材料物理性能

合集下载

材料物理性能及测试

材料物理性能及测试

材料物理性能及测试材料的物理性能是指材料在物理方面的性质和行为,包括材料的力学性能、热学性能、电学性能以及光学性能等。

这些性能对于材料的使用和应用起着重要的作用。

为了准确地评估和测试材料的物理性能,科学家和工程师使用了各种测试方法和仪器设备。

一、力学性能力学性能是衡量材料在外力作用下的行为的一种性能。

主要指材料的强度、韧性、硬度、延展性等。

常用的测试方法包括拉伸测试、压缩测试、剪切测试和弯曲测试等。

1.拉伸测试拉伸测试是一种常见的方法,用来评估材料的强度和延展性。

在拉伸测试中,材料样品被施加拉伸力,通常通过测量载荷和伸长量来计算拉伸应力和应变。

拉伸强度是指材料在拉伸过程中承受的最大应力,屈服强度是指材料开始产生可观察的塑性变形的应力。

2.压缩测试压缩测试用于测量材料在受压力下的性能。

将材料样品放入压力装置中,施加压力使其受到压缩,通过测量载荷和位移来计算压缩应力和应变。

压缩强度是指材料在压缩过程中承受的最大应力。

3.剪切测试剪切测试用于评估材料的抗剪切能力。

将材料样品放入剪切装置中,施加剪切力使其发生剪切变形,通过测量载荷和位移来计算剪切应力和应变。

剪切强度是指材料在剪切过程中承受的最大应力。

弯曲测试用于评估材料在弯曲载荷下的行为。

将材料样品放入弯曲装置中,施加弯曲力使其发生弯曲变形,通过测量载荷和位移来计算弯曲应力和应变。

弯曲强度是指材料在弯曲过程中承受的最大应力。

二、热学性能热学性能是指材料在温度变化下的行为。

主要包括热膨胀性、热导率、比热容等性能。

常用的测试方法包括热膨胀测试、热导率测试和比热容测试等。

1.热膨胀测试热膨胀测试用于测量材料随温度变化而发生的膨胀或收缩。

在热膨胀测试中,材料样品被加热或冷却,通过测量长度变化来计算热膨胀系数。

2.热导率测试热导率测试用于测量材料传导热的能力。

在热导率测试中,材料样品的一侧被加热,另一侧被保持在恒定温度,测量两侧温度差来计算热导率。

3.比热容测试比热容测试用于测量材料吸热或放热的能力。

材料物理性能(课件)

材料物理性能(课件)
· 热重法(Thermogravimetry): 测量质量与温度的关系 。 · 用途: 测量有机物分解温度 , 研究高聚物的热稳定性
TIM
Ni(OH)2
19
(二)热容
■ 热分析方法 · 差热分析(Differential thermal analysis, DTA): 测量试样与参比物之 间温差与时间或温度的关系 。分析所采用的参比物应是热惰性物质 , 即在 整个测试温度范围内不发生分解、相变和破坏 ,也不与被测物质发生化学 反应 。参比物的热容、热传导系数等应尽量与试样接近。
5
(一 )热学性能的物理基础
■ 晶格热振动
· 晶格热振动: 晶体点阵中质点围绕平衡位置的微小振动 。材料 热学性能的物理本质均与其晶格热振动相关。 · 晶格振动是三维的 , 当振动很微弱时 , 可认为原子作简谐振动。 振动频率随弹性模量Em增大而提高。
x=ACOS(ot+p)
· 温度升高时质点动能增大 , 1/2 mv2= 1/2 kT, ∑ (动能)i =热能 · 质点热振动相互影响 ,相邻质点间的振动存在一定的相位差, 晶格振动以波(格波) 的形式在整个材料内传播 。格波在固体中的 传播速度: v = 3 * 103m/s, 晶格常数a为10-10 m数量级 ,格波最高频 率:v / 2a = 1.5 * 1013 Hz · 频率极低的格波: 声频支振动; 频率极高的格波: 光频支振动
■ 亚稳态组织转变为稳定态要释放 热量 ,热容 -温度曲线向下拐折。
H
TC
T
二级相变焓和热容随温度的变化
17
(二)热容
■ 热容的测量
· 量热计法 。低温及中温区: 电加热法 · 高温区:撒克司法
P:搅拌器 ,C: 量热器筒 18

