理数不是实数C 、无理数是带根号的数D 、无理数是无限不循环小数2、下列命题中,正确的是( )。
A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数133、实数27、0、- 、3、0.1010010001…(相邻俩个 1 之间依次多一个 0), 其中无理数有( )A 、1B 、2C 、3D 、44 下列各式中无意义的是( )A. -B. C. D. 5 在下列说法中:①10 的平方根是± ;②-2 是 4 的一个平方根;③4 的平9 方根是 2 3)④0.01 的算术平方根是 0.1;⑤ = ±a 2 ,其中正确的有(A.1 个B.2 个C.3 个D.4 个6 下列说法中正确的是( ) A.立方根是它本身的数只有 1 和 0 B.算数平方根是它本身的数只有 1 和 0C.平方根是它本身的数只有 1 和 0D.绝对值是它本身的数只有 1 和 07的立方根是( )A. ± 1 2B. ± 1 4C. 14 D. 128 现有四个无理数 , , , ,其中在实数 +1 与 +1 之间的有 ( ) A.1 个 B.2 个 C.3 个D.4 个9实数-,-2,-3 的大小关系是()A. - -3 -2B. - 3 - -2C. - 2 - -3D. - 3 -2 - 77.已知 =1.147, =2.472, 3 0.151 =0.532 5,则3 1510 的值是(3 1.51 3 15.1 - x 2 + 2x - 281 3 64 256 332 3- 2x x + 2 4 225 400 5 23 3 3 - 5x +43b + 2)A.24.72B.53.25C.11.47D.114.7a = - 3,b = - - 2 ,c = -3 (-2)3 ,则10.若 a , b , c 的大小关系是()A. a b cB. c a bC. b a cD. c b a11 已知 x 是 169 的平方根,且2x + 3y = x 2 ,则 y 的值是( )A.11B.±11C. ±1512.大于- 2 且小于3 的整数有( )143D.65 或3 A.9 个 B.8 个 C .7 个 D.5 个2、填空题(每小题 3 分,共 30 分) 11. - 绝对值是, - 的相反数是.12.的平方根是,的平方根是 ,-343 的立方根是 , 的平方根是.13. 比较大小:(1) ;(2) ;(3)1;(4) 102.14.当时, + + 有意义。
(新人教版)数学七年级下册:《实数》习题及答案

实数一、填空:1.若无理数a 满足:1<a<4,请写出两个你熟悉的无理数:•_____,•______.2._________.的相反数是________.π|=________.5.比较大小:3______,1636.大于_______.7.设a 是最小的自然数数,b 是最大负整数,c 是绝对值最小的实数,则a+b+c=______.二、选择:8.(2003年上海市)下列命题中正确的是( )A.有限小数不是有理数B.无限小数是无理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应9.(2004年安徽省)下列四个实数中是无理数的是( ) A.2.5 B.103C.πD.1.414 10.(2004年杭州市)有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根,其中正确的有( )A.0个B.1个C.2个D.3个11.-53、、-2π四个数中,最大的数是( )A.53D.-2π12.在实数范围内,下列各式一定不成立的有( )(1)=0;(2)+a=0;(3)+=0;(4)12a-=0.A.1个B.2个C.3个D.4个三、解答:13.把下列各数分别填在相应的集合中:-1112.4π,..0.23,3.14有理数集合无理数集合14.根据右图拼图的启示:(1)面积为8(2)(3)15.已知坐标平面内一点A(-2,3),将点A个单位,再向个单位,得到A′,则A′的坐标为________.16.阅读下面的文字,解答问题.是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,-1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知=x+y,其中x是整数,且0<y<1,求x-y的相反数.答案:1.答案不唯一,如:12.±3.- ,-π-3 5.<,>,>,= 6.-4 7.-18.D 9.C 10.B 11.B 12.C13.有理数集合: -1112..0.23,3.14 .无理数集合4π..-1, x-y 。
人教版初中七年级数学下册第六单元《实数》经典测试题(含答案解析)(1)

一、选择题1.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10D 解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D .【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.2.下列各数中无理数共有( )①–0.21211211121111,②3π,③227, A .1个B .2个C .3个D .4个C 解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.3.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.4.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .4C解析:C【分析】根据平方根的概念从而得出a 的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a 的一个平方根,∴4a =,∴4的算术平方根是2,故选:C .【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a ab b ★,b a a b★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b aa a ab b b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1, ∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b>,∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个C 解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.7.