专题-物理-L45-匀强电场
2025届高考物理一轮复习专题卷: 电势能与电势差(含解析)

2025届高考物理一轮复习专题卷: 电势能与电势差一、单选题1.某种负离子空气净化器的原理如图所示,由空气和带一价负电的灰尘颗粒组成的混合气流进入由一对平行金属板构成的收集器。
在收集器中,带电颗粒入射时的最大动能为,金属板的长度为L ,金属板的间距为d ,且。
在匀强电场作用下,带电颗粒打到金属板上被收集,不考虑重力影响和颗粒间的相互作用。
要使得全部颗粒被收集,两极板间的电势差至少为( )A.1600VB.800VC.400VD.200V2.如图所示,一电子枪发射出的电子(初速度很小,可视为零)经过加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y .要使偏转位移增大,下列哪些措施是可行的(不考虑电子射出时碰到偏转极板的情况)( )A.增大偏转电压UB.增大加速电压C.增大偏转极板间距离D.将发射电子改成发射负离子3.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10V 、17V 、26V.下列说法错误的是( )6410eV ⨯100L d =0UA.电场强度的大小为B.坐标原点处的电势为1VC.电子在a 点的电势能比在b 点的低7eVD.电子从b 点运动到c 点,静电力做功为9eV4.质量为m 的带电滑块,沿绝缘粗糙斜面匀加速下滑,当带电滑块滑到有理想边界且方向竖直下的电场区域时,则关于滑块在电场中运动情况表述正确的是(已知滑块所受的静电力小于其重力)( )A.将加速下滑,且加速度的大小不变B.有可能匀减速下滑C.将加速下滑,且加速度的大小一定增大D.将加速下滑,且加速度的大小可能减小5.如图所示,在一固定正点电荷产生的电场中,另一正电荷q 先后以大小相等、方向不同的初速度从P 点出发,仅在电场力作用下运动,形成了直线PM 和曲线PN 两条轨迹,经过两点时q 的速度大小相等,则下列说法正确的有( )A.M 点比P 点电势高B.两点的电势不同C.q 从P 到M 点始终做减速运动D.q 在M 、N两点的加速度大小相等2.5V /cmM N 、M N 、6.如图所示,水平金属板A 、B 分别与电源两极相连,带电油滴处于静止状态.现将B 板右端向下移动一小段距离,两金属板表面仍均为等势面,则该油滴( )A.仍然保持静止B.竖直向下运动C.向左下方运动D.向右下方运动7.电子秤在日常生活中扮演着重要角色,电子秤的种类有很多,如图所示是用平行板电容器制成的厨房用电子秤及其电路简图.称重时,把物体放到电子秤面板上,压力作用会导致平行板上层膜片电极下移.则下列说法正确的是( )A.电容器的电容增大,带电荷量减小B.电容器的电容减小,带电荷量增大C.稳定后电流表仍有示数,两极板电势差增大D.稳定后电流表示数为零,两极板电势差不变8.一个带电粒子在点电荷的电场中仅在电场力作用下从A 点运动到B 点,轨迹如图所示,粒子的速度不断减小,则( )A.带电粒子与场源电荷带同种电荷B.带电粒子的加速度不断减小C.带电粒子的电势能不断增大D.带电粒子正靠近场源电荷9.如图是某次心脏除颤器的模拟治疗,该心脏除颤器的电容器电容为,充电至9.0kV 电压。
高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)

高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p vgh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=2.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .3.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+;(2)① ②()1122211sin 2e v mθϕϕ=-+4.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v ,则:t 1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;5.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 20v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 02y )2y由数学知识可知,当(x 02y )2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm6.如图所示,两块平行金属极板MN 水平放置,板长L =" 1" m .间距d =33m ,两金属板间电压U MN = 1×104V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2,已知A 、F 、G 处于同一直线上.B 、C 、H 也处于同一直线上.AF 两点距离为23m .现从平行金属极板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .(1)求带电粒子从电场中射出时的速度v 的大小和方向(2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1 (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件. 【答案】(152310/m s ;垂直于AB 方向出射.