材料物理性能

材料物理性能

材料物理性能材料的物理性能是指材料在受力、受热、受光、受电、受磁等外界作用下所表现出的性质和特点。

它是材料的内在本质,直接影响着材料的使用性能和应用范围。

材料的物理性能包括了热学性能、光学性能、电学性能、磁学性能等多个方面。

首先,热学性能是材料的一个重要物理性能指标。

热学性能包括导热性、热膨胀性和热稳定性等。

导热性是指材料传导热量的能力,通常用热导率来表示。

热膨胀性是指材料在温度变化下的体积变化情况,通常用线膨胀系数来表示。

热稳定性是指材料在高温环境下的性能表现,包括了热变形温度、热老化等指标。

这些性能对于材料在高温环境下的应用具有重要意义。

其次,光学性能是材料的另一个重要物理性能。

光学性能包括透光性、反射率、折射率等指标。

透光性是指材料对光的透过程度,通常用透光率来表示。

反射率是指材料对光的反射程度,通常用反射率来表示。

折射率是指材料对光的折射程度,通常用折射率来表示。

这些性能对于材料在光学器件、光学仪器等领域的应用具有重要意义。

此外,电学性能是材料的另一个重要物理性能。

电学性能包括导电性、介电常数、电阻率等指标。

导电性是指材料导电的能力,通常用电导率来表示。

介电常数是指材料在电场中的极化能力,通常用介电常数来表示。

电阻率是指材料对电流的阻碍程度,通常用电阻率来表示。

这些性能对于材料在电子器件、电气设备等领域的应用具有重要意义。

最后,磁学性能是材料的另一个重要物理性能。

磁学性能包括磁导率、磁饱和磁化强度、矫顽力等指标。

磁导率是指材料对磁场的导磁能力,通常用磁导率来表示。

磁饱和磁化强度是指材料在外磁场作用下的最大磁化强度,通常用磁饱和磁化强度来表示。

矫顽力是指材料在外磁场作用下的抗磁化能力,通常用矫顽力来表示。

这些性能对于材料在磁性材料、电机、传感器等领域的应用具有重要意义。

综上所述,材料的物理性能是材料的重要特性,直接影响着材料的使用性能和应用范围。

不同类型的材料具有不同的物理性能,因此在材料选择和应用过程中,需要充分考虑材料的物理性能指标,以确保材料能够满足特定的使用要求。

材料物理性能答案

材料物理性能答案

材料物理性能答案材料的物理性能是指材料在物理方面所表现出来的特性和性能。

它包括了材料的力学性能、热学性能、电学性能、磁学性能等多个方面。

在工程实践中,对材料的物理性能有着非常高的要求,因为这些性能直接关系到材料在使用过程中的稳定性和可靠性。

下面将分别对材料的力学性能、热学性能、电学性能和磁学性能进行详细介绍。

首先,力学性能是材料最基本的性能之一。

它包括了材料的强度、韧性、硬度、塑性等指标。

强度是材料抵抗外部力量破坏的能力,韧性是材料抵抗断裂的能力,硬度是材料抵抗划痕的能力,塑性是材料在外力作用下发生形变的能力。

这些指标直接影响着材料在工程中的使用寿命和安全性。