下列说法中,错误的是()A .实数与数轴上的点一一对应B .1π+是无理数C .2是分数 D C 解析:C【分析】根根据有理数和无理数的定义可对C 、B 、D 进行判断;根据实数与数轴上点的关系可对A 进行判断.【详解】解:A. 实数与数轴上的点是一一对应的,此说法正确,不符合题意;B.1π+是无理数,此说法正确,不符合题意;C.2是无理数,原说法错误,符合题意;是无限不循环小数,此说法正确,不符合题意.故选:C .本题考查了实数的有关概念:有理数和无理数统称为实数;整数和分数统称为有理数;无限不循环小数叫无理数;实数与数轴上的点是一一对应的.8.下列选项中,属于无理数的是( )A .πB .227-C .4D .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】 解:A.π是无理数;B.227-是分数,属于有理数; C.4=2是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.9.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6B 解析:B【分析】根据327<350<364,可得答案.【详解】解:由327<350<364,得3<350<4,所以,50的立方根在3与4之间故选:B .【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系. 10.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68C 解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b +2a-c 【分析】根据数轴得到a<b<0<c 由此得到a-c<0a+b<0依此化简各式再合并同类项即可【详解】由数轴得a<b<0<c ∴a-c<0a+b<0∴=-b-(c-a )+(a+b)=-b-c+a+解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0, ∴()323|-|b a c a b -+=-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 13.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键 解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=,故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.14.()220y -=,则xy =_________.-1【分析】由非负数的性质可知x=-y=2然后求得xy 的值即可【详解】解:∵|+(y-2)2=0∴2x+1=0y-2=0∴x=-y=2∴xy=-×2=-1故答案为:-1【点睛】本题考查了非负数的性质解析:-1【分析】由非负数的性质可知x=-12,y=2,然后求得xy 的值即可. 【详解】解:∵(y-2)2=0,∴2x+1=0,y-2=0,∴x=-12,y=2. ∴xy=-12×2=-1. 故答案为:-1.【点睛】本题考查了非负数的性质,掌握非负数的性质是解题的关键.15的相反数是________的数是________【分析】直接利用相反数的定义以及绝对值的性质分析得出答案【详解】的相反数是;绝对值等于的数是故答案为:;【点睛】本题主要考查了绝对值以及相反数正确掌握相关定义是解题关键【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【详解】;【点睛】本题主要考查了绝对值以及相反数,正确掌握相关定义是解题关键.16.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.(1);(2)【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值再根据算术平方根的定义求解【详解】解:(1)解得:;(2)的算术平方根为【点睛】本题考查了非负数的性质以及算术平方根的定义根解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.17.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<5,a 为整数, ∴∴整数a 有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab的值解析:9【分析】a、b的值,代入求出即可.【详解】∵23,∴a=2,b=3,∴b a=32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a、b的值.a-的平方根是2±,则a的值为_______.5【分析】根据平方根的定义求19.已知1解即可【详解】的平方根是a-1=4a=5故答案为:5【点睛】此题考查了平方根的定义一个整数的平方根有两个它们互为相反数解析:5【分析】根据平方根的定义求解即可.【详解】a-的平方根是2±,1∴a-1=4,∴a=5.故答案为:5【点睛】此题考查了平方根的定义,一个整数的平方根有两个,它们互为相反数.20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).515【分析】由已知条件可得:①中各数都符合2n的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.三、解答题21.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2; (2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.22.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.23.1解析:1【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键.24.求下列各式中x 的值.(1)4(x ﹣3)2=9;(2)(x +10)3+125=0.解析:(1)x =92或32;(2)x =﹣15 【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可.【详解】解:(1)4(x ﹣3)2=9,(x ﹣3)2=94, x ﹣3=32±, x ﹣3=32或x ﹣3=32-, 解得:x =92或32; (2)(x +10)3+125=0,(x +10)3=﹣125,x +10x +10=﹣5,解得x =﹣15.