曲线方程求法

合集下载

直线和曲线的简单方程求解方法

直线和曲线的简单方程求解方法

直线和曲线的简单方程求解方法一、直线方程求解方法1.1 点斜式方程点斜式方程是直线上任意一点和斜率来表示直线方程的一种形式,其一般形式为:y - y1 = k(x - x1),其中(x1, y1)为直线上的一点,k为直线的斜率。

1.2 两点式方程两点式方程是利用直线上的两点来表示直线方程的一种形式,其一般形式为:(y - y1)/(y2 - y1) = (x - x1)/(x2 - x1),其中(x1, y1)和(x2, y2)为直线上的两点。

1.3 截距式方程截距式方程是直线在坐标轴上的截距来表示直线方程的一种形式,其一般形式为:x/a + y/b = 1,其中a为x轴截距,b为y轴截距。

1.4 一般式方程一般式方程是直线方程的通用形式,其一般形式为:Ax + By + C = 0,其中A、B、C为常数,且A、B不同时为0。

二、曲线方程求解方法2.1 圆的方程圆的方程是利用圆心和半径来表示圆的一种形式,其一般形式为:(x - h)² + (y - k)² = r²,其中(h, k)为圆心坐标,r为半径。

2.2 椭圆的方程椭圆的方程是利用椭圆的长轴、短轴和焦距来表示椭圆的一种形式,其一般形式为:x²/a² + y²/b² = 1,其中a为半长轴,b为半短轴。

2.3 双曲线的方程双曲线的方程是利用双曲线的实轴、虚轴和焦距来表示双曲线的一种形式,其一般形式为:x²/a² - y²/b² = 1,其中a为实半轴,b为虚半轴。

2.4 抛物线的方程抛物线的方程是利用抛物线的焦点、准线和顶点来表示抛物线的一种形式,其一般形式为:y² = 4ax 或 x² = 4ay,其中a为焦点到顶点的距离。

三、求解方法3.1 直线方程求解直线方程求解主要是通过解析式来求出直线上任意一点的坐标。

求曲线方程的常用方法

求曲线方程的常用方法
于是 ,
化简得:x2+y2-2x=0(x≠0)。
方法二:(代入法)设P点坐标为(x,y),N点坐标为( ),根据中点坐标公式得 ,因为N在圆上,所以
(x≠0),
化简得:x2+y2-2x=0(x≠0)。
方法三:(参数法)设P点坐标为(x,y),直线ON的方程为:y=kx,
由 消去y得:(1+k2)x2-4x=0,
参数法是借助中间变量,间接得到x、y关系的方法。在预先无法判断曲线的类型,又不容易直接找到x、y关系的情况下,就必须使用参数法。参数法的关键是参数的选择。有时用一个中间变量,有时则用多个。平时提到的代入法、点差法、交轨法都属于参数法。使用参数法时,不一定要得到参数方程,在适当的时机消去参数即可。
本课通过对一个题目的多种解法,复习求曲线方程的常用方法,并通过一题多变,让学生体验各种方法的适用条件。学会具体问题具体分析,培养学生发散思维能力和创新能力。
的几种形式,圆、椭圆、双曲线和抛物线的标准方程等。使用公式法的前提是:知道曲线的类型。有时并不告诉曲线的类型,但是根据定义能够判断出曲线的类型,再利用公式(有些书上称为定义法)。在使用公式时,有时可以一一求出公式中的系数,再代入公式。有时则要带着系数运算,直到最后求出系数(这就是所谓的待定系数法)。
因为PC⊥PO,所以|OP|=|OC| =2 ,于是 , ,P点轨迹的参数方程为
,消去参数得:x2+y2-2x=0(x≠0)。
方法九:(参数法——点差法)设P点坐标为(x,y),直线ON与圆的两个交点的坐标分别为(x1,y1)、(x2,y2),则
, ,两式作差得
注意到x1+x2=2x,y1+y2=2y, ,代入整理得:
变化一:(变化圆心和转动点)