其次,热学性能是材料在热学方面的表现。

它包括了材料的热膨胀系数、热导率、比热容等指标。

热膨胀系数是材料在温度变化时长度、面积或体积的变化比例,热导率是材料传导热量的能力,比热容是材料单位质量在温度变化时吸收或释放的热量。

这些指标对于材料在高温或低温环境下的稳定性和耐热性有着重要的影响。

再次,电学性能是材料在电学方面的表现。

它包括了材料的导电性、绝缘性、介电常数等指标。

导电性是材料导电的能力,绝缘性是材料阻止电流流动的能力,介电常数是材料在电场中的响应能力。

这些指标对于材料在电子器件、电力设备等方面的应用具有重要的意义。

最后,磁学性能是材料在磁学方面的表现。

它包括了材料的磁化强度、磁导率、矫顽力等指标。

磁化强度是材料在外磁场作用下磁化的能力,磁导率是材料传导磁场的能力,矫顽力是材料磁化和去磁化之间的能量损耗。

这些指标对于材料在电机、变压器等磁性设备中的应用具有重要的作用。

综上所述,材料的物理性能是材料工程中非常重要的一部分。

它直接关系到材料在使用过程中的性能和稳定性,对于材料的选用、设计和应用具有重要的指导意义。

因此,对材料的物理性能进行全面的了解和评价,是材料工程中必不可少的一项工作。

材料物理性能简介-2014

材料物理性能简介-2014

<<材料物理性能>>基本要求一,基本概念:1.摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为摩尔热容。

它反映材料从周围环境吸收热量的能力。

2.比热容:质量为1kg的物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为比热容。

它反映材料从周围环境吸收热量的能力。

3.比容:单位质量(即1kg物质)的体积,即密度的倒数(m3/kg)。

4.格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。

因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。

5.声子(Phonon): 声子是晶体中晶格集体激发的准粒子,就是晶格振动中的简谐振子的能量量子。

6.德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=ћωmax/k。

7.示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和标准试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。

8.示差扫描量热法(Differential Scanning Calorimetry, DSC): 用示差方法测量加热或冷却过程中,将试样和标准样的温度差保持为零时,所需要补充的热量与温度或时间的关系。