【点睛】本题主要考查利用平方根解方程、利用立方根解方程,熟练掌握解方程的方法和步骤是解答的关键,注意平方根有两个.25.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴240c d d ++=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩ ∴()23223416c d -=⨯-⨯-=∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.26.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.27.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.28.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
(完整版)七年级数学《实数》经典例题及习题新人教版

山东省肥城市湖屯镇初级中学七年级数学《实数》经典例题及习题新人教版经典例题1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是( )A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1。
25的算术平方根是__________;平方根是__________。
2) —27立方根是__________.3)___________,___________,___________。
【答案】1);.2)—3。
3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3。
点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是( ).A.-1 B.1- C.2- D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |—1。
人教版七年级数学下册第六章《实数》同步练习(含答案)

第六章 实数 6.1 平方根 第1课时 算术平方根基础题知识点1 算术平方根一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.1.(2017·桂林)4的算术平方根是( B )A .4B .2C .-2D .±22.(2018·南京)94的值等于( A ) A.32B .-32C .±32D.81163.0.49的相反数是( B )A .0.7B .-0.7C .±0.7D .04.下列说法正确的是( A )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根 D .以上说法都不对5.求下列各数的算术平方根: (1)121; (2)1; (3)964; (4)0.01.解:(1)因为112=121,所以121的算术平方根是11,即121=11.(2)因为12=1,所以1的算术平方根是1,即1=1. (3)因为(38)2=964,所以964的算术平方根是38,即964=38. (4)因为(0.1)2=0.01,所以0.01的算术平方根是0.1,即0.01=0.1.6.求下列各式的值: (1)81; (2)144289; (3) 1 000 000. 解:(1)因为92=81,所以81=9. (2)因为(1217)2=144289,所以144289=1217. (3)因为1 0002=1 000 000, 所以 1 000 000=1 000.知识点2 估计算术平方根一般采用“夹逼法”确定其值所在的范围.具体地说,先找出与被开方数相邻的两个能开得尽方的整数,分别求其算术平方根,即可确定所要求的数的算术平方根在哪两个整数之间. 7.(2017·柳州期末)估算65的值介于( D )A .5到6之间B .6到7之间C .7到8之间D .8到9之间8.一个正方形的面积为50 cm 2,则该正方形的边长约为( C )A.5 cm B.6 cm C.7 cm D.8 cm9用“>”或“<”填空).知识点3 用计算器求一个正数的算术平方根10.我们可以利用计算器求一个正数a的算术平方根,其操作方法是顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.11.用计算器求下列各式的值(结果精确到0.001):(1)800;(2)0.58;(3) 2 401.解:(1)28.284.(2)0.762.(3)49.000.易错点对算术平方根的意义理解不清12.(-6)2的算术平方根是( A )A.6 B.±6 C.-6 D. 613.(2018·安顺)4的算术平方根为( B )A.± 2 B. 2 C.±2 D.2中档题14.下列各数,没有算术平方根的是( B )A.2 B.-4 C.(-1)2D.0.115.若一个数的算术平方根等于它本身,则这个数是( D )A.1 B.-1 C.0 D.0或116.(2017·广州期中)已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( D ) A.a+1 B.a+1 C.a2+1 D.a2+117.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )A.B与C B.C与D C.E与F D.A与B18.(2017·广州四校联考期中)已知a,b为两个连续整数,且a<15<b,则a+b的值为7.19.(教材P41探究变式)如图,将两个边长为3的正方形分别沿对角线剪开,将所得的4个三角形拼成一个大的正方形,则这个大正方形的边长是6.20.(教材P43探究变式)观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228__4,52 170≈228.4;(2)若x≈0.022 84,则x≈0.000__521__7.21.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与32.解:(1)12<14.(2)-5>-7.(3)5>24.(4)24-12>32.综合题22.(教材P43例3变式)国际比赛的足球场长在100 m 到110 m 之间,宽在64 m 到75 m 之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m 2,请你判断这个足球场能用作国际比赛吗?并说明理由.解:这个足球场能用作国际比赛.理由:设足球场的宽为x m ,则足球场的长为1.5x m ,由题意,得1.5x 2=7 560. ∴x 2=5 040.