测井
工程测井的概念

工程测井的概念
工程测井是指在工程建设和施工过程中利用测孔或者测井设备对地下岩石层和水文地质条件进行探测和评价的技术方法。
通过工程测井,可以获取地下岩石层的物理性质、水文地质参数、工程岩体的稳定性等重要信息,为工程设计、施工和管理提供科学依据。
工程测井的主要目的是评价地下岩石层的物理性质和结构状态,以及确定地下水动态、地下水位、含水层分布、水文地质参数等信息。
通过工程测井,可以确保工程的安全性、可靠性和经济性,帮助工程设计者和施工人员决策和调整工程参数,降低工程风险,提高工程质量。
工程测井的方法包括地震勘探、电测井、自然电位法、电缆测深、地电阻率法、地热测试、水位测井、地下水取样等。
这些方法可以通过不同的物理量和测量参数来获取地下岩石层和水文地质条件的信息,以满足不同工程需求。
总而言之,工程测井是一种利用测孔和测井设备对地下岩石层和水文地质条件进行评价的技术方法,用于工程设计、施工和管理,以确保工程的安全性、可靠性和经济性。
测井方法与原理

测井方法与原理测井是一种在石油勘探和开发中广泛应用的技术手段,其主要目的是通过测量地下岩石的物理性质,以评估地下地层中的油气储层并确定井孔的产能。
本文将介绍几种常用的测井方法及其原理。
一、电测井方法电测井是通过测量井眼周围地层的电阻率来评估石油储层的方法。
它的原理是通过向井眼中注入电流,然后测量所产生的电位差,从而计算出地层的电阻率。
电测井方法有许多具体的技术实现,如侧向电测井、正向电测井和声波电阻率测井等。
这些方法在实际应用中能够提供丰富的地下岩石信息,帮助确定储层的类型和含油气性质。
二、声波测井方法声波测井是通过测量地下岩石对声波的传播速度和衰减程度来评估石油储层的方法。
它的原理是利用井壁的物理特性和波的传播规律,通过发送声波信号并接收回波信号,从而推断出地层中的可用信息。
声波测井方法常用的技术包括声波传输率测井、声波振幅测井和声波时差测井等。
这些方法能够提供有关地下岩石的密度、孔隙度和饱和度等关键参数,对于油气勘探与开发具有重要意义。
三、核子测井方法核子测井是通过测量地下岩石散射或吸收射线的能量来评估石油储层的方法。
它的原理是使用放射性同位素或射线源,通过测量射线经过地层后的射线强度变化,从而反推出地层的性质和组成。
核子测井方法包括伽马射线测井、中子测井和密度测井等。
这些方法可以提供地下岩石的密度、孔隙度、含水饱和度以及岩石组成的定量信息,对于评估储层的含油气性能十分重要。
四、导电测井方法导电测井是通过测量地下岩石对电磁波的响应来评估石油储层的方法。
它的原理是利用电磁波在地下岩石中传播时的电磁感应效应,通过测量反射波的幅度和相位变化,推导出地层的导电性能。
导电测井方法包括感应测井和电阻率测井等。
这些方法可以提供有关地下岩石的电导率、水饱和度、渗透率和孔隙度等信息,对于确定储层的含油气性质具有重要的意义。
总结:测井方法是石油勘探与开发中不可或缺的技术手段,通过测量地下岩石的物理性质,能够评估地层的含油气性能、类型和产能等关键参数。
测井工程方案

测井工程方案一、前言测井是石油工程领域中非常重要的一项技术,通过测井可以获取井眼信息、地层参数等数据,为石油开发提供了重要的参考依据。
本次测井工程方案将主要针对在油田勘探和开发中的测井工程进行论述和规划。
二、测井工程概述测井是通过测量地下井眼周围的物性参数来获得地下岩层性质的一种技术。
测井技术主要包括地层测井、岩石物性测井、岩性测井等。
通过测井,可以确定地层中的含油气层、水层、地层的性质等信息,为勘探和开发提供重要的参数。
三、测井工程方案1. 测井工程前期准备在进行测井工程之前,需要做好充分的准备工作。
首先需要对井眼进行清洗和修复,保证井眼的畅通和完整性。
其次,要对测井仪器和设备进行检测和校准,确保测量精度和可靠性。
同时要有充足的安全措施和应急预案,确保工程安全进行。
2. 测井工程实施测井工程实施时,需要根据勘探和开发的需求,选择合适的测井方法和仪器。
地层测井可以采用测井仪、测井钻头等进行测量;岩石物性测井可以通过声波测井、电阻率测井、核磁共振测井等方法进行测量;岩性测井可以通过核子测井、伽马射线测井等方法进行测量。