9.热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。

10.塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。

11.玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q的现象。

材料物理性能

材料物理性能

裂纹的快速扩展(脆性材料) :临界裂纹尺寸决定材料的断裂强度,一旦裂纹临界尺寸就 迅速扩展使材料断裂。因为裂纹扩展力 G=π Cζ ²/E,C↑,G↑而 dWs/dc=2γ 是常数,因此, 裂纹一旦达到临界尺寸开始扩展,G 就越来越大于 2γ ,知道破坏。 亚临界生长:在使用应力下,裂纹随时间的推移而缓慢扩张,这种缓慢扩展叫亚临界生长。 13、 防止裂纹扩展的措施:1.作用应力不超过临界应力;2.在材料中设置吸收能量的机 构 3.认为地在材料中造成大量极微细的裂纹也能吸收能量。 14、 应力腐蚀理论:在一定的环境,温度和应力场强度因子作用下,材料中关键裂纹尖 端处,裂纹扩展动力与裂纹扩展阻力的比较构成裂纹开裂或止裂的条纹。 15、 显微结构对材料脆性断裂的影响:晶粒尺寸愈小,强度愈高;气孔率增加,强度 和弹性模量降低。 16、 提高无机材料强度改进材料韧性的途径:1.微晶,高密度与高纯度,消除缺陷,提 高晶体的完整性,强度增加。2.提高抗裂能力与预加应力。 (钢化玻璃)表面造成一层压 应力层,脆性断裂自表面开始断裂,预加应力吼需要克服该应力后才开始破坏。3.化学 强化。改变表面化学的组成,使表面的摩尔体积比内部的大,由于表面受到内部材料的 限制,就产生两向状态的压应力,从而使表面残余应力更高。通常是一种大离子置换小 离子来提高压应力。 4.相变增韧。 利用多晶多相陶瓷中某些组成成分在不同温度的相变, 体积增大使围观裂纹终止,从而达到增韧的效果。5.弥散增韧。在基体中渗入具有一定 颗粒尺寸的微细粉料,达到增韧的效果。 17、 F,m 的选择原则(纤维与晶体的匹配原则) :1.使纤维尽可能多的承担外加负荷。为 此,应选用强度及弹性模量比基体高的纤维。2.二者的结合强度适当,否则基体中所承 受的应力无法传递到纤维上。3.应力作用的方向与纤维平行,才能发挥纤维的作用,因 此应注意纤维在基体中的排列。4.纤维与基体的热膨胀系数匹配,最好是纤维的热膨胀 系数略大于基体。5.考虑二者在高温下的化学相容性。必须保证高温下不发生纤维性能 降低的化学反应。6.必须使 Vf>Vf 临界,才能起到强化作用。 18、 热容:物体温度升高 1K 所需要增加的能量 热膨胀:物体的体积或长度随温度的 升高而增大的现象。比热:单位质量的热容。 19、 晶态固体热容经验定律:1.杜隆—珀替定律(元素热容定律) :恒压下元素的原子 热容为 25J/(K·mol).实际上,大部分元素的原子热容都接近该值,特别在高温时符合 地更好。局限:轻元素的原子热容有较大误差 2 柯普定律(化合物热容定律) :化合物 分子热容等于构成此化合物各元素原子热容之和。 20、 爱因斯坦,德拜模型比热模型的异同:同:都是在量子理论的基础上求得热容的 表达式,且两者在高温时与经典公式一致;异:1.爱因斯坦比热模型假设的是每个原子 都是一个独立的振子, 原子之间彼此无关。 所导出的热容值仅在高温下与经典公式一致, 而德拜模型考虑了晶体中原子的相互作用,把晶体近似为连续介质,声频支的震动也近 似的看作是连续的,与实验结果十分吻合;2.爱因斯坦模型的假设忽略可原子振动之间 频率的差别,导致模型在低温时不准;德拜模型考虑了晶体中原子的相互作用,高于 Wmax 不在声频支而在光频支范围,对热容贡献小,可忽略。当温度很低时,即 T<<θ D,有 Cv=12/5π 4NK(T/θ D)3,温度越低,近似越好。 热膨胀系数:温度升高 1K,物体的相对伸长或体积的相对增长值。 19、热膨胀机理 固体材料的热膨胀本质, 归结为点阵结构中的质点间平均距离随温度升高而增大。 在晶格振 动中相邻质点间的作用力实际是非线性的,质点在平衡位置两侧时,受力并不对称。在在质 点平衡位置两侧,合力曲线斜率时不相等的。当 r<r0 时,斜率较小,引力随位移的增大要 慢一些。在这样的受力情况下,质点平衡位置就要向右移,温度越高,相邻质点间平均距离