由算术平方根的意义可知x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71. ∴70<x <71.∴105<1.5x <106.5. ∴100<1.5x <110. ∴符合要求.∴这个足球场能用作国际比赛.23.(教材P48习题T11变式)(1)通过计算下列各式的值探究问题: ①42=4;162=16;02=0;(19)2=19. 探究:对于任意非负有理数a ,a 2=a .②(-3)2=3;(-5)2=5;(-1)2=1;(-2)2=2.探究:对于任意负有理数a ,a 2=-a .综上,对于任意有理数a ,a 2=|a|.(2)应用(1)所得的结论解决问题:有理数a ,b 在数轴上对应的点的位置如图所示,化简:a 2-b 2-(a -b )2+|a +b|.解:a 2-b 2-(a -b )2+|a +b| =|a|-|b|-|a -b|+|a +b| =-a -b +a -b -a -b =-a -3b.第2课时 平方根基础题知识点1 平方根(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.这就是说,如果x 2=a ,那么x 叫做a 的平方根,记作±(2)求一个数a 的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.1.(2018·贺州)4的平方根是( C )A .2B .-2C .±2D .16 2.±8是64的( A )A .平方根B .相反数C .绝对值D .算术平方根 3.13是一个数的平方根,则这个数是( D ) A .1B .3C .±19D.194.下列说法中,不正确的是( D ) A .6是36的平方根B .-6是36的平方根C .36的平方根是±6D .36的平方根是65.下列说法正确的是( D )A .任何非负数都有两个平方根B .一个正数的平方根仍然是正数C .只有正数才有平方根D .负数没有平方根6.计算: ±425=±25,-425=-25,425=25. 7.填表:a 2 -2 37 ±37 ±9 ±15 a 244949949812258.(1)16; (2)2536; (3)0.008 1.解:(1)因为(±4)2=16,所以16的平方根是±4. (2)因为(±56)2=2536,所以2536的平方根是±56.(3)因为(±0.09)2=0.008 1,所以0.008 1的平方根是±0.09.知识点2 平方根与算术平方根的关系正数a 的正的平方根就是这个数的算术平方根,记作 a. 9.(2017·广州期中)下列说法正确的是( A ) A .-5是25的平方根 B .25的平方根是-5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根 10.下列各式中,正确的是( D )A.4=±2 B .±9=3 C.(-3)2=-3 D.(-3)2=311.求下列各数的平方根与算术平方根: (1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000. 解:110 000的平方根是±1100,算术平方根是1100.12.求下列各式的值: (1)225; (2)-3649; (3)±144121. 解:(1)∵152=225,∴225=15. (2)∵(67)2=3649,∴-3649=-67. (3)∵(1211)2=144121,∴±144121=±1211.易错点 忽视一个正数的平方根有两个13.若x +3是4的平方根,则x =-1或-5.中档题14.(2017·广州期中)对于2-3来说( C )A .有平方根B .只有算术平方根C .没有平方根D .不能确定 15.(易错题)(2017·广州四校联考期中)16的平方根等于( D ) A .2 B .-4 C .±4D .±2 16.(易错题)若x 2=16,则5-x 的算术平方根是( D )A .±1B .±4C .1或9D .1或317.(2017·玉林期末)已知325.6≈18.044,那么± 3.256≈±1.804__4. 18.“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日,请你再写出21世纪你喜欢的一个“平方根”节(题中所举例子除外)2025年5月5日.19.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2; (2)-42; (3)-(a 2+1). 解:(1)±3.(2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a 2+1)是负数.20.(教材P48习题T8变式)求下列各式中x 的值:(1)4x 2-1=0;解:4x 2=1. x 2=14.x =±12.(2)(2017·广州四校联考期中)(2x-1)2=25.解:2x-1=5或2x-1=-5.解得x=3或x=-2.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.解:依题意,得2a-1=9且3a+b-1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±a+2b=±3.综合题22.(易错题)(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a都是m的平方根,求a与m的值.解:(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.∴这个非负数是(2a-1)2=(2×2-1)2=9.(2)根据题意,分以下两种情况:①当a-1与5-2a是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1;②当a-1与5-2a是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9.综上所述,当a=2时,m=1;当a=4时,m=9.6.2 立方根基础题知识点1 立方根(1)一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根,即如果x 3=a ,那么x 叫做a 3a a 是被开方数,3是根指数.3-a =-3a.(2)求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是正数;负数的立方根是负数;0的立方根是0.1.(2018·恩施)64的立方根为( C )A .8B .-8C .4D .-4 2.(2018·济宁)3-1的值是( B )A .1B .-1C .3D .-33.若一个数的立方根是-3,则这个数为( B ) A .