(2)3310(323+ 【解析】试题分析:(1)设带电粒子在电场中做类平抛运动的时间为t ,加速度为a , 则:U qma d =解得:102310/qU a m s md == 50110Lt s v -==⨯ 竖直方向的速度为:v y =at =33×105m/s 射出时速度为:22502310/y v v v m s =+=速度v 与水平方向夹角为θ,03tan 3y v v θ==,故θ=30°,即垂直于AB 方向出射. (2)带电粒子出电场时竖直方向的偏转的位移213262d y at ===,即粒子由P 1点垂直AB 射入磁场,由几何关系知在磁场ABC 区域内做圆周运动的半径为12cos303d R m ==o由211vB qv mR=知:113310mvB TqR==(3)分析知当轨迹与边界GH相切时,对应磁感应强度B2最大,运动轨迹如图所示:由几何关系得:221sin60RRo+=故半径2(233)R m=-又222vB qv mR=故2235B T+=所以B2应满足的条件为大于235T+.考点:带电粒子在匀强磁场中的运动.7.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆=(2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为: 2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆= (2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ= 设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=, 式中00y U e v t dm =又:1mv R Be= 解得:00U t B dL= ②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=8.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B的匀强磁场.荧光屏MN与电场方向平行,且到匀强电、磁场右侧边界的距离为x,电容器左侧中间有发射质量为m带+q的粒子源,如图甲所示.假设a、b、c三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O点;b粒子在电、磁场中向上偏转;c粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a、b、c粒子在原来位置上以各自的原速度水平射入电场,结果a粒子仍恰好打在荧光屏上的O点;b、c中有一个粒子也能打到荧光屏,且距O点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B d q m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a 粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O 点,运动轨迹如图中Ⅰ所示.U q Bqv d=, Bd U v =, L LBd t v U==, 222122a Uq L B qd y t dm mU==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d= (2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122d y L L x +, 1()2x y d L =+ (3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md= 122221·2y Uq t m y t dv +=, 22158qU y t md=, 124=5y y , 11224==5Uq y W d Uq W y d9.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0;(2)第三、四象限磁感应强度的大小B /;【答案】(1)3E B(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r,由几何知识得:23603 d d drsin sinα===︒根据2mvqv Br=得233qBdvm=粒子在第一象限中做类平抛运动,则有21602qEr cos tm-︒=();00yv qEttanv mvα==联立解得03EvB=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x和y,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x轴正方向的夹角等于α.则有:x=v0t,2yvy t=得322yvy tanx vα===由几何知识可得 y=r-rcosα=132r=则得23x d=所以粒子在第三、四象限圆周运动的半径为125323d dRsinα⎛⎫+⎪⎝⎭==粒子进入第三、四象限运动的速度0432v qBdv vcosα===根据2'vqvB mR=得:B′=2.4B考点:带电粒子在电场及磁场中的运动10.如图,光滑水平面上静置质量为m ,长为L 的绝缘板a,绝缘板右端园定有竖直挡板,整个装置置于水平向右的匀强电场中.现将一质量也为m 、带电量为q(q>0)的物块b 置于绝缘板左端(b 可视为质点且初速度为零),已知匀强电场的场强大小为E=3μmg/q ,物块与绝缘板板间动摩擦数为μ(设最大静摩擦力等于滑动摩擦力),物块与绝缘板右端竖直挡板碰撞后a 、b 速度交换,且碰撞时间极短可忽略不计,物块带电量始终保持不变,重力加速度为g 。
高中物理【带电粒子在电场中的运动】专题训练1

高中物理【带电粒子在电场中的运动】专题训练1[A 组 基础达标练]1.如图所示,两平行的带电金属板水平放置。
若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态。
现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )A .保持静止状态B .向左上方做匀加速运动C .向正下方做匀加速运动D .向左下方做匀加速运动解析:两平行金属板水平放置时,带电微粒静止,则mg =qE ,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,静电力方向也逆时针旋转45°,但大小不变,此时静电力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D 正确。
