陶瓷窑炉烟气处理技术
陶瓷厂熔化炉废气净化工艺设计

陶瓷厂熔化炉废气净化工艺设计
1. 前言
陶瓷厂生产过程中,熔化炉燃烧会产生大量废气,其中含有粉尘、氮氧化物、二氧化硫等有害物质,如果直接排放会对环境造成严重污染。
因此,对熔化炉废气进行净化处理是非常必要的。
2. 废气成分分析
熔化炉废气的主要污染物包括:
(1) 粉尘:主要来源于原料中的无机物质及燃料燃烧残渣。
(2) 氮氧化物:主要来源于燃料燃烧时空气中的氮与氧发生反应生成。
(3) 二氧化硫:主要来源于燃料中的硫化物燃烧产生。
3. 净化工艺流程
(1) 预处理:使用旋风除尘器对废气进行初步除尘,去除较大颗粒物。
(2) 袋式除尘:采用耐高温的滤袋,对预处理后的废气进行精细除尘。
(3) 选择性非催化还原(SNCR):在适当温度下喷入还原剂(如氨水),将氮氧化物还原为氮气和水。
(4) 干法脱硫:采用石灰石或石灰粉作为吸收剂,吸收二氧化硫生成石膏。
(5) 湿式电除雾:使用水雾凝聚残余微粒,通过静电除雾装置除去。
4. 工艺优势
(1) 高效除尘,可实现粉尘排放达标。
(2) 采用SNCR技术,可有效控制氮氧化物排放。
(3) 干法脱硫工艺操作简单,运行稳定。
(4) 湿式电除雾装置可进一步净化废气,使排放达标。
5. 结语
该工艺综合运用多种先进技术,可从多个环节高效净化陶瓷厂熔化炉废气,实现达标排放,是一种行之有效的环保解决方案。
陶瓷烟气处理最新标准规范

陶瓷烟气处理最新标准规范随着工业生产的发展,陶瓷行业在生产过程中产生的烟气对环境和人体健康的影响日益受到重视。
为了有效控制和减少陶瓷生产过程中的污染物排放,制定一套科学合理的陶瓷烟气处理标准规范显得尤为重要。
以下是对陶瓷烟气处理最新标准规范的概述:一、前言本规范旨在指导陶瓷生产企业合理设计烟气处理系统,确保排放的烟气达到国家和地方的环保要求,减少对环境和人体健康的危害。
二、适用范围本规范适用于所有陶瓷生产过程中产生的烟气排放处理,包括但不限于陶瓷砖、陶瓷瓦、陶瓷工艺品等。
三、烟气排放标准1. 颗粒物排放浓度不得超过国家规定的标准限值。
2. 硫氧化物、氮氧化物等有害气体排放应符合环保部门的相关规定。
3. 重金属和其他有毒有害物质的排放应严格控制,不得超出安全标准。
四、烟气处理技术要求1. 采用高效的除尘技术,如布袋除尘、电除尘等,确保颗粒物去除率达到95%以上。
2. 对于硫氧化物和氮氧化物的处理,可采用湿法脱硫、选择性催化还原(SCR)等技术。
3. 对于重金属和其他有毒有害物质,应采用吸附、化学沉淀等方法进行处理。
五、烟气处理设施的设计和建设1. 设计时应充分考虑烟气的成分、流量和温度等因素,合理选择处理工艺。
2. 建设过程中应确保设施的密封性,防止烟气泄漏。
3. 设施应配备必要的监测和控制系统,以实时监控烟气处理效果。
六、操作和维护1. 操作人员应接受专业培训,熟悉烟气处理设施的操作规程。
2. 定期对烟气处理设施进行检查和维护,确保其正常运行。
3. 建立应急预案,一旦发现烟气处理设施出现故障,应立即采取措施进行处理。
七、监测和报告1. 企业应建立烟气排放监测体系,定期对排放的烟气进行监测。
2. 监测结果应按照规定向环保部门报告,并对外公布,接受社会监督。
八、法律责任违反本规范规定的企业,将依法承担相应的法律责任,包括但不限于罚款、停产整顿等。
九、结语陶瓷烟气处理标准规范的制定和实施,对于推动陶瓷行业的绿色发展、保护生态环境和公共健康具有重要意义。
陶瓷窑炉烟气脱硝技术的应用