-33B .-27C .±33D .±274.下列说法中,不正确的是( D ) A .0.027的立方根是0.3 B .-8的立方根是-2 C .0的立方根是0D .125的立方根是±55.下列计算正确的是( C ) A.30.012 5=0.5 B.3-2764=34C.3338=112D .-3-8125=-256.-13是-127的立方根,-16164的立方根是-54.7.求下列各数的立方根: (1)0.216;解:∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6.(2)0;解:∵03=0,∴0的立方根是0,即30=0.(3)-21027;解:∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,即3-21027=-43.(4)-5.解:-5的立方根是3-5.8.求下列各式的值:(1)30.001;解:30.001=0.1.(2)3-343125;解:3-343125=-75.(3)-31-1927.解:-31-1927=-23.知识点2 用计算器求立方根9.用计算器计算328.36的值约为( B )A.3.049 B.3.050 C.3.051 D.3.05210.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( A )A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间11.计算:325≈2.92(结果精确到0.01).易错点立方根与平方根相混淆12.立方根等于本身的数为0,1或-1.中档题13.(易错题)32的立方根是( A )A.33 B.39 C.2 D.314.下列说法正确的是( D )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数的平方根小C.如果一个数有立方根,那么它一定有平方根 D.3a与3-a互为相反数15.若a2=(-5)2,b3=(-5)3,则a+b的值为( D )A.0 B.±10C.0或10 D.0或-10 16.已知2x+1的平方根是±5,则5x+4的立方根是4.17.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大到原来的1__000倍,则立方根扩大到原来的10倍;(3)根据你发现的规律填空:①已知33≈1.442,则33 000≈14.42,30.003≈0.144__2; ②已知30.000 456≈0.076 97,则3456≈7.697. 18.求下列各式的值: (1)-3-0.125; 解:原式=0.5.(2)-3729+3512; 解:原式=-9+8=-1.(3)30.027-31-124125+3-0.001. 解:原式=0.3-31125+(-0.1) =0.3-15-0.1=0.19.比较下列各数的大小: (1)39与3; 解:39> 3.(2)-342与-3.4. 解:-342<-3.4.20.求下列各式中x 的值:(1)8x 3+125=0;解:8x 3=-125. x 3=-1258.x =-52.(2)(2017·广州期中)(2x -1)3=-8. 解:2x -1=-2. 解得x =-12.21.将一个体积为0.216 m 3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.解:设每个小立方体铝块的棱长为x m ,则 8x 3=0.216. ∴x 3=0.027.∴x=0.3.∴6×0.32=0.54(m 2).答:每个小立方体铝块的表面积为0.54 m 2.综合题22.请先观察下列等式: 32+27=2327, 33+326=33326, 34+463=43463, …(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.解:(1)35+5124=535124,36+6215=636215. (2)3n +n n 3-1=n 3nn 3-1(n >1,且n 为整数).6.3 实数基础题知识点1 实数的概念及其分类1.(2018·玉林)下列实数中,是无理数的是( B ) A .1B. 2C .-3D.132.下列说法中,正确的是( C )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .正实数包括正有理数和正无理数D .实数可以分为正实数和负实数两类知识点2 实数与数轴上的点的关系实数和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个实数.3.若在数轴上画出表示下列各数的点,则与原点距离最近的点是( B ) A .-1B .-12C.32D .2知识点3 实数的相反数、绝对值、倒数实数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即|a|=⎩⎪⎨⎪⎧a ,当a>0时;0,当a =0时;-a ,当a<0时.4.-2的相反数是( C )A.- 2 B.22C. 2 D.-225.π是1π的( B )A.绝对值B.倒数C.相反数D.平方根6.(2017·广州期中)3-8的绝对值是2.7知识点4 实数的运算实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.8.(2018·包头)计算-4-|-3|的结果是( B )A.-1 B.-5 C.1 D.59.计算364+(-16)的结果是( B )A.4 B.0 C.8 D.12 10.计算:(1)33+53;解:原式=(3+5) 3=8 3.(2)|1-2|+|3-2|.解:原式=2-1+3- 2=3-1.11.计算(结果保留小数点后两位):(1)π-2+3;解:原式≈3.142-1.414+1.732≈3.46.(2)|2-5|+0.9.解:原式≈2.236-1.414+0.9≈1.72.易错点对无理数的判断有误12.下列说法正确的是( D )A.33是分数 B.227是无理数 C. π-3.14是有理数 D.3-83是有理数中档题13.下列各组数中,互为相反数的一组是( C ) A .-|-2|与3-8B .-4与-(-4)2C .-32与|3-2|D .-2与1214.有一个数值转换器,原理如下:当输入的x 为4时,输出的y 是( C )A .4B .2 C. 2D .- 215.(2017·宁夏)实数a 在数轴上的位置如图所示,则|a -3|=3-a .16.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 两点之间的距离是17.把下列各数分别填入相应的集合中.