答案:D2.如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中的O 点自由释放后,分别抵达B 、C 两点。
若AB =BC ,则它们带电荷量之比q 1∶q 2等于( )A .1∶2B .2∶1C .1∶ 2D.2∶1解析:竖直方向有h =12gt 2,水平方向有l =qE 2m t 2,联立可得q =mgl Eh ,所以有q 1q 2=21,B正确。
答案:B3.在电场强度大小为E 的匀强电场中,将一个质量为m 、电荷量为q 的带电小球由静止开始释放,带电小球沿与竖直方向成θ角的方向做直线运动。
关于带电小球的电势能和机械能的判断,正确的是( )A .若sin θ<qEmg,则电势能一定减少,机械能一定增加B .若sin θ=qEmg ,则电势能、机械能一定不变C .若sin θ=qEmg ,则电势能一定增加,机械能一定减少D .若tan θ=qEmg,则电势能可能增加,机械能一定增加解析:若sin θ<qEmg ,静电力可能做正功,也可能做负功,所以电势能可能减少也可能增加,机械能可能增加也可能减少,A 项错误;若sin θ=qEmg ,则静电力与速度方向垂直,静电力不做功,电势能、机械能一定不变,B 项正确,C 项错误;若tan θ=qEmg ,则静电力沿水平方向,静电力和重力的合力与速度方向同向,静电力做正功,电势能一定减少,机械能一定增加,故D 项错误。
2023-2024学年高二上物理:电场 电场强度(附答案解析)

2023-2024学年高二上物理:9.3电场电场强度一.选择题(共8小题)1.下列物理量中与检验电荷有关的是()A.电场强度B.电势C.电势能D.电势差2.某电场线分布如图所示,一带电粒子沿图中虚线所示途径运动,先后通过M点和N点,以下说法正确的是()A.M、N点的场强E M>E NB.粒子在M、N点的加速度a M>a NC.粒子在M、N点的速度v M>v ND.粒子带正电3.下列哪个电场线图正确描述了两块靠近的、分别带等量正负电荷的平行金属板间的匀强电场?()A.B.C.D.4.关于电场和磁场,下列说法正确的是()A.电场和磁场对放入其中的静电荷都有力的作用B.电场线和磁感线都是闭合曲线C.电场线和磁感线都是实际存在于场中的线,只是看不见摸不着而已D.电场和磁场都是实际存在的物质5.关于电场,下列说法正确的是()A.电场强度的方向与电场力的方向相同B.电场是假想的,并不是客观存在的物质C.电场对放入其中的电荷有力的作用D.电场对放入其中的电荷没有力的作用6.下列对于电场的理解正确的是()A.电场只是一个理想模型,实际上并不存在B.电场中的电场线是实际存在的C.电场由较小和较轻的原子组成,所以既看不见,也摸不到D.电场对放入其中的电荷有力的作用7.将一电荷量为q的正点电荷,放在电场中某点,受到的电场力大小为F,则()A.若将q移走,则该点的电场强度为零B.若将q变为负点电荷,则该点的电场强度方向改变C.若将q的电荷量增大为2q,其所受电场力仍然为FD.若将q的电荷量增大为2q,其所受电场力增大为2F8.真空中相距为r的A、B两点固定有电荷量分别为q A和q B的点电荷。
若空间仅存在两点电荷产生的电场,q A 受到的静电力大小为F,则B点电场强度的大小可表示为()A.kq A q Br2B.kq Br2C.Fq AD.Fq B二.多选题(共4小题)9.19世纪30年代,法拉第提出一种观点,认为在电荷周围存在电场,电荷之间通过电场传递相互作用力。
专题 带电粒子在匀强电场中的偏转问题

专题带电粒子在匀强电场中的偏转问题【专题简介】带电粒子在匀强电场中的偏转问题是一种特殊的曲线运动,是高考的高频考点。
此类运动往往与平抛运动类似,故也称之为“类平抛运动”,故在处理此类问题时的方法和思想也是——“化曲为直”,即将运动分解为初速度方向的匀速直线运动和合外力方向的匀变速直线运动。
它与平抛的不同之处就在于要通过受力分析来求解合外力,从而根据牛顿第二定律求出加速度。
带电粒子在匀强电场中的偏转问题的特征:所受合外力为恒力且与初速度垂直。
带电粒子在匀强电场中的偏转问题的相关公式:1.牛顿第二定律:F合=ma2.匀强电场:E=Ud3.水初速度方向:x =v 0t,v x=v04.合外力方向:y=12at2,v y=at5.合运动:v=√v02+v y2,s=√x2+y26.角度问题:(1)速度夹角α:tanα=v yv0;(2)位移夹角θ:tanα=yx【高考真题】1.(2013广东卷)喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关2.(2022浙江卷)如图所示,带等量异种电荷的两正对平行金属板M、N间存在匀强电场,板长为L(不考虑边界效应)。
t=0时刻,M板中点处的粒子源发射两个速度大小为v0的相同粒子,垂直M板向右的粒子,到达N板时速度大小为√2v0;平行M板向下的粒子,刚好从N板下端射出。
不计重力和粒子间的相互作用,则()A.M板电势高于N板电势B.两个粒子的电势能都增加C.粒子在两板间的加速度a=2v02LD.粒子从N板下端射出的时间t=(√2−1)L2v0速度关系位移关系2.(2007海南卷)一平行板电容器中存在匀强电场,电场沿竖直方向。
两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a和b,从电容器的P点(如图)以相同的水平速度射入两平行板之间。
微型专题03 带电粒子在电场中的运动(四种题型)(课件)(共33张PPT)

面方向的偏转距离Δy;
(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所
受重力,请利用下列数据分析说明其原因.已知U=2.0×102 V,d=4.0×10-2 m,m
=9.1×10-31 kg,e=1.6×10-19 C,g=10 m/s2.