材料物理性能

材料物理性能

1.根据受力应变特征材料分为:脆性材料,延性材料,弹性材料。

2.材料受载荷后形变的三个阶段:弹性形变,塑形形变,断裂3.弹性模量:材料在弹性变形阶段内正应力和对应的正应变的比值。

意义:反映材料抵抗应变的能力,是原子间结合强度的标志。

影响因素〔键合方式,晶体结构,温度,复相的弹性模量〕。

机理:对于足够小的形变应力与应变成线性关系,系数为弹性模量,物理本质是原子间结合力抵抗外力的宏观表现,弹性系数和弹性模量是反映原子间结合强度的标志。

4.滞弹性:固体材料的应变产生与消除需要有限的时间,这种与时间有关的弹性称为滞弹性。

衡量指标:应力弛豫和应力蠕变。

应力弛豫:在持续外力作用下发生形变的物体在总变形值保持不变的情况下,徐变变形增加使物体的内部应力随时间延续而逐渐减少的现象。

应力蠕变:固体材料在恒定荷载下变形随时间延续而缓慢增加的不平衡过程。

5.塑性形变指一种在外力移去后不能回复的形变。

滑移系统:滑移方向和滑移面。

产生条件:a-〔几何条件〕面间距大滑移矢量小b〔静电条件〕每个面上是同种电荷原子,相对滑移面上的电荷相反。

无机非材料不产生原因:a.滑移系统少;b.〔位错运动激活能大〕位错运动需要克服的势垒比拟大,位错运动难以实现。

施加应力,或者由于滑移系统少无法到达临界剪应力,或者在到达临界剪应力之前就导致断裂;c.伯格斯矢量大。

6.高温蠕变定义:材料在高温下长时间受到小应力作用出现蠕变现象。

影响因素:温度和应力。

机理:a晶格机理〔位错攀移理论,由于热运动位错线处一列原子移去或移入,位错线向上移一个滑移面。

〕b扩散蠕变理论〔空位扩散流动,应力造成浓度差,导致晶粒沿受拉方向伸长或缩短引起形变〕c晶界机理〔多晶体蠕变,高温下晶界相对滑动,剪应力松弛,有利蠕变。

低温下晶界本身是位错源,不利蠕变〕7.理论断裂强度:理论下材料所能承受的最大应力。

实际强度:实际情况中材料在外加应力作用下,沿垂直外力方向拉断所需应力。

8.断裂韧性:是材料的固有性能,由材料的组成和显微结构所决定,是材料的本征参数。

材料物理性能

材料物理性能

材料物理性能1. 引言材料物理性能是指材料在物理方面的性能特征与表现,包括其力学性能、热学性能、电学性能等。

了解材料的物理性能能够帮助我们选择合适的材料,预测材料的行为以及进行工程设计和优化。

2. 力学性能2.1 弹性模量弹性模量是材料在受力作用下产生弹性变形的能力,一般表示为杨氏模量(Young’s modulus)、剪切模量(Shear modulus)和泊松比(Poisson ratio)。

- 杨氏模量描述了材料在受拉或受压时的弹性性能,可以算作是应力与应变之间的比例系数。

- 剪切模量衡量了材料在受剪切力作用下的变形能力。

- 泊松比描述了材料在受力作用下,在两个垂直于受力方向的平面上的变形比例。

2.2 强度强度是指材料在承受外力作用下能够抵抗变形和破坏的能力。

强度可以分为屈服强度、抗拉强度、抗压强度、抗剪强度等。

不同类型的力学性能指标适用于不同的应用场景。

2.3 脆性和韧性脆性是指材料在受力作用下容易发生断裂的性质,表现为材料的断裂韧度较低;韧性是指材料在受力作用下能够发生塑性变形而不断裂的性质,表现为材料的断裂韧度较高。

脆性和韧性是相对的,不同材料的脆性和韧性特点不同。

3. 热学性能3.1 热膨胀系数热膨胀系数描述了材料在温度变化下的对长度、体积或密度的变化率。

材料的热膨胀系数可以影响它在温度变化下的热膨胀或收缩行为。

3.2 热导率热导率是指材料传导热量的能力,表示的是单位时间内单位温度差下,通过单位横截面积所传导的热量。

热导率可以用于描述材料的导热性能。

3.3 热容量热容量是指材料在受热时吸收热量的能力,以及在冷却时释放热量的能力。

热容量可以用于描述材料在温度变化下的热稳定性和热响应行为。

4. 电学性能4.1 电导率电导率是指材料导电的能力,表示单位长度内单位面积上的电流。

电导率可以用于描述材料的导电性能。

4.2 介电常数介电常数是指材料对电场的响应能力,表示单位电场下单位体积内储存能量的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《材料物理性能》测试题1、利用热膨胀曲线确定组织转变临界点通常采取的两种方法是: 、2、列举三种你所知道的热分析方法: 、 、3、磁各向异性一般包括 、 、 等。