,把NO X(氮氧化物)还原成N2(氮气)和H2O(水),还有少量CO2(二氧化碳),使烟气中的NO X(氮氧化物)迅速下;经此处理后的烟气进入二级脱硝塔再次处理,最后实现烟气达标排放。
但是,此方法也存在一定的弊端:由于窑炉烟气温度进入一级脱硫塔时温度约为300℃,反应温度远达不到适合脱硝反应的“温度窗口”(850~1100℃),脱硝效率受到一定影响。
所以,如何优化本系统的技术原理,降低脱硝成本、提高脱硝效率是本技术路线仍然值得继续挖潜的方向。
窑炉内部烟气脱硝技术原理
窑炉内部烟气脱硝方法是将还原剂(尿素)加入窑炉内部,还原剂(氨水)在高温环境(窑炉内部温度最高可达如图4所示。
该方法需要注意以下几点技术要求:
(1)喷射点的选取
为了保证窑炉的正常运行,喷射点一般选取在窑炉前段高低箱附近位置。
此处温度适宜(800~1000℃),临近排烟段,对烧成影响也较小。
(2)喷枪的选择
由于窑炉炉膛内温度较高,还原剂(氨水)不能以液态的形式射入,否则会对窑墙、辊棒、砖坯造成不利影响可能造成窑墙开裂、辊棒断裂、砖坯裂砖等严重后果目前,常见的方法是用雾化喷嘴将还原剂(氨水)雾化后快速、高压射入窑内。
由于这种方法不需要投入过多脱硝设备费用,从理论上来分析脱硝效率也较高,运行成本较低,所以存在较
图1窑炉排放烟气脱硝技术的工艺原理示意图图2脱硝技术的结构简图图3窑炉内部烟气脱硝技术工艺原理示意图图4窑炉内部烟气脱硝技术结构简图。
建筑陶瓷烟气治理现状及超低排放方案探讨

建筑陶瓷烟气治理现状及超低排放方案探讨建筑陶瓷作为建筑材料中的重要一环,广泛应用于建筑外立面、室内装饰等领域。
然而,建筑陶瓷在生产过程中也会产生大量的工业废气,特别是烟气排放问题一直备受关注。
因此,建筑陶瓷企业需要采取有效措施,进行烟气治理,实现超低排放。
一、建筑陶瓷烟气排放现状1.主要污染物建筑陶瓷生产过程中主要涉及烧制过程,因此,烟气中主要污染物为氮氧化物、二氧化硫、颗粒物等。
其中,氮氧化物的排放量最大,达到烟气排放总量的40%~60%,对大气环境造成的影响最为严重。
2.烟气排放标准为了保障大气环境的质量,我国对建筑陶瓷企业的烟气排放进行了严格的规定。
目前,建筑陶瓷生产企业需要达到的烟气排放标准为:氮氧化物≤200mg/m³,二氧化硫≤400mg/m³,颗粒物≤30mg/m³。
二、建筑陶瓷烟气治理方案1.烟气脱硫除尘技术氮氧化物、二氧化硫和颗粒物是建筑陶瓷生产烟气中的三大主要污染物。
因此,在烟气治理方案中,分别采取脱硫、除尘等技术手段进行治理。
脱硫技术包括化学吸收法、湿式电除尘法、喷雾吸附法等,可以有效地去除烟气中的二氧化硫。
同时,采用除尘设备如静电除尘器、袋式除尘器、湿式洗涤器等,可有效地去除烟气中的颗粒物。
2.烟气脱硝技术烟气中的氮氧化物是建筑陶瓷生产烟气中的主要污染物之一。
目前,我国采用的主要脱硝技术为选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。
这些技术采用特殊的还原剂加入到烟气中,催化氮氧化物的还原为氮和水,从而达到脱硝的效果。
3.超低排放超低排放是指企业在达到国家排放标准的基础上,进一步降低排放水平,使排放物浓度达到较低的水平。
在建筑陶瓷烟气治理方案中,超低排放是企业所必须追求的目标。
对于建筑陶瓷生产企业来说,超低排放的技术手段主要包括三方面:一是烟气废气热能回收利用;二是采用新型节能设备,降低烟气排放浓度;三是采用在线监测系统,对烟气排放进行实时监测和数据分析。
陶瓷窑炉烟气处理技术资料