新教材 新高考
1
解析(1)根据动能定理,有 eU0= mv02,
里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形
中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体
在圆周运动过程中速度最小(称为临界速度)的点.
新教材 新高考
例4.如图所示,半径为r的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带
电荷量为+q的珠子,现在圆环平面内加一个匀强电场,使珠子由最高点A从静止开始
仍沿水平方向并恰好从B板边缘水平飞出(g取10 m/s2,sin 37°=0.6,cos
37°=0.8)。求:
(1)液滴的质量;
(2)液滴飞出时的速度。
新教材 新高考
答案:(1)8×10-8 kg
7
(2) 2 m/s
解析:(1)根据题意画出带电液滴的受力图如图所示,可得
qEcos α=mg
E=
暗示以外,一般都不考虑重力。(但并不能忽略质量)
2.带电微粒:如带电小球、液滴、尘埃等。除非有说
明或明确的暗示以外,一般都考虑重力。
注意:某些带电体是否考虑重力,要根据题目暗示或运动状态来判定
新教材 新高考
带电粒子在匀强电场中运动状态:
静止
平衡(F合=0)
匀速直线运动
匀变速运动
(F合≠0)
匀变速直线运动—加速、减速
匀强电场中电势差与电场强度的关系、示波管原理课件

(3)一个电子从 a 点沿斜边移到 c 点时,ab 两点间的电势差为 Uac=-Edac=-1.2 V 则电场力做功为 W=eUac=(-1.6×10-19)×(-1.2) J=1.92×10-19 J. [答案] (1)40 V/m (2)2.56×10-19 J (3)1.92×10-19 J
2.电子在电子枪中的运动是匀加速直线运动吗?说明理由.
提示:不是.因为电子枪中阴、阳两极间的电场不是匀强电场, 电场力是变力.
由 E=U/d 理解 E 和 U 的关系
1.场强、电势差两者比较
电场强度 E
电势差 U
放入电场中某一点的电 电荷在电场中两点间移
定义
荷受到的电场力跟它的 动时,电场力所做的功
(2)由图乙知 F= (qE)2+(mg)2= 2mg
由动能定理得-F·xmax=0-12mv20
故
xmax=2
mv02 = 2mg
42gv20.
[答案]
(1)正电荷
mgd U
(2)
2v20 4g
物体做直线运动的条件是合力为零或合力与速度方向在同一 直线上,从而确定电场力的大小和方向,可与牛顿第二定律、 动能定理、功能关系相结合,解题思路和步骤与力学中完全相 同.
[审题突破] 分析本题注意以下条件: (1)等势面是一簇互相平行的分布均匀的竖直平面. (2)要使小球做直线运动,满足什么条件.
[解析] (1)作电场线如图甲所示,由题意,只有当 F 与 v0 在一 条直线上时才可能使小球做直线运动.只有小球受到向左的电 场力,电场力和重力的合力与初速度才可能在一条直线上,如 图乙所示,所以小球带正电,小球沿 v0 方向做匀减速运动,由 图乙知 qE=mg 相邻等势面间的电势差用 U 表示,故 E=Ud 所以 q=mEg=mUgd.