在实施过程中,需根据地层情况,合理选择测井方法和参数,并进行实时监测和数据记录。
3. 测井数据分析与处理测井数据采集完成后,需要进行数据分析和处理。
首先需要对采集到的原始数据进行质量控制,剔除异常数据和非法数据。
然后需要对数据进行解释和处理,提取出地层参数、岩石物性参数等信息。
最后还需要对数据进行校正和修正,确保数据的准确性和可靠性。
4. 测井报告编制与总结最后需要根据测井数据和分析结果,编制测井报告,总结分析出的地层信息、岩石物性信息等,为勘探和开发提供参考。
测井报告应包括测井实施情况、数据采集情况、数据处理结果、地层参数分析等内容,并结合地质勘探和开发需求,提出建议和意见。
同时还需要对本次测井工程进行总结和评估,为后续的工作提供经验和参考。
四、测井工程的应用与前景通过测井工程可以获取大量的地下信息和岩石参数,为石油勘探和开发提供了重要的依据和支撑。
测井基础概述(全文)

测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。
简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。
岩石可以导电的。
我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。
地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。
地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。
3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。
常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。
边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。
通常,泥岩GR高,砂岩GR低。
2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。
自然电位就是测量电位的高低,以分辨砂岩还是泥岩。
常规测井系列介绍

常规测井系列介绍1.什么是测井(WELL LOGGING )一.测井概况原状地侵入带冲洗带地面仪器车③、声波测井:声波速度测井声波幅度测井声波全波测井④、其它测井:生产测井地层倾角测井特殊测井利用声学原理设计的仪器,获取声波在地层中传播速度及幅度二、3700测井方法及其应用简介3700系统是80年代美国阿特拉斯测井公司生产的数控测井系统。
主要测井项目有中子、密度、声波、深浅微侧向,井径、自然伽玛、自然电位,另外,还有地层测试等。
1.自然电位测井原理:测量井中自然电场的测井方法,用一地面电极和一沿井身移动的测量电极测出沿井身变化的自然电位曲线。
是各种完井必须的测井项目。
井中电极M 与地面电极N之间的电位差1)、自然电位成因动电学砂岩与泥岩的自然电位分布①、扩散—吸附纯砂岩-纯泥岩基本公式:②、过滤电位(一泥浆柱与地层之间存在压生过滤作用产生的。
++++++2)、曲线特点①、判断岩性,划分渗透层;②、用于地层对比;③、求地层水电阻率;④、估算地层泥质含量;⑤、判断油气水层、水淹层;⑥、研究沉积相。
l 普通电阻率测井l 侧向(聚焦)测井l 感应侧井2、电阻率测井•双侧向测井DLL①、深浅侧向同时测量,在供电电极A上、下方各加了两个同极性的电流屏蔽电极。
②、很大的测量范围,一般是1-10000Ωm。
③、深侧向探测深度大(约2.2m),双侧向能够划分出0.6m厚的地层。
双侧向电极系和电流分布图(3)、双侧向应用目前主要的电阻率测井方法,大多数油田都应用这种方法①、识别岩性、划分储层②、判断油(气)、水层;③、求取地层真电阻率;④、利用深、浅侧向差异,分析裂缝的不同类型,储层评价。
识别油气层•双侧向测井DLL(2)、适用条件适用于任何地层。
但由于微侧向是贴井壁测量,所以受泥饼厚度影响,当泥饼厚度不超过10mm时。
用微侧向测井效果较好的。