(完整版)求曲线方程的六种常用方法

(完整版)求曲线方程的六种常用方法

(完整版)求曲线方程的六种常用方法求曲线方程的六种常用方法在数学中,求解曲线方程是一个非常重要的问题。

这篇文档将介绍六种常用的方法,帮助你解决这个问题。

方法一:代数法代数法是求解曲线方程最常用的方法之一。

它的基本思想是将给定的曲线方程转化为代数方程,然后通过求解代数方程来得到曲线方程的解。

方法二:几何法几何法是另一种常用的求解曲线方程的方法。

它的基本思想是通过几何性质和图形的特点来确定曲线方程的形式和参数。

方法三:微积分法微积分法在求解曲线方程中也起到了非常重要的作用。

它利用微积分的工具和技巧来对曲线进行分析和求解。

通过求导、积分等操作,我们可以推导出曲线的方程式。

方法四:插值法插值法是一种通过已知的离散数据点来推测出未知数据点的方法。

利用插值法,我们可以找到曲线方程经过的点,并进而求解出曲线方程。

方法五:拟合法拟合法和插值法类似,它也是一种通过已知的数据点来求解曲线方程的方法。

拟合法通常通过根据给定的数据点,选择合适的曲线方程形式,使得曲线与这些数据点最为接近。

方法六:数值计算法数值计算法是一种通过数值计算的方式来求解曲线方程的方法。

它利用计算机的高速计算能力,通过迭代等方法快速求解出曲线方程的解。

通过掌握这六种常用的方法,相信你能更加轻松地求解曲线方程。

选择适合你的方法,并进行实践,相信你一定能够取得理想的结果。

结论本文介绍了六种常用的求解曲线方程的方法,包括代数法、几何法、微积分法、插值法、拟合法和数值计算法。

通过掌握这些方法,你能够更加有效地求解曲线方程,解决数学问题。

希望这些方法能够对你有所帮助。

人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

二、参数法求曲线方程
例5 过点 P( 2 ,4) 作两条相互垂直的直线 l1, l2 ,若 l1 交 x 轴于点A,l2
交y 轴于点B,求线段AB的中点M的轨迹方程。
解析:设点M (x, y) 。
① 当直线 l1 的斜率垂直且不为0时,可设其方程为:y 4 k(x 2)
因为
l1 l2
建立适当的坐标系,求这条曲线的方程。
解析:如图:取直线 l 为轴,过点F且垂直于 直线 l 的直线为y轴,建立坐标系 xOy. 设点 M (x, y) 是曲线上任意一点,作MB x 轴
垂足为B,则M属于集合
P M || MF | | MB| 2 x2 (y 2)2 y 2 x2 (y 2)2 (y 2)2
③(四川卷)已知两定点 A(2,0), B(1,0) ,若动点P满足|PA|=2|PB|, 则点P的轨迹所围成的图形的面积等于( )
A B 4 C 8 D 9
二、直接法求曲线方程
例3 已知一条直线 l 和它上方的一个点F,点F到的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
二、相关点法求曲线方程
例4 在圆 x2 y2 4 上任取一点P,过点P作 x 轴的垂线段PD,D为垂
足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设 M (x, y), P(x0, y0 ),则x

x0 , y

y0 2
.
因为点P在圆上,所以 x02 y02 4 。
把 x0 x, y0 2x 带入上式得:x2 4 y2 4.
所以点M的轨迹方程是 x2 4y2 4. 。
相关点法—知识总结与练习

求曲线方程的几种常用方法

求曲线方程的几种常用方法

求曲线方程的几种常用方法宜君县高级中学 马卫娟已知动点所满足的条件,求动点的轨迹方程是平面解析几何的一个重要题型。

下面就通过实例介绍几种求曲线方程的常用方法。

一.直接法:即课本中主要介绍的方法。

若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点的坐标为(x,y),再根据命题中的已知条件,研究动点形成的几何特征,运用几何或代数的基本公式、定理等列出含有x,y 的关系式,从而得到轨迹方程。

例1.在直角△ABC 中,斜边是定长2a(a>0),求直角顶点C 的轨迹方程。

解法一:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系(如图所示)则有:A(-a,0)、B(a,0),设动点C 的坐标为(x,y) 则满足条件的点C 的集合为}/{222AB BCAC C P =+=所以()()()22222222)()(a ya x ya x =+-+++即222a y x =+因为当点C 与A 、B 重合时,直角△ABC 不存在,所以轨迹中应除去A 、B 两点,既ax ±≠。

故所求点C 的轨迹方程为222ay x =+()a x ±≠。

解法二:如解法一建立直角坐标系,设A(-a,0)、B(a,0)、C(x,y) ∵A C ⊥BC ∴1-=⋅BC AC K K∴1-=-⋅+ax y ax y (1)化简得:222a y x =+(2)由于a x ±≠时,方程(1)与(2)不等价,所以所求点C 的轨迹方程为222ay x =+()a x ±≠。