-15,39,π,3.14,-327,0,-5.123 45…,0.25,-32. (1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π,-5.123 45…,-32,…};(3)正实数集合:{39,π,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.18.求下列各式中的实数x. (1)|x|=45;解:x =±45.(2)|x -2|= 5. 解:x =2± 5.19.计算:(1)23+32-53-32; 解:原式=(2-5)3+(3-3) 2 =-3 3.(2)|3-π|+|4-π|. 解:原式=π-3+4-π =1.20.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.解:由题意可知ab =1,c +d =0,e =±2,f =64, ∴e 2=(±2)2=2,3f =364=4. ∴12ab +c +d 5+e 2+3f =12+0+2+4=612.综合题21.阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n=a ,则x 叫做a 的n 次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2. 回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0; (2)归纳一个数的n 次方根的情况.解:当n 为偶数时,一个正数的n 次方根有两个,它们互为相反数;当n 为奇数时,一个数的n 次方根只有一个.负数没有偶次方根.0的n 次方根是0.章末复习(二) 实数分点突破知识点1 平方根、算术平方根、立方根 1.(2017·泰州)2的算术平方根是( B )A .± 2 B. 2 C .- 2 D .2 2.(2018·铜仁)9的平方根是( C )A .3B .-3C .3和-3D .81 3.(2018·荆门)8的相反数的立方根是( C ) A .2B.12C .-2D .-124.下列各式正确的是( A ) A .±31=±1B.4=±2C.(-6)2=-6 D.3-27=3知识点2 实数的分类5.把下列各数分别填在相应的集合中:5,-6,38,0,π5,3.141 592 6,227,-16,-234.101 001 000 1…(相邻两个1之间依次多1个0).知识点3 相反数、绝对值、倒数 6.9的倒数等于( D ) A .3B .-3C .-13D.137.实数1-2的相反数是2-1,绝对值是2-1.知识点4 无理数的估算及实数的大小比较8.(2018·贺州)在-1,1,2,2这四个数中,最小的数是( A ) A .-1 B .1 C. 2 D .29.(2018·南通)如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2-5的点P 应落在( B )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上知识点5 实数的运算 10.求下列各式的值:(1)(2017·广州期末)38-9;解:原式=2-3=-1.(2)(2017·南宁期末)-32+|2-3|-(-2)2;解:原式=-9+3-2-2=-8- 2.(3)121+7×(2-17)-31 000.解:原式=11+27-1-10=27.易错题集训11.下列说法正确的是( D )A.-4没有立方根B.1的立方根是±1C.136的立方根是16D.-5的立方根是3-512.下列说法中,正确的有( B )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个常考题型演练13.关于12的叙述,错误的是( A )A.12是有理数B.面积为12的正方形边长是12C.12在3与4之间D.在数轴上可以找到表示12的点14.(2017·钦州期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的有( A )A.0个B.1个C.2个D.3个15.(易错题)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( C )A.0个B.1个C.2个D.3个16.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是( B )A.3500≈17.100 B.3500≈7.937C.3500≈171.00 D.3500≈79.3717.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4.18.(2018·东莞)一个正数的平方根分别是x+1和x-5,则x=2.19.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是-4π.20.求下列各式中x的值:(1)x 2-5=49;解:x 2=499,x =±73.(2)(x -1)3=125. 解:x -1=5, x =6.21.已知某正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,求3a +b 的算术平方根. 解:∵该正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,∴a+3+2a -15=0,b =(-2)3=-8. ∴a=4,b =-8.∴3a +b =4=2,即3a +b 的算术平方根是2. 22.魔方又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的.魔方与中国人发明的“华容道”、法国人发明的“独立钻石”一同被称为智力游戏界的三大不可思议.如图是一个4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为64 cm 3. (1)求组成这个魔方的小立方体的棱长;(2)图中阴影部分是一个正方形,则该正方形的面积为10cm 2,边长为10cm.解:组成这个魔方的小立方体的棱长为364÷64=1(cm).。
人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】实数全章复习与巩固(基础)责编:康红梅【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】【:389318 实数复习,知识要点】 类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》典型例题
例1 下列各数哪些是有理数,哪些是无理数?