(3)、微侧向应用①、划分岩层顶底薄层②、判断岩性和储层岩性变化情况③、区分渗透层与非渗透层④、确定冲洗带电阻率⑤、划分储层的有效厚度⑥、根据冲洗带电阻率进而进行可动油、气分析和定量计算。
测井知识点总结

测井知识点总结一、测井的概念测井是指利用测井仪器和设备,通过测量井底岩层岩石和流体的性质,为油气勘探和开发提供地层信息的一种技术。
测井是一种地球物理和地质学的交叉学科,是油气勘探开发中的重要技术手段。
二、测井的作用1.评价储层性质:通过测井可以了解地层的岩石类型、孔隙度、渗透率等参数,帮助确定储层的物性特征,为油气储集层的评价提供数据支持。
2.确定油藏参数:通过测井可以确定油藏的含油饱和度、油层厚度、垂向展布和孔隙结构,为油田的储量估算和开发方案提供依据。
3.指导井位设计:测井可以确定地层的性质和构造,为井位的设计和钻井方案的制定提供依据。
4.优化井筒完井设计:通过测井可以了解井下岩性的变化和油层的特征,指导井筒完井设计,选择合适的生产层位和工程措施,提高油井的生产效率。
5.监测油气层动态:测井可以监测井底岩层的性质和变化,及时了解油气层的动态变化情况,指导油气开发策略。
6.保证油井安全:通过对井下岩层进行测量,可以了解地质构造、地应力状态、孔隙稳定性等情况,确保钻井安全。
三、常见的测井工具和方法1.自然伽马测井:自然伽马测井是利用地下岩石放射性元素自然辐射的特性,通过测量自然伽马射线的能量和强度,了解岩石的密度和成分,判断岩石类型和含油气性质。
2.电测井:电测井是利用钻井井筒和地层的电性差异,通过测量井底岩层对电流的导电、电阻、介电等特性参数,推断地层的电性特征、含水饱和度和孔隙度等信息。
3.声波测井:声波测井是利用声波在地层中的传播特性,通过测量声波波速和波幅的变化,推断地层的孔隙度、渗透率、孔隙结构和成岩环境等信息。
4.核磁共振测井:核磁共振测井是利用核磁共振技术,通过测量原子核在地层中的共振信号,获得储层的渗透率、孔隙度、岩石类型等参数。
5.测井解释方法:根据测井资料的性质、特点和目标,采用各种物理、地质和数学方法,对测井资料进行综合解释和处理,得出地层的物性参数和岩性解释结果。
6.测井井筒完整性检测方法:针对井筒完整性的要求,包括封隔壁、封堵操作、水泥防漏、井下环序装置,钻进模式,测井系统等方面,研究井筒完整性检查方法、工具及其应用。
测井基础知识

非均质性和各向异性特别严重
4、复杂岩性裂缝性油气层
03
非均质性特别严重,物性差。
3、砾岩、火成岩油气层评价
02
油气层与水层的电阻率都高,难区分
2、地层水矿化度低且多变的油气层
01
一、测井解释面临的难题
碳酸盐岩裂缝性油气层 非均质性和各向异性特别严重
01
02
低孔隙低渗透致密砂岩油气层。
新方法
分区水泥胶结测井 多极阵列声波 交叉偶极子声波
2.1 声速测井
•基本原理
声脉冲发射器滑行纵波接收器
适当源距,使达到接受器的初至波为滑行纵波。 记录初至波到达 两个接收器的时间差 t µs/m 仪器居中,井壁规则 t=1/t
t
• 补偿声波测井
2.1 声速测井
•质量要求
1、长电极系曲线在厚泥岩处数值相等。 2、2.5米和4米梯度曲线形状相似,厚层砂岩数值接近。 3、曲线与自然电位曲线、岩性剖面有对应性。
1.2 普通电阻率测井
•微电极测井 ML
1、贴井壁测量,同时测量微梯度和微电位两条曲线。前者主要反映泥饼附近的电阻率,后者反映冲洗带电阻率。 2、探测范围小(4cm和10cm),不受围岩和邻层的影响。 3、适用条件:井径10-40cm范围。 4、质量要求 1)泥岩低值、重合; 2)渗透性砂岩数值中等,正幅度差(盐水泥浆除外); 3)致密地层曲线数值高,没有幅度差 或正、负不定的幅度差。 4)除井眼垮塌和钻头直径超过微电极极板张开 最大幅度的井段外,不得出现大段平直现象。
新方法
阵列感应
阵列侧向 过套管电阻率
•原理:测量井中自然电场
M
N
井中电极M与地面电极N 之间的电位差
v
05
测井理论和方法

一、电阻率测井1、普通电阻率测井电阻率测井就是沿井身测量井周围地层地层电阻率的变化。
普通电阻率测井是把一个普通的电极系(由三个电极组成)放入井内,测量井内岩石电阻率变化的曲线。