解法三:如解法一建立直角坐标系,则:A(-a,0)、B(a,0),设C(x,y) 连接CO ,则有:AB CO 21=所以a a yx =⋅=+22122即222ay x =+轨迹中应除去A ,B 两点(理由同解法一) 故所求点C 的轨迹方程为222ay x =+()a x ±≠。

说明:利用直接法求曲线方程的一般步骤(1) 建立适当的直角坐标系,用(x,y)表示曲线上任意点M 的坐标; (2) 写出适合条件P 的点M 的集合P={M\p(m)}; (3) 用坐标表示条件P(M),列出方程f(x,y)=0; (4) 化方程f(x,y)为最简形式;(5) 证明以化简后的方程的解为坐标的点都是曲线上的点。

求曲线方程方法讲解

求曲线方程方法讲解

y ( x, y) 由中点坐标公式可知

x1 y1

x 2 y 2
A
∵AB 边上的中线 CD=3
D
∴ (x1 4)2 y12 9
B
化简整理得 (x 8)2 y2 36
∴点 A 的轨迹方程为 (x 8)2

y2

0
36
.

y

0C
Mx
法二: 添辅助线 MA,巧用图形性质, 妙极了! 注:这种求轨迹方程的方法叫做相关点坐标分析法(代入法)
变式练习
若三角形ABC的两顶点C,B的坐标分别是C(0,0),
B(6,0),顶点A在曲线y=x2+3上运动,求三角形ABC
重心G的轨迹方程.
y 10
8
y=x2+3
6
A
4
2
M
OB
x
-2
-4
四 例 3.经过原点的直线 l 与圆 x2 y2 6x 4 y 9 0 相交于
√√ 4.化简方程 f (x, y) 0 为最简形式;
5.证明(查漏除杂).
以上过程可以概括为一句话:建.设.现.(.限.).代.化..
知识回顾
在什么条件下,方程f(x,y)=0是曲线C 的方程,同时曲线C是该方程的曲线?
(1)曲线C上的点的坐标都是方程 f(x,y)=0的解;(纯粹性)
(2)以方程f(x,y)=0的解为坐标的点 都在曲线C上. (完备性)
简单地说:利用所求曲线上的动点与某一已知曲 线上的动点的关系,把所求动点转换为已知动点 满足的曲线的方程,由此即可求得动点坐标x,y之 间的坐标。
变 变式 .△ABC 的顶点 B、C 的坐标分别为(0,0)、(4,0), 式 A B 边上的中线的长为 3,求顶点 A 的轨迹方程.

求曲线方程的五种方法

求曲线方程的五种方法

求曲线方程的五种方法曲线方程是数学中的一个重要的概念,它是表示一个曲线的方程。

曲线方程可以有多种形式,可以用任意数量的参数来确定。

求曲线方程的方法也是各种数学软件的一个重要的功能,下面我们来看看其中的五种求曲线方程的方法:第一种是直接由点法得到曲线方程,通常是根据已知点计算曲线方程,也就是由点求式,即问题中大多数可能给定的曲线方程。

如果我们知道曲线上两个点并且想要求得这条曲线的方程,可以采用此方法。

事实上,只要有足够的点,就可以根据点求出曲线的方程。

第二种是利用偏导数,如果我们知道曲线上某一点的梯度,我们就可以通过求偏导数确定曲线的方程。

另外,我们也可以使用积分法对曲线去求其方程。

第三种方法是根据它与其他曲线的关系来求曲线方程,如果我们知道两条曲线的关系(比如二次函数与指数函数的关系),我们就可以求出曲线的方程。

第四种方法是根据曲线的特征和性质,比如曲线的斜率,拐点和极值,以及曲线的对称性,都可以作为曲线方程求解的重要根据。

最后,第五种方法是利用计算机软件辅助的方法,如通过利用数学软件和GIS软件等,可以轻松地求出曲线方程。

上述是求曲线方程的五种方法,由于曲线方程的形式和参数不同,求曲线方程的方式也有多种,比如,我们可以根据点求式,根据偏导数,根据它与其他曲线的关系,根据曲线的特征和性质,以及利用计算机软件辅助求解曲线方程。