4、热电效应包括 效应、 效应、 效应,半导体制冷利用的是 效应。

5、产生非线性光学现象的三个条件是 、 、 。

6、激光材料由 和 组成,前者的主要作用是为后者提供一个合适的晶格场。

7、压电功能材料一般利用压电材料的 功能、 功能、 功能、 功能或 功能。

8、拉伸时弹性比功的计算式为 ,从该式看,提高弹性比功的途径有二: 或 ,作为减振或储能元件,应具有 弹性比功。

9、粘着磨损的形貌特征是 ,磨粒磨损的形貌特征是 。

10、材料在恒变形的条件下,随着时间的延长,弹性应力逐渐 的现象称为应力松弛,材料抵抗应力松弛的能力称为 。

1、导温系数反映的是温度变化过程中材料各部分温度趋于一致的能力。

( )2、只有在高温且材料透明、半透明时,才有必要考虑光子热导的贡献。

( )3、原子磁距不为零的必要条件是存在未排满的电子层。

( )4、量子自由电子理论和能带理论均认为电子随能量的分布服从FD 分布。

( )5、由于晶格热振动的加剧,金属和半导体的电阻率均随温度的升高而增大。

( )6、直流电位差计法和四点探针法测量电阻率均可以消除接触电阻的影响。

( )7、 由于严格的对应关系,材料的发射光谱等于其吸收光谱。

( )8、 凡是铁电体一定同时具备压电效应和热释电效应。

( )9、 硬度数值的物理意义取决于所采用的硬度实验方法。

( )10、对于高温力学性能,所谓温度高低仅具有相对的意义。

( )1、关于材料热容的影响因素,下列说法中不正确的是 ( )A 热容是一个与温度相关的物理量,因此需要用微分来精确定义。

B 实验证明,高温下化合物的热容可由柯普定律描述。

C 德拜热容模型已经能够精确描述材料热容随温度的变化。

D 材料热容与温度的精确关系一般由实验来确定。

2、 关于热膨胀,下列说法中不正确的是 ( )A 各向同性材料的体膨胀系数是线膨胀系数的三倍。

B 各向异性材料的体膨胀系数等于三个晶轴方向热膨胀系数的加和。

C 热膨胀的微观机理是由于温度升高,点缺陷密度增高引起晶格膨胀。

D 由于本质相同,热膨胀与热容随温度变化的趋势相同。

3、下面列举的磁性中属于强磁性的是 ( )A 顺磁性B 亚铁磁性C 反铁磁性D 抗磁性4、关于影响材料铁磁性的因素,下列说法中正确的是 ( )A 温度升高使得M S 、B R 、HC 均降低。

B 温度升高使得M S 、B R 降低,H C 升高。

C 冷塑性变形使得C H μ和均升高。

D 冷塑性变形使得C H μ和均降低。

5、下面哪种效应不属于半导体敏感效应。

( )A 磁敏效应B 热敏效应C 巴克豪森效应D 压敏效应6、关于影响材料导电性的因素,下列说法中正确的是 ( )A 由于晶格振动加剧散射增大,金属和半导体电阻率均随温度上升而升高。

B 冷塑性变形对金属电阻率的影响没有一定规律。

C “热塑性变形+退火态的电阻率”的电阻率高于“热塑性变形+淬火态”D 一般情况下,固溶体的电阻率高于组元的电阻率。

7、下面哪种器件利用了压电材料的热释电功能 ( )A 电控光闸B 红外探测器C 铁电显示器件D 晶体振荡器8、下关于铁磁性和铁电性,下面说法中不正确的是 ( )A 都以存在畴结构为必要条件B 都存在矫顽场C 都以存在畴结构为充分条件D 都存在居里点9、下列硬度实验方法中不属于静载压入法的是 ( )A 布氏硬度 B肖氏硬度 C 洛氏硬度 D显微硬度10、关于高温蠕变性能,下列说法中不正确的是()A 蠕变发生的机理与应力水平无关。