在测量地层电阻率时,要受井径、泥浆电阻率、上下围岩及电极距等因素的影响,测得的参数不等于地层的真电阻率,而是被称为地层的视电阻率。
因此普通电阻率测井又称为视电阻率测井。
2、侧向测井是利用聚焦电流测量地层电阻率的一种测井方法。
在地层厚度较大,地层电阻率与泥浆电阻率相差不太悬殊的情况下,可以用普通电极系的横向测井,能比较准确地求出地层电阻率。
但是在地层较薄且电阻率很高,或者在盐水泥桨的条件下由于泥浆电阻率很低,使供电电极流出的电流,大部分都由井内和围岩中流过,流入测量层内的电流很少,因此测量的视电阻率曲线变化平缓,不能用来划分地层,判断岩性。
为了解决这些问题,创造了带有聚焦电极的侧向测井。
他是在主电极两侧加有同极性的屏蔽电极,把主电极发出的电流聚焦成一定厚度的平板状电流束,沿垂直于井轴方向进入地层,使井的分流作用和围岩的影响大大减小。
实践证明,侧向测井在高电阻率薄层和高矿化度泥浆的井中,比普通电阻率测井曲线变化明显。
3、感应测井是利用电磁感应原理来研究地层电层电阻率的一种测井方法。
电阻率测井法都需要井内有导电的液体,使供电电极电流通过它进入地层,在井内形成直流电场。
然后测量井轴上的电位分布,求出地层电阻率。
这些方法只能用于导电性能好的泥浆中。
为了获得地层的原始含油饱和度,需要在个别的井中使用油基泥浆,在这样的条件下,井内无导电性介质,就不能使用普通电阻率测井方法。
感应测井就是为了解决测量油基泥浆电阻率的需要而产生的,它也能用于淡水泥浆的井中,在一定条件下,它比普通电阻率测井法优越,受高阻临层影响小、对低电阻率地层反应灵敏。
感应测井和普通电阻率测井一样记录的是一条随深度变化的视电导率曲线,也可同时记录出视电阻率变化曲线。
二、介电测井介电测井也称电磁波传播测井,它是用来测量井下地层的介电常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地球物理测井概念:测井是用各种专门的仪器设备,沿井身测量井剖面上岩层的各种地球物理参数,并根据测量结果进行综合解释来判断岩性、确定油气层位置及油气含量等的方法石灰岩密度孔隙度单位:无论地层是何种岩性,均按石灰岩参数选取骨架密度参数,由此得到的石灰岩孔隙度单位。
岩石体积物理模型:根据岩石的组成按其物理性质的差异,把单位体积岩石分成相应的几部分,然后研究每一部分对岩石宏观物理量的贡献,并把岩石的宏观物理量看成是各部分贡献之和。
热中子寿命:热中子从生成开始到被俘获吸收为止所经历的平均时间。
相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0~1之间。
通常用Kro,Krg,Krw分别表示油,气,水的相对渗透率。
视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极系周围各部分介质的电阻率对测量结果都有贡献,测出的不是岩石的真电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。
周波跳跃:在疏松地层或含气地层中,由于声波能量的急剧衰减,以致接收器接受波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。
声波时差:声波传播单位距离所用的时间。
绝对渗透率:当岩石孔隙中只有一种流体时,描述流体通过岩石能力的参数。
地层压力:又称地层孔隙压力,指作用在岩石孔隙内流体(油,气,水)上的压力。
视地层水电阻率Rwa:是指地层电阻率Rt与其地层因素F的比值,用符号Rwa表示,即Rwa=Rt/F。
含油气孔隙度Sh:岩石含油气体积占有效孔隙体积的百分数,用Sh表示,且Sw+Sh=1。
有效孔隙度:是指具有储集性质的有效孔隙体积占岩石体积的百分数。
缝洞孔隙度:是指有效缝洞体积占岩石体积的百分数。
储集层有效厚度:是指在目前经济技术条件下,能够产出工业性油气流的储集层实际厚度,即符合油气层标准的储集层厚度扣出不符合标准的夹层(如泥岩或致密层)剩下的地层厚度。
裂隙孔隙度:单位体积岩石中裂缝体积所占的百分数。
残余油饱和度Sor:当前开发技术,经济条件下无法开采出的油气占有效孔隙体积的百分数。