6,-5,39,0,.2
2,4,32,3,7,4,7233-+-π 解 有理数有:-5,0,
4,4,723-. 无理数有:.2
2,32,3,7,9,633+-π
说明:有理数包括整数与分数,只要是分数就是有理数,而无理数是无限不循环小数,被开方数开不尽方的数都是无理数,在本题中
2
2是无理数,不是分数. 例2 比较下列各组数的大小:
(1)3和35, (2)32-和3-, (3)326和11, (4)0和7-. 解 (1)710.15,732.133≈≈ ,而710.1732.1>,∴.533>
(2)732.13,260.123-≈--≈- ,而732.1260.1->-,∴.323->-
(3)317.311,962.2263≈≈ ,而317.3962.2<,∴11263<.
(4).70->
例3 计算:
(1)7472+,(2)55156⨯,(3)51125÷⨯,(4).)13()32(22-+ 解 (1).767)42(7472=+=+
(2).655
165551655156=⨯⨯=⋅⨯=⨯ (3).3103253455512551
125=⨯⨯=⨯⨯⨯=⨯⨯=÷⨯
(4).5251312)13()32(22==+=-+
说明:有关无理数的计算问题要按运算法则及运算律进行计算.
例4 计算(精确到0.1):
(1)652-,(2)322+π
,(3)3234-,(4).5233⨯
解 (1).0.245.248.445.224.22652≈-=-⨯≈-
(2).0.546.357.173.122
14.3322≈+=⨯+≈+π
(3).7.526.192.626.173.142343≈-=-⨯≈-
(4).3.2324.2273.135233≈⨯⨯⨯≈⨯
例5 下面命题中,正确的是( )
A .不带根号的数一定是有理数
B .有绝对值最大的数,也有绝对值最小的数
C .任何实数的绝对值都是正数
D .无理数一定是无限小数
分析 圆周率π是不带根号的数,但它是无限不循环小数,所以它是无理数,可见命题A 不正确. 实际上,可以写出很多不带根号的无理数,如0.101001000100001……就是一个无理数;不存在最大的正数(对任何正数a ,都不如1+a 大),导致不存在绝对值最大的数,所以B 是假命题;实数0的绝对值不是正数,可见命题C 也不正确.
解答 D
说明 考查实数的意义.
例6 下列说法中正确的是( )
A .无理数是开方开不尽的数
B .无限小数不能化成分数
C .无限不循环小数是无理数
D .一个负数的立方根是无理数
分析 实数可分为无理数和有理数. 有限小数和无限循环小数统称为有理数,无限不循环小数称为无理数. 开方开不尽的数一定是无理数,但无理数还包含了其他数,如π,任何有理数都能化成分数形成. 所以A 、B 、D 都是错的. C 正确.
解答 C
说明 考查实数的分类及定义
无理数主要有3种表现形式:①开方开不尽的数;②一些常数,如π、e 等;③无限不循环小数,如0.1010010001…
例7 实数2-,16,π,3.1416,2)2
7(,931,0.2020020002……(每两个2之间多一个零)中,无理数的个数有( )
A .2个
B .3个
C .4个
D .5个
分析 其中无理数有:2-,π,0.202002…
解答 B
说明 考查无理数的定义
π及π有关的数都是无理数.。