的浓度在0.5%~1.0%,属于低浓度SO2烟气。因此采用传统的接触制酸法,经济
SO
烟气脱硫技术多种多样,按脱硫工艺可以分为干法、湿法和半干
按生成物处置方法可以分为抛弃法、回收法和半回收法;按吸收剂的使用情况分为再生法和非再生法;
3大分类结合具体的方法加以说明。
湿法脱硫工艺
60 °C左右,排烟的扩散效果差,需要大量的水。
与SCR混合烟气脱硝技术是把SNCR工艺的还原剂喷入炉膛技术同SCR工艺利用逃逸氨进行
NO
。它是把SNCR工艺的低费用特点同SCR工艺的高效率及低
低温常压等离子体分解法
NO
分子,使其化学
O
和N2的方法。
吸附法
NO
,常用的吸附剂有分子筛、活性炭、天然沸石、硅胶及泥煤等。其中有些吸收剂如硅
NO催化氧化成NO
2) NO
的产生类型有3种:
、热力型NO
,燃烧时的空气中带进来的氮在高温下与氧发生反应生成NOX被称为热力型NOX(T
NO
)。
、燃料型NO
,因为煤中含有许多氮的有机化合物如芳香杂环氮化物、吡咯及衍生物,在高温作用
NH
或HCN氧化生成NOX。
、快速型NO
,指在燃烧过程中,燃料中的碳氢化合物发生分解,其分解的中间产物和N2反应生成
干法脱硫工艺
荷电干式喷射脱硫法
SO
反应的机会。此外
电子束烟气脱硫技术
:燃煤烟气中的N
、O2和水蒸汽等,经过电子束照射后,吸收了大
OH、O、HO
等。这些自由基可以氧化烟气中
SO
使之生成硫酸,再与事先注入的氨进行中和反应生成硫铵。
90%以上,系统简单、操作方便,对不同含硫量的烟气有较好的适应性。副产
窑炉烟气二氧化碳捕集、纯化、利用及贮存技术推广方案(二)

窑炉烟气二氧化碳捕集、纯化、利用及贮存技术推广方案一、实施背景全球气候变化已成为人类面临的重大挑战之一。
减少温室气体排放,特别是二氧化碳的排放,是减缓气候变化的重要手段。
目前,我国工业领域的能源消费和二氧化碳排放占比仍然较高,其中窑炉作为工业领域的重要设备,其烟气排放中含有大量的二氧化碳。
因此,推广窑炉烟气二氧化碳捕集、纯化、利用及贮存技术,对于减少工业领域二氧化碳排放、推动产业结构改革、实现可持续发展具有重要意义。
二、工作原理窑炉烟气二氧化碳捕集技术主要包括物理吸收法、化学吸收法、吸附法等。
物理吸收法是利用物理作用将二氧化碳从烟气中分离出来,常用的物理吸收剂有水、甲醇、乙醇等。
化学吸收法是利用化学反应将二氧化碳从烟气中分离出来,常用的化学吸收剂有氨水、MEA(乙醇胺)等。
吸附法是利用吸附剂的吸附作用将二氧化碳从烟气中分离出来,常用的吸附剂有活性炭、分子筛等。
纯化技术主要包括变压吸附法、膜分离法等。
变压吸附法是利用吸附剂在不同压力下对二氧化碳的吸附能力差异,将二氧化碳从混合气体中分离出来。
膜分离法是利用膜对不同气体的渗透能力差异,将二氧化碳从混合气体中分离出来。
利用技术主要包括用于生产尿素、纯碱等化工产品的化工利用,用于生产可降解塑料、燃料等的能源利用,以及用于地质封存等的封存利用。
三、实施计划步骤1. 调研评估:对企业现有窑炉烟气排放情况进行调研评估,确定适合的二氧化碳捕集技术。
2. 技术选择:根据调研评估结果,选择合适的二氧化碳捕集技术,并确定相应的纯化、利用和贮存技术。
3. 方案设计:制定详细的技术实施方案,包括设备选择、工艺设计、安装调试等。
4. 建设实施:按照实施方案进行建设实施,确保设备质量和工艺流程的可靠性。
5. 运行维护:对建成后的系统进行运行维护,确保系统的稳定性和安全性。
6. 监测评估:对系统运行过程中的各项参数进行监测评估,确保系统的运行效果符合预期要求。