扩散电动势:在扩散过程中,各种离子的迁移速度不同,这样在低浓度溶液一方富集负电荷,高浓度溶液富集正电荷,形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势,记为Ed。
扩散吸附电动势:泥岩薄膜离子扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成吸附扩散电动势,记为Eda。
自然电位负异常:当地层水矿化度大于泥浆滤液矿化度时,储集层自然电位曲线偏向低电位一方的异常称为负异常。
自然电位正异常:当地层水矿化度小于泥浆滤液矿化度时,储集层自然电位曲线偏向高电位一方的异常称为正异常。
泥浆侵入:在钻井过程中,通常保持泥浆柱压力稍大于地层压力,在压力差作用下,泥浆滤液向渗透层侵入,泥浆滤液替换地层孔隙所含的液体而形成侵入带,同时泥浆中的颗粒附在井壁上形成泥饼,这种现象叫泥浆侵入。
泥浆高侵:侵入带电阻率Ri大于原状地层电阻率Rt的现象。
泥浆低侵:侵入带电阻率Ri小于原状地层电阻率Rt的现象。
梯度电极系:成对电极距离小于不成对电极到成对电极距离的电极系。
电位电极系:成对电极距离大于不成对电极到成对电极距离的电极系。
标准测井:一种简单的综合测井,是各油田或油区为了粗略划分岩性和油、气、水层,并进行井间地层对比,对每口井从井口到井底都必须测量的一套综合测井方法。
因它也常用于地层对比,故又称对比测井。
侧向测井:在电极上增加聚焦电极迫使供电电极发出的电流侧向流入地层,从而减小井的分流作用和围岩的影响,提高纵向分辨能力,这种测井叫侧向测井,又称聚焦测井 声波测井:声波测井就是以介质声学特征为基础,研究钻井地质剖面、评价固井质量等问题的测井方法。
声波测井分为声速测井和声幅测井。
声速测井测量地层声波速度。
地层声波速度与地层岩性、孔隙度及孔隙流体性质等因素有关。
根据地层声波速度,可确定地层孔隙度、岩性、孔隙流体性质 自然电位测井:沿井轴测量记录自然电位变化曲线,用以区别岩性的测井方法放射性同位素测井在钻孔中,利用放射性同位素作为示踪原子,以达到划分渗透性地层、研究地下水运动特点和油层动态、检查钻孔技术情况和水力压裂效果等一整套方法 含水饱和度:是指在油层中,水所占的孔隙的体积与岩石孔隙体积之比感应测井利用电磁感应原理研究岩层导电性的一种测井方法 非弹性散射:中子与原子核碰撞后,中子将大部分动能传递给原子核,使其内能增加而处于激发态,但核的同位素成分没有变化的现象。
单元环几何因子:3332),(RT l l r L z r g =,代表单元环对测井响应的相对贡献。
横向微分几何因子:⎰+∞∞-=dz z r g r G r ),()(,物理意义:代表单位厚度半径为r 的无限长圆筒状介质对测井响应的相对贡献 横向积分几何因子:⎰==2)()(d r r dr r G d G 横积,代表半径为r (直径为d )的无限长圆柱体介质对测井响应的相对贡献。
纵向微分几何因子:⎰+∞=),()(dr z r g z G z ,代表单位厚度为h 的无限大延伸平板介质对测井响应的相对贡献。
纵向积分几何因子:⎰+=-==22)()(h z h z z dz z G h G 纵积,代表厚度为h 无限大延伸平板介质对测井响应的相对贡献。
声系:声波测井仪器中,声波发射探头和接受探头按一定要求形成的组合称为声波测井仪器的声系。
深度误差:仪器记录点与实际传播路径中点不在同一深度上。
超压地层、欠压地层:地层压力大于相同深度的静水柱压力的层位的地层称为超压地层;反之,则为欠压地层。
放射性:放射性核素都能自发放出各种射线的性质。
同位素:质子数相同、中子数不同的几种核素。
半衰期:原有的放射性核素衰变掉一半所需的时间。
基态:原子核所处的能量最低状态。
激发态:原子核处于比基态高的能量状态,即原子核被激发了。
α射线:由氦原子核组成的粒子流,氦核又称α粒子,因而α射线又称α粒子流。
β射线:高速运动的电子流。
V=2C/3(C 为光速),对物质的电离作用较强,而贯穿物质的本领较小。
γ射线:由γ光子组成的粒子流,γ光子是不带电的中性粒子。