B粗化晶粒是提高钢持久强度的途径之一。

C 松弛稳定性可以评价材料的高温预紧能力。

D 蠕变的热激活能与材料的化学成分有关。

四、简答题(每题6分,共30分):1、以杜隆-珀替定律为例,简要回答热容模型的推导步骤。

2、直接交换作用是如何解释自发磁化现象的?3、什么是霍耳效应,简要回答其在电学性能中的应用。

4、如何理解反射系数和折射率的关系?5、以BaTiO3晶体为例,简要说明热运动引起的自发极化。

铁磁性材料的技术磁化过程分为哪几个阶段,请用简图表示并用文字简单说明各阶段的含义,指出如何从该图求得自发磁化强度。

压电体:某些电介质施加机械力而引起它们内部正负电荷中心相对位移,产生极化,从而导致介质两端表面内出现符号相反的束缚电荷。

在一定应力范围内,机械力与电荷呈线性可逆关系这类物质导体:在外电场的作用下,大量共有化电子很易获得能量,集体定向流动形成电流的物体半导体:能带结构的满带与空带之间也是禁带,但是禁带很窄,导电性能介于导体和半导体之间的物体绝缘体:在外电场的作用下,共有化电子很难接受外电场的能量,难以导通电流的物体热电效应:当材料存在电位差时会产生电流,存在温度差时会产生热流的这种现象电光效应:铁电体的极化能随E而改变,因而晶体的折射率也将随E改变,这种由外电场引起晶体折射率的变化一般吸收:在光学材料中,石英对所有可见光几乎都透明的,在紫外波段也有很好的透光性能,且吸收系数不变的这种现象选择吸收: 对于波长范围为3.5—5.0μm的红外光却是不透明的,且吸收系数随波长剧烈变化的这种现象发光效率:发光体把受激发时吸收的能量转换为光能的能力受激辐射:当一个能量满足hv=E2-E1的光子趋近高能级E2的原子时,入射的光子诱导高能级原子发射一个和自己性质完全相同的光子的过程因瓦效应:将与因瓦反常相关联的其它物理特性的反常行为简答题电介质导电的概念、详细类别、来源。

概念:并不是所有的电介质都是理想的绝缘体,在外电场作用下,介质中都会有一个很小的电流类别:一类是源于晶体点阵中基本离子的运动,称为离子固有电导或本征电导,这种电导是热缺陷形成的,即是由离子自身随着热运动的加剧而离开晶格点阵形成。

另一类是源于结合力较弱的杂质离子的运动造成的,称为杂质电导来源(导电方式):电子与空穴(电子电导);移动额正负离子电导(离子电导)。

对于离子电导,必须需要指出的是:在较低场强下,存在离子电导;在高场强下,呈现电子电导。

硬磁材料与软磁材料各自的特点与区别。

软磁材料:磁滞回线瘦长,μ高、 Ms高、 Hc小、 Mr低,如变压器铁芯,常用材料如工业纯铁、硅铁、铁镍合金、铁钴合金等。

硬磁(永磁)材料:磁滞回线短粗,μ低、 Hc与 Mr高,常用材料如铁氧体、铝镍、稀土钴、稀土镍合金等,80年代发展的Nd-Fe-B系合金Mr/Ms接近于1的矩形回线材料即矩磁材料是理想的磁记录材料。

请简要回答热电性的三个基本热电效应。

电滞回线的各个物理量的名称和物理意义。

极化强度P,外加电场E,饱和极化强度Ps,剩余极化强度Pr,矫顽电场强度Ec磁滞回线的各个物理量的名称和物理意义。

Hs称为使磁化强度达到饱和时的磁场强度,饱和磁感应强度Bs,Ms称为饱和磁化强度,Mr称为剩余磁化强度,要使M 降至0,必须施加一反向磁场-Hc, Hc称为磁矫顽力,请基于磁化率给物质磁性分类,并说明各类的物质磁化难以程度。