7. 优化改进:根据监测评估结果,对系统进行优化改进,提高系统的效率和可靠性。
陶瓷烧成过程中氮氧化物、VOCs等污染防治方案

陶瓷烧成过程中氮氧化物、VOCs等污染防治方案
VOC即挥发性有机化合物,对人体健康有巨大影响。
当居室中的VOC达到一定浓度时,短时间内人们会感到头痛、恶心、呕吐、乏力等,严重时会出现抽搐、昏迷,并会伤害到人的肝脏、肾脏、大脑和神经系统,造成记忆力减退等严重后果。
重视及强化VOCs治理,评估陶瓷行业VOCs排放现状,在此基础上,提出可行技术路线,制定管控政策,加强VOCs治理。
活性炭吸附+催化燃烧设备
活性炭吸附脱附催化燃烧是新一代VOC废气处理设备,是将吸附浓缩单元和热氧化单元有机结合起来的一种方法,主要适用于低浓度有机气体尤其对大风量的处理场合,均可获得满意的经济效果和社会效果。
经吸附脱附后转化成小风量、高浓度有机废气,对其进行热氧化处理并将有机物燃烧释放的热量有效利用。
活性炭经过吸附运行一段时间后达到饱和,启动系统的脱附催化燃烧过程,通过热气流将原来已经吸附在活性炭表面的有机溶剂脱附出来,并经过催化燃烧反应转化成二氧化碳和水蒸气等无害物质,并放出热量,反应产生的热量经过热交换部分回用到脱附热气流中,当脱附达到一定程度时释放热,使脱附加热达到平衡,系统在不借助外加热的情况下完成脱附再生过程。
我们专注于持续对印刷、喷涂、印染、电子、塑料、家具、炼油、橡胶、化工、造纸、皮革、农药、制药、食品加工、等恶臭气体、工业废气的净化处理等行业的问题进行深度解析。
陶瓷工业废气治理工程技术规范

附件3陶瓷工业废气治理工程技术规范(征求意见稿)编制说明《陶瓷工业废气治理工程技术规范》编制组二〇一八年九月—23—项目名称:陶瓷工业废气治理工程技术规范项目统一编号:2013-GF-03承担单位:长沙环境保护职业技术学院、湖南湘牛环保实业有限公司、湖南省环境保护厅环境工程评估中心、衡阳市环境监测站、武汉大学编制组主要成员:李庄、李倦生、戴慧敏、曹群、王凡、朱邦辉、刘卫国、何灿明、黄进、陈林、张秋华、董敏慧、陈再辉、彭放、侯浩波标准所技术管理负责人:姚芝茂生态环境部项目经办人:李磊—24—目次1任务来源 (26)2标准编制的必要性及意义 (26)2.1标准编制的必要性 (26)2.2标准编制的意义 (28)3主要工作过程 (28)4国内外相关标准研究 (30)4.1国内相关政策和标准 (30)4.2国外陶瓷工业废气排放的环保标准 (34)5同类工程现状调研 (35)5.1陶瓷工业典型生产工艺 (35)5.2陶瓷工业废气的产生和特征 (35)5.3陶瓷工业废气治理工程技术 (39)5.4国外陶瓷工业废气治理情况 (41)5.5国内陶瓷工业废气治理工程案例分析 (43)6主要技术内容及说明 (50)6.1适用范围 (50)6.2规范性引用文件 (50)6.3术语和定义 (51)6.4污染物和污染负荷 (51)6.5总体要求 (52)6.6工艺设计 (53)6.7工艺设备和材料 (60)6.8检测与过程控制 (61)6.9辅助工程 (61)6.10劳动安全与职业卫生 (61)6.11施工与验收 (61)6.12运行与维护 (62)7标准实施的环境效益与经济技术分析 (62)8标准实施建议 (62)—25—1任务来源为适应国家环境保护工作需要,2013年原环境保护部下达了《关于开展2013年度国家环境技术管理项目计划工作的通知》(环办函[2013]51号)文件,其中提出了制订《陶瓷工业废气治理工程技术规范》(项目统一编号2013-GF-03)的任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶瓷窑炉烟气处理技术随着国民经济的不断发展,我国陶瓷工业也得到了迅猛发展。