挖掘效应:当附加的岩石骨架被挖掘并气来代替地层具有较小的中子特性减速,中子测井这种计算差异叫挖掘效应1、 简述应用同位素法确定地层相对吸水量的原理及方法。
答:首先测量一条GR 基线。
而后向井下注入含吸附有放射性同位素的材料,测量一条伽马曲线,比较前后两条伽马曲线,在差异比较大的层位,表明地层含有较多的注入材料。
应用下式计算地层的相对吸水量。
1=jmkk S S=∑相对吸水量2、 含气砂岩储层的电阻率、声波时差、密度、中子孔隙度、中子伽马曲线特点。
答:含气砂岩储层的电阻率高,一般为泥浆低侵;含气砂岩储层的声波时差大,当地层声吸收比较高时,在声波时差曲线上可见到周波跳跃现象。
含气砂岩储层的密度低。
由于天然气对快中子的减速能力差,所以含气地层的中子孔隙度低、中子伽马计数率高。
3、简要说明利用SP、微电极、声波时差、密度、中子孔隙度、双侧向(R LLD、R LLS)曲线划分淡水泥浆砂泥岩剖面油层、水层、气层的方法。
答:1)、根据微电极划分渗透层(渗透层的微梯度与微电位两条电阻率曲线不重合),淡水泥浆剖面,渗透层的SP曲线出现负异常。
2)、淡水泥浆剖面的水层,其双侧向(R LLD、R LLS)电阻率低,且深双侧向小于浅双侧向电阻率,深、浅电阻率为负差异。
3)、淡水泥浆剖面的油层,其双侧向(R LLD、R LLS)电阻率高,且深双侧向大于浅双侧向电阻率,深、浅电阻率为正差异。
4)、淡水泥浆剖面的气层,其双侧向(R LLD、R LLS)电阻率高,且深双侧向大于浅双侧向电阻率,深、浅电阻率为正差异。
同时,地层密度低、中子孔隙度低、声波时差大4、试列举影响渗透层SP测井曲线异常幅度的主要因素及其引起的SP变化(请至少列举3个方面)。
答:1)、影响渗透层SP测井曲线异常幅度的主要因素为:地层泥质含量、地层电阻率、地层水矿化度与泥浆矿化度的差异。
2)、对应影响趋势:渗透层的泥质含量越高,其SP测井曲线异常幅度越小。
渗透层的导电性越差(电阻率越高),其SP测井曲线异常幅度越小。
地层水矿化度与泥浆矿化度的差异越高,渗透层的SP测井曲线异常幅度越大。
若地层水矿化度高于泥浆矿化度,则渗透层的SP测井值低于泥岩层的测井值(负异常);反之,渗透层的SP测井值高于泥岩层的测井值(正异常)。
4、试述岩性相同的气层、油层、水层以下测井曲线特点。
微梯度、微电位曲线;声波时差曲线;补偿中子孔隙度曲线;地层密度曲线;深双侧向电阻率曲线;浅双侧向电阻率曲线。
答:1)在气层、油层、水层处,微梯度、微电位曲线不重合。
2)水层的深、浅双侧向电阻率低,且深双侧向电阻率低于浅双侧向电阻率。
3)油层的深、浅双侧向电阻率高,且深双侧向电阻率大于浅双侧向电阻率。
4)气层的深、浅双侧向电阻率高,且深双侧向电阻率高于浅双侧向电阻率。
此外,其声波时差大;补偿中子孔隙度低;地层密度低。
6、简述如何利用放射性同位素测井寻找窜槽位置。
答1)、首先测量一条GR曲线。
2)、想可疑层位注入含有放射性同位素的物质,然后再测一条伽马曲线。
3)、比较前后两条伽马曲线,如果在可疑层位出现明显的差别,则表明地层出现了窜槽。
由此可确定其位置。
7普通电阻率曲线特点梯度电极系理论曲线曲线特点:顶部梯度曲线上的视电阻率极大值、极小值分别出现在高阻层的顶界面和底界面;底部梯度曲线的极大值和极小值分别出现在高阻层的底界面和顶界面;地层中部曲线由于地层很厚,其视电阻率的测量不受上、下围岩的影响,出现一个直线段、其幅度为R2。
(2)电位电极系理论曲线曲线特点:1)曲线对地层中点对称;(2)视电阻率曲线对地层中点取得极值。
当地层厚度时,地层中点得到Ra的极大值,并且随地层厚度增加,视电阻率极大值接近与岩层的真电阻率;当h<AM时,对着高阻层的中点取得视电阻率最小值。
(3)在地层界面处,曲线上出现小平台,其中点正对着地层界面;(4)当h减小时,小平台发生倾斜,当薄层时,小平台靠地层外侧一点被夸张为高值点,通常称为“假极大8感应测井和侧向测井的适用条件:普通电阻率侧向测井以及微电阻率测井只能在水基泥浆中使用,在油基泥浆或空气钻中无法测量,为此设计感应测井,它是通过研究交变电磁场的特性反映介质电导率的一种测井方法。
9不同岩石声波速度特点;由于不同地层具有不同的声波速度,所以根据声波时差曲线可以划分不同岩性地层。