简要回答物质磁性的来源任何物质由原子组成,原子又有带正电的原子核(核子)和带负电的电子构成。

核子和电子本身都在做自旋运动,电子又沿一定轨道绕核子做循规运动。

它们的这些运动形成闭合电流,从而产生磁矩。

材料磁性的本源是:材料内部电子的循规运动和自旋运动。

为什么自发磁化要分很多的磁畴。

交换能力图使整个晶体自发磁化至饱和,磁化方向沿着晶体易磁化方向,就使交换能和各向异性能都达到最小值。

但必然在端面处产生磁极,形成退磁化场,增加了退磁场能,从而将破坏已形成的自发磁化,相互作用的结果使大磁畴分割为小磁畴,即减少退磁能是分畴的基本动力。

分畴后退磁能虽减小,但增加了畴壁能,使得不能无限制分畴。

当畴壁能与退磁能之和最小时,分畴停止。

(局部的退磁场作用下,出现三角形畴(副畴,塞漏畴),与主磁畴路闭合,减少了退磁能,但增加各向异性能、磁弹性能)正常情况下,为什么半导体材料的电阻随着温度的升高而降低。

μυσρ22/1e n m **==载流子密度正常情况下,为什么金属的电导率随着温度的升高而降低。

金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,可认为μ与温度成正比,则ρ也与温度成正比。

影响金属导电性的因素有哪些。

为什么金属化合物的导电性要低于单一金属,请基于电离势能方面的差异进行简要说明。

(1)晶体点阵畸变;(2)杂质对理想晶体的破坏;(3)影响了能带结构,移动费米面及电子能态密度和有效电导电子数;(4)影响了弹性常数。

过渡金属与贵金属两组元固溶时:电阻异常高,原因它们的价电子可以转移到过渡金属的尚未被填满的d-或f-壳层中,从而使有效电导的电子数目减少。

原子键合的方式发生了变化,其中至少一部分由金属键变为共价键获离子键,使导电电子减少。

超导体为什么具有完全的抗磁性。

这是由于外磁场在试样表面感应产生一个感应电流,此电流由于所经路径电阻为0,故它所产生的附加磁场总是与外磁场大小相等,方向相反,因而使超导体内的合成磁场为零。

由于此感应电流能将外磁场从超导体内挤出,故称抗磁感应电流,又因其能起着屏蔽磁场的作用,又称屏蔽电流。

简述本证硅的导电机理。

导电机理:在热、光等外界条件的影响下,满带上的价电子获得足够的能量,跃过禁带跃迁至空带而成为自由电子,同时在满带中留下电子空穴,自由电子和电子空穴在外加电场的作用下定向移动形成电流。

简述硅中掺杂硼的导电机理(要有示意图)在本征半导体中,掺入3价元素的杂质(硼,铝,镓,铟),就可以使晶体中空穴浓度大大增加。

因为3价元素的原子只有3个价电子,当它顶替晶格中的一个4价元素原子,并与周围的4个硅(或锗)原子组成4个共价键时,缺少一个价电子,形成一个空位。

因为,3价元素形成的空位能级非常靠近价带顶的能量,在价电子共有化运动中,相邻的原子上的价电子就很容易来填补这个空位(较跃迁至禁带以上的空带容易的多),从而产生一个空穴。

所以每一个三价杂质元素的原子都能接受一个价电子,而在价带中产生一个空穴。

简述硅中掺杂砷的导电机理(要有示意图)本征半导体中掺入5价元素(磷,砷,锑)就可使晶体中的自由电子的浓度极大地增加。

因为5价元素的原子有5个价电子,当它顶替晶格中的一个4价元素的原子时,余下了1个价电子变成多余的,此电子的能级非常靠近导带底,非常容易进入导带成为自由电子,因而导带中的自由电子较本征半导体显著增多,导电性能大幅度提高。

简述介质损耗的几种形式及造成这几种损耗的原因。

介质损耗形式:1)电导(或漏导)损耗 实际使用的电介质都不是理想的绝缘体,都或多或少地存在一些弱联系带电离子或空穴,在 E 作用下产生漏导电流,发热,产生损耗。

相关文档
最新文档