2005年我国陶瓷产量:日用陶瓷175亿件,建筑陶瓷35 m2,卫生陶瓷约9 000万件,产量均居世界第一,约占世界的2/3,形势一片大好。
但其带来的负面影响——窑炉烟气污染也越来越突出。
我国大气中90%的SO x、85%的CO2、80%的RO x(粉尘)和50%的NO x污染均来自陶瓷窑炉、蒸汽锅炉以及其他各种工业窑炉[1]。
据资料统计,目前仅在日用陶瓷、建筑陶瓷生产领域中就有 3 000余座燃煤窑炉,达到窑炉总数的70%,因此处理陶瓷窑炉烟气污染就成为了目前应该研究的方向。
笔者结合陶瓷窑炉烟气的污染物形成机制,对目前窑炉烟气的处理技术和发展方向进行了综述。
1 陶瓷窑炉烟气污染产生的机制陶瓷窑炉烟气中有害物质可分为两类:一类是气相化学物质,另一类是固相的烟尘,都是造成大气污染的主要物质。
1.1 气相化学物质的产生燃煤产生的气相化学物质主要有SO X和NO X。
(1) SO X是由煤、粘土中的硫化物杂质在800 ℃左右被氧化所致。
在陶瓷生产中不仅燃烧的燃料中含有硫化物杂质,而且原料也有一些含硫的杂质,如:黄铁矿(FeS2)、Fe2(SO4)3、CaSO4、Na2SO4等。
这些杂质存在于陶瓷坯体中,在烧成的过程中,要进行一系列氧化还原反应。
(2) NO X的产生类型有3种:a、热力型NO X,燃烧时的空气中带进来的氮在高温下与氧发生反应生成NO X 被称为热力型NO X(T -NO X)。
b、燃料型NO X,因为煤中含有许多氮的有机化合物如芳香杂环氮化物、吡咯及衍生物,在高温作用下易产生NH3或HCN氧化生成NO X。
c、快速型NO X,指在燃烧过程中,燃料中的碳氢化合物发生分解,其分解的中间产物和N2反应生成的氮氧化物。
快速型NO X生成量很少,可不予考虑。
1.2 固相烟尘的产生煤被加热350~600 ℃时,大量释放出以碳氢化合物为主的挥发分,进入炉膛空间。
但是在低温缺氧条件下,挥发分不可能正常燃烧,发生裂化、脱氢、叠合、环化而生成含碳量多的苯环物质——碳黑;不完全燃烧生成环烃物质——烟炱;还可能因还原反应而分解出游离的碳粒;由烟气带出的飞灰和未燃尽的煤炭颗粒微尘;这些物质总称烟尘。
全世界每年约有1亿t烟尘排放到空气中,如不及时处理,不仅会污染环境,而且会损害人类的健康。
2 烟气脱硫(FGD)陶瓷窑炉烟气中SO2的浓度在0.5%~1.0%,属于低浓度SO2烟气。
因此采用传统的接触制酸法,经济和技术上难度很大。
目前对于低浓度SO2烟气脱硫技术多种多样,按脱硫工艺可以分为干法、湿法和半干法;按生成物处置方法可以分为抛弃法、回收法和半回收法;按吸收剂的使用情况分为再生法和非再生法;以所采用的吸收剂又分为钙法、钠法、镁法、氨法、双碱法和水法等。
以上分类方法各有自己的科学性和不足,本文以干法、湿法和半干法3大分类结合具体的方法加以说明。
2.1 湿法脱硫工艺湿法烟气脱硫技术是烟气脱硫技术中最为成熟的一种技术,湿法脱硫的优点是硫氧化物的吸收反应速度;缺点是由于排烟温度降到60 °C左右,排烟的扩散效果差,需要大量的水。
2.1.1 石灰/石灰石——石膏法这种方法在湿法中占有最主要的份额,是目前世界上最成熟、运行状况最稳定的脱硫工艺。
利用石灰或石灰石作吸收剂,吸收净化烟气中的SO2,反应生成亚硫酸钙(CaSO3),再将这一产物氧化成石膏(CaSO4·2H2O)。