高中物理压轴题05 带电粒子在电场中运动(解析版)

压轴题05带电粒子在电场中的运动1.本专题是电场的典型题型,包括应用静电力的知识解决实际问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于电场的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:电场力的性质、电场力能性质、带电粒子在电场中的平衡、加速、偏转等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型静电场的性质,电容器的动态分析,电场中的图像问题,带电粒子在电场中的运动问题,力电综合问题等。
考向一:静电场力的性质1.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)表达式:F=k q1q2r2,式中k=9.0×109N·m2/C2,叫做静电力常量.(3)适用条件:真空中的点电荷.①在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式;②当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷.(4)库仑力的方向:由相互作用的两个带电体决定,且同种电荷相互排斥,异种电荷相互吸引.(5)应用库仑定律的四条提醒a.在用库仑定律公式进行计算时,无论是正电荷还是负电荷,均代入电量的绝对值计算库仑力的大小.b.两个点电荷间相互作用的库仑力满足牛顿第三定律,大小相等、方向相反.c.库仑力存在极大值,由公式F=k q1q2r2可以看出,在两带电体的间距及电量之和一定的条件下,当q1=q2时,F最大.d.对于两个带电金属球,要考虑金属球表面电荷的重新分布.2.电场强度的三个公式的比较电场强度――――→点电荷电场E =k Q r 2―――→任何电场E =F q ―――→匀强电场E =U d ――→叠加平行四边形定则3.电场强度的计算与叠加在一般情况下可由上述三个公式计算电场强度,但在求解带电圆环、带电平面等一些特殊带电体产生的电场强度时,上述公式无法直接应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该电场的场强是多大?
例题4 平行的带电金属板A、B间是匀强电场,如图所示,两板间距离是5 cm,两 板间的电压是60 V. (1)两板间的场强是多大?
例题4 平行的带电金属板A、B间是匀强电场,如图所示,两板间距离是5 cm,两 板间的电压是60 V. (2)电场中有P1和P2两点,P1点离A板0.5 cm,P2点离 B板也是0.5 cm,P1和P2两点 间的电势差多大?
例题4 平行的带电金属板A、B间是匀强电场,如图所示,两板间距离是5 cm,两 板间的电压是60 V. (3)若B板接地,P1和P2两点的电势各是多少?
取g=10 m/s2, 求小球所带的电荷量.
下节课 再见
(2010· 绍兴高二检测)某静电场沿x方向的电势分布如图1-6-16所示,则( ). A.在0~x1之间不存 在沿x方向的电场 B.在0~x1之间存在着沿x方向的匀强电场 C.在x1~x2之间存在着沿x方向的匀强 电场 D.在x1~x2之间存在着沿x方向的非匀强电场
三、电场线的确定 例题5 下列图中,a、b、c是匀强电场中的三个点,各点电势φ a=10 V,φ b=2 V, φ c=6 V,a、b、c三点在同一平面上,图中电场强度的方向表示正确的是 ( )
例题6 把一个带正电荷q的小球用细线悬挂在两块面积很大的竖直平行板间的O点, 小球质量m=2 g,悬线长L=6 cm,两板间距离d=8 cm,当两板间加上U= 2×103 V的电压时,小球自悬线水平的A点由静止开始向下运动到达O点正下方的B 点时的速度刚好为零,如图所示,以后小球一直在A、B之间来回摆动.
9.如图1-6-17所示,平行金属带电极板A、B间可看成匀强电场,场强E=1.2×102 V/m,极板间 距离d=5 cm,电场中C和D点分别到A、B两板的距离均为0.5 cm,B板接地,求: (1)C和D两点的电 势、两点间电势差各为多少? (2)将点电荷q=2×10-2 C从C点匀速移到D点时外力做多少功?
如图所示为一个匀强电场的三个等势面A、B、C,相邻两等势面之间距离为10 cm, 此电场的场强为3×103 V/m,若B为零电势点,求A、C的电势
物理专题
匀强电场
一 、对公式U=Ed的理解 例题1 如图所示,A、B两点相距10 cm,E=100 V/m,AB与电场线方向的夹角 θ =120°,求A、B两点间的电势差。
二、 利用E=U/d计算场强 例题2 如图所示,A、B、C三点都在匀强电场中,已知AC⊥BC,∠ABC=60°,BC =20 cm,把一个电荷量q=10-5 C的正电荷从A移到B,电场力做功为零;从B移到 C,电场力做功为-1.73×10-3 J,则该匀强电场的场强大小和方向是 ( A.865 V/m,垂直AC向左 B.865 V/m,垂直AC向右 C.1 000 V/m,垂直AB斜向上 D.1 000 V/m,垂直AB斜向下 )