此外,还有很多其他的求曲线方程的方法,但是最重要的还是要仔细分析问题,熟悉各种求曲线方程的具体方法,才能把握出该问题的解决方案。

综上所述,求曲线方程的五种方法是根据点法得到曲线方程,利用偏导数,根据它与其他曲线的关系,根据曲线的特征和性质,以及利用计算机软件辅助求解曲线方程。

此外,求解曲线方程的关键在于仔细分析问题,熟悉各种求曲线方程的具体方法。

曲线方程求法

曲线方程求法
求曲线方程的方法
抚松一中 姜民和
学习目标:
1.曲线的方程、方程的曲线; 2.总结求曲线的方程的方法和步 骤;

定义:在直角坐标系中,如果某曲线C(看作适合某种
条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数
解建立了如下的关系:

①曲线上的点的坐标都是这个方程的解;

②以这个方程的解为坐标的点都是曲线上的点。
5
2
mx 2 ny 2 1
直接法(第二定义)
3.已知点P到定点F (3,0)的距离与到l:x 25的距离之比 3
为 3,求P的轨迹方程 5
基本步骤: 建,设,现,代,化
4.已知过圆 x2 y2 25上的动点 p向x轴做垂线,垂足为 Q 点R满足PR 1 PQ,求点R的轨迹方程
5
5.已知点P在直线y 164 上移动,直线l过点A(0,4)且与 9
分析作业:
已知曲线的类型,可 先设出曲线的方程
曲线与方程
和 x2 y2 25交于点P, Q过点P作x轴的平行线 l1, 过点Q做 x轴的垂线 l2 , l1交l2与点R,求点 R的轨迹方程。
方法小结:
求曲线的轨迹方✓参数法 ✓定义法
所求动点随另 一动点在已知 曲线上的运动 而运动,称为 相关点法.
✓待定系数法
AP垂直,通过点B(0,4)及点P的直线m和直线l相交于点Q 求点Q的轨迹方程
一、复习回顾
一、求曲线的方程(轨迹方程)的一般步骤: 1、建立适当的坐标系,设曲线上任一
点的坐标; 2、找条件,由条件列出方程;
3说、明化所简得方方程程. (可检以验省略)为所求的曲线
方程.
二、求曲线方程的常用方法:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.知识与技能
进一步理解曲线的方程和方程的曲线 的概念,掌握求曲线的方程和由方程研究曲 线性质的方法.
2.过程与方法
了解求曲线方程的几种常用方法,能 够利用它们去求曲线的方程.
重点:轨迹方程的求法.
难点:求曲线的方程的思路.
在求轨迹方程时,要注意题设条件对 变量的限制,这一点易被忽视,如求某一三 角形的顶点的轨迹方程时,要排除三点共线 的情况.求出轨迹方程后,将方程所表示的 曲线在原图中大致画一下,看有没有多余的 或漏掉的点.
求曲线方程的常用方法
(1)直接法:也叫直译法,即根据题目 条件,直译为关于动点的几何关系,再利用 解析几何的有关公式进行整理、化简.
(2)定义法:若动点的轨迹满足已知曲 线的定义,可先设定方程,再确定其中的基 本量.
(3)待定系数法:根据条件能知道曲线 方程的类型,可设出其方程形式,再根据条 件确定待定的系数.
[解析] 以 AB 中点为原点,直线 AB 为 x 轴建立直角坐 标系如图,则 A(-3,0),B(3,0),
设 M(x,y),则由M→A·M→B=-1 得,(-3-x,-y)·(3-x, -y)=-1,
∴x2+y2=8 为所求.
[例 2] 已知△ABC 的两个顶点坐标为 A(-2,0),B(0, -2)第三个点 C 在曲线 y=3x2-1 上移动,求△ABC 重心的 轨迹方程.(注:设△ABC 顶点 A(x1,y1),B(x2,y2),C(x3, y3),则△ABC 重心坐标为 G(x1+x32+x3,y1+y32+y3).)
[解析] 设C(x1,y1),重心G(x,y), 由重心坐标公式得3x=-2+0+x1,3y=0-2 +y1,
即x1=3x+2,y1=3y+2, ∵C(x1,y1)在曲线y=3x2-1上, ∴3y+2=3(3x+2)2-1.
化简得y=9x2+12x+3.
故△ABC的重心的轨迹方程为y=9x2+ 12x+3.(不包括和直线AB的交点)
[解析] 解法一:如图所示,设点 A(a,0),B(0,b),M(x,
y),因为 M 为线段 AB 的中点,所以 a=2x,b=2y,即 A(2x,0),
B(0,2y).因为 l1⊥l2,所以 kAP·kPB=-1.而 kAP=24--20x(x≠1),
kPB=42--20y,
[点评] 1.直译法求轨迹方程是常用的 基本方法,大多数题目可以依据文字叙述的 条件要求,直接“翻译”列出等式整理可 得.
已知⊙O:x2+y2=4,P 为⊙O 上任一点,M 在 OP 上, 使得O→M=3M→P,求点 M 的轨迹方程.
[例3] 求(x-1)2+
[解析] 设所求对称曲线上任一点的坐标为(x,y),它关
于 x+y=0 的对称点为(x1,y1),根据对称定义知:
[例5] 已知点A(0,3)点B(3,0),若曲线C:y=-x2+mx-1 与线段AB有两个不同的交点,求实数m的取值范围.
[误解] 线段 AB 所在直线方程为 x+y-3=0. 由xy+ =y--x32+=m0,x-1 消去 y 得 x2-(m+1)x+4=0. 因为有两个不同的交点,所以方程 x2-(m+1)x+4=0 有两个不同的实数根, 所以有 Δ=(m+1)2-4×1×4>0.解之得 m>3 或 m<-5. 故所求 m 的取值范围是 m>3 或 m<-5.
[辨析] 错误的原因是线段AB,而不是 直线AB.可以求出AB的方程式x+y=3,线段 AB的方程为x+y-3=0(0≤x≤3),若抛物线与 线段AB有两个不同交点,等价于两方程组成 的方程组在[0,3]内有两组不同实数解,可借 助一元二次方程根的分布来解决.
[正解] 由错解知,x2=(m+1)x+4=0 则有
x1+2 x+y1+2 y=0 yx11- -yx=1
,解得xy11= =- -yx
∵(x1,y1)在(x-1)2+(y-1)2=1上, ∴(x1-1)2+(y1-1)2=1 ∴有(-y-1)2+(-x-1)2=1, 即(x+1)2+(y+1)2=1
[点评] 代入法适用于所求动点与另一动点有密切联 系,(这两个动点可通过具体式子联系起来),而另一个动 点在已知定曲线上运动(或者另一个动点的几何条件好找的 情形).
(6)交轨法:求两动曲线交点轨迹时, 可由方程直接消去参数,例如求动直线的交 点时常用此法,也可以引入参数来建立这些 动曲线的联系,然后消去参数得到轨迹方 程.
练习
1.解析几何研究的主要问题
(1)根据已知条件表,示求曲出线的方程