该工艺流程较复杂,需要专门的吸收剂制备车间、体积庞大的吸收塔氧化槽,投资较大,且有二次污染问题,但脱硫效率可达90%以上。
2.1.2 海水脱硫工艺海水脱硫是近年来发展起来的一项新技术。
该工艺利用天然的纯海水作为烟气中SO2的吸收剂,无需其它任何添加剂,也不产生任何废弃物,具有工艺简单、系统运行可靠、脱硫效率高等特点。
2.1.3 其它湿法工艺除前述的传统方法外,还有MgO法、亚硫酸铵法、Wellman-Lord法、柠檬酸钠——磷酸钠法和千代田法、液相湿式生物还原法等。
另外还有我国自主研发的技术,如:西安交通大学的液幕床式湿法脱硫技术、清华大学的液柱喷射式烟气脱硫系统、南京电力环境科学研究所的强化湿式石灰石烟气脱硫技术等,但都未得到完整的应用。
2.2 干法脱硫工艺干法脱硫工艺的特点是,反应在无液相介入的完全干燥状态下进行,反应产物为干粉状。
其主要优点是能处理大量的排烟,排出烟气的温度下降比较小,对烟囱周围地区来说,由于烟雾而引起的二次污染较少,用水量少。
缺点是由于硫氧化物的吸收反应速度慢,因而排烟设备体积大,建设费用高。
2.2.1 荷电干式喷射脱硫法该法的作用原理是,吸收剂以高速通过高压静电电晕充电区后,在其表面上形成静电荷,由于同种电荷相互排斥,使吸收剂颗粒很快在烟气中扩散,形成均匀的悬浮状态,从而增加与SO2反应的机会。
此外由于离子的电晕,可增强其活性,缩短反应所需滞留时间,从而有效提高脱硫率。
该法的优点是,脱硫工艺简单有效,占地面积小,投资和运行成本低,因为是干法没有废水和腐蚀等问题;缺点是,脱硫率低,吸收剂利用率不足,维护较复杂。
2.2.2 电子束烟气脱硫技术电子束烟气脱硫技术的基本原理是:燃煤烟气中的N2、O2和水蒸汽等,经过电子束照射后,吸收了大部分电子束能量,生成大量的反应活性极强的各种自由基如OH、O、HO2等。
这些自由基可以氧化烟气中的SO2使之生成硫酸,再与事先注入的氨进行中和反应生成硫铵。
该工艺流程简单、运行维护方便,烟气负荷负载能力强,一次投资和运行费用低,无二次污染物产生,同时脱硫脱硝,脱硫率可达90%以上,系统简单、操作方便,对不同含硫量的烟气有较好的适应性。
副产物硫酸铵和硝酸铵是可利用的氮肥实现了硫氮资源的综合利用。
电子束烟气脱硫是靠电子束加速器产生高能电子的,因而需要大功率的电子枪,还需要防辐射屏蔽,且运行、维护技术要求高。
2.2.3 脉冲电晕放电烟气脱硫技术脉冲电晕放电烟气脱硫技术是从电子束烟气脱硫技术发展而来的,其机制是依靠脉冲高压电源在普通反应器中形成等离子体,该法是利用等离子体产生的高能电子将HO-H及O-O键打开,使之成为自由基或活化粒子,这些自由基或活化粒子可与SO2及NO X反应。
由于这些等离子体在常温下只提高电子的温度,而不提高离子的温度,故该法的能量效率比电子束法至少高2倍。
此法可同时脱除烟气中的SO2、NO X及重金属,既具有电子束辐照法的全部优点,而且又大大降低了一次性投资。
目前是具有良好应用前景和国内外广泛关注的技术。
2.3 半干法工艺半干法烟气脱硫技术是把石灰乳雾滴喷入吸收塔,使其与烟气中的SO2反应生成CaSO3和CaSO4,由于烟气的加热作用,石灰乳中的水分很快蒸发,最终得到干燥状态的副产品。
半干法脱硫工艺的特点是,反应在气、固、液三相中进行,利用烟气显热蒸发吸收液中的水分,使最终产物为干粉状,脱硫废渣一般抛弃处理。
并且工艺流程简单、运行稳定可靠,投资较少,运行费用较低,电力消耗仅为湿法的25%~50%,脱硫效率可达80%~90%。
但是,由于石灰作吸收剂,具有强烈的刺激性,在消化过程中会产生大量热量和蒸汽,会给人体和环境造成不良影响。
旋转喷雾干燥法就是一种半干法工艺,其原理是将30%的石灰浆(<100目)在高速旋转(12 000 r/min)的离心喷雾机作用下雾化成极细的雾滴,在吸收塔内与烟气中SO2反应生成CaSO3和CaSO4,同时雾滴被烟气显热干燥形成固体粉末,被除尘器收集。
3 烟气脱硝目前国内氮氧化物的控制主要依靠低NO X燃烧控制技术 ,燃烧后的烟气脱硝技术在国内的研究和应用还相对较少。
但随着国内近年来对氮氧化物污染的重视和相关法律法规的出台及实施,我国对烟气脱硝技术的研究加大。
烟气脱硝技术有气相反应法、吸附法、液膜法、微生物法、电化学法等几类。
3.1 气相反应法3.1.1 等离子体法等离子体法有:电子束照射法、脉冲电晕法、直流电晕法、介质阻挡放电法、表面放电法等。
电子束照射法(EBA)和脉冲电晕法在前面烟气脱硫技术中均有介绍,它们是可以同时脱硫脱硝的技术,而且脱硝的有效性均比较高。
但是,由于设备结构复杂,使用寿命短以及能耗过大等不足,使两种技术还只是停留在实验室阶段,离陶瓷工业的烟气治理还有一定距离。
3.1.2 还原法还原法目前主要有:选择性催化还原法、选择性非催化性还原法和炽热碳还原法,是在催化或非催化条件下,用NH3、C等还原剂将NO X还原为无害N2的方法。
(1)选择性催化还原法(Selective Catalytic Reduction,SCR)目前世界上工业应用最广的脱氮技术。
它的基本原理是在适当的温度和催化剂存在下,以NH3为还原气体,利用氨的选择性,优先使 NO X还原。
它的主反应如式(6)和式(7)。
也可能发生氨的氧化反应,如式(8)和式(9)。
→4N2+6H2O (6)4NO+4NH3+O26NO2+8NH3→7N2+12H2O (7)2NH3+2O2→N2O+3H2O (8)4NH3+3O2→2N2+6H2O (9)温度较低时还原反应占主导地位,所以要严格控制反应器的床温。
反应的催化剂包括Pt-Rh、Pd等贵金属、碱金属氧化物或沸石等,脱硝率能达到90%以上。
防止催化剂失效和控制尾气中的NH3残留是此技术的关键问题。
而且该工艺设备投资大,所用催化剂昂贵,为大多数发展中国家所难以承受,同时存在氨泄漏、设备易腐蚀、易生成硫酸铵等问题。
(2)选择性非催化还原法(Selective Noncatalytic Reduction,SNCR)此法的特点在于不使用催化剂,而在较高的温度下(850~1050 ℃)产生活化能,以NH3或脲基化合物(如尿素)作为还原剂使NO X转化为N2。
主要反应如下:6NO+4NH3→5N2+6H2O (10)2NO+CO(NH2 )2+1/2O2→2N2+CO2+2H2O (11)相比SCR该技术具有实施简单,系统费用低廉的优点;但其脱硝率相对较低,氨消耗量大,SNCR系统逃逸的NH3不仅会使烟气中的飞灰容易沉积在锅炉尾部的受热面上,而且烟气中NH3遇SO3会产生(NH4)2SO4,容易造成空气预热器堵塞,并有腐蚀的危险。
值得注意的是,近年的研究表明,用尿素作为还原剂时NO X会转化N2O,N2O会破坏大气平流层中的臭氧,除此之外,N2O还被认为会产生温室效应,因此产生N2O问题已引起人们的重视。
(3) SNCR与SCR混合烟气脱硝技术SNCR与SCR混合烟气脱硝技术是把SNCR工艺的还原剂喷入炉膛技术同SCR 工艺利用逃逸氨进行催化反应的技术结合起来,进一步脱除NO X。
它是把SNCR工艺的低费用特点同SCR工艺的高效率及低的氨逃逸率进行有效结合。