(2)通过曲线的方程曲,线研的究性质

2.求曲线的方程的步骤
[例1] 过点P(2,4)作两条互相垂直的直线 l1、l2,若l1交x轴于A点,l2交y轴于B点,求线 段AB的中点M的轨迹方程.
2.解题过程中,要注意使用某种形式 时是否受到某些条件的限制而丢掉个别点, 如使用斜率求解时限制条件是斜率存在,因 而可能漏掉斜率不存在的点.必须找一找是 否漏掉了.有时也可能使范围扩大了,多出 了不合要求的点,要通过最后的检验“防失 去伪”.
已知两个定点 A、B 的距离为 6,动点 M 满足条件M→A·M→B =-1,求点 M 的轨迹方程.
(4)代入法:动点M(x,y)随着动点P(x1, y1)的运动而运动,点P(x1,y1)在已知曲线C 上运动,可根据P与M的关系用x,y表示x1, y1,再代入曲线C的方程,即可得点M的轨 迹方程.
(5)参数法:选取适当的参数,分别用 参数表示动点坐标x,y,得出轨迹的参数方 程,消去参数,即得其普通方程.
[例4] 设圆C:(x-1)2+y2=1,过原 点O作圆的任意弦,求所作弦的中点的轨迹 方程.
方法四:参数法. 设动弦 PQ 的方程为 y=kx 代入圆方程得(x-1)2+k2x2=1 即(1+k2)x2-2x=0 ∴x=x1+2 x2=1+1 k2,y=kx=1+k k2消去 k 即可.
[点评] 本题中的四种方法都是求轨迹方程的常用方 法,在求轨迹方程时,要注意挖掘题目的条件,恰当选取 方法.
相关文档
最新文档