圆锥曲线(教师版全套)

合集下载

圆锥曲线之点差法-讲义(教师版)

圆锥曲线之点差法-讲义(教师版)

圆锥曲线之点差法一、课堂目标1、熟练掌握点差法的应用步骤;2、理解点差法相对于联立法有哪些优势。

【备注】在联立法的基础上再学习点差法,是为了让学生在面对一些特殊题型时,能简化步骤和运算量,同时训练学生一题多解的能力。

二、方法说明联立法作为圆锥曲线题型的通法,方法固定,思路简单是它最大的优点,但同时,运算量偏大也是联立法自始至终存在的问题,在应对跟弦的斜率和中点有关的题型时,我们找到了一种比联立法更为优化的特殊武器,尤其是减少了运算量,可以帮我们在考试中节省更多时间,这种方法就是点差法。

【备注】1、在方法类讲义用,用方法说明替代了高考链接,因为对于一个方法的使用是灵活的,方法类的讲义在各版本试卷中是通用的,指向某套考卷意义不大,在这里重点为学生讲解这种方法用在什么类型题中,在后续的类型题讲义中,我们会重点解释该类型题的高考链接。

2、点差法主要应用于中点弦问题。

三、知识讲解1. 知识回顾【备注】提问环节,对圆锥曲线基础知识点选择性提问,如果学生对于这部分基础掌握有问题,老师自行带学生回顾,本讲义难度有所提升,只做方法应用讲解,不单独做基础梳理。

2. 方法提升方法引入1.已知椭圆,过点作直线,设与椭圆交于、两点,若为线段的中点,求直线的方程.【答案】.【解析】方法一:方法二:易知点在椭圆内,不妨设,,设直线的斜率为,由,作差得,又∵,即,,∴的斜率,的方程为,即.不妨设,,易知直线的斜率存在,设直线的方程为,代入中,得,【备注】以基础类型题引入方法,这是一个常规的中点弦问题,解析中分别给出了联立法和点差法两种方法,要结合对比着讲给学生听,重点让学生理解点差法在中点弦问题中的优势是简化运算。

∴,判别式,则,∵的中点为,∴,则,∴直线的方程为,即.【标注】【知识点】直线和椭圆的位置关系;中点弦问题步骤归纳点差法常规步骤(以椭圆为例,双曲线和抛物线同理):1、设直线与圆锥曲线交点,,,A和B的中点坐标为.2、将交点坐标带入椭圆方程3、两式做差得(显然前提是,)4、灵活运用等式注意:根据步骤三可知,使用点差法的前提是直线斜率存在,且斜率不为零,对于斜率不存在或者为零的情况,我们需要分类讨论。

圆锥曲线(教师版全套)

圆锥曲线(教师版全套)

圆锥曲线与方程1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程. 2.掌握双曲线的定义、标准方程、简单的几何性质. 3.掌握抛物线的定义、标准方程、简单的几何性质. 4.了解圆锥曲线的初步应用.圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。

纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点: 1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a 、b 、c 、e 、p 五个参数的求解. ②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.知识网络 考纲导读高考导航 圆锥曲线椭圆定义标准方程几何性质双曲线定义标准方程几何性质抛物线定义标准方程几何性质第二定义 第二定义统一定义直线与圆锥曲线的位置关系椭圆双曲线抛物线a 、b 、c 三者 间的关系3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.第1课时 椭圆1.椭圆的两种定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距. 注:①当2a =|F 1F 2|时,P 点的轨迹是 . ②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a )(2) 焦点在y轴上,中心在原点的椭圆标准方程是12222=+b x a y ,其中a ,b 满足: .(3)焦点在哪个轴上如何判断? 3.椭圆的几何性质(对12222=+b y a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心基础过关为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== 。

圆锥曲线的轨迹方程问题(教师版)

圆锥曲线的轨迹方程问题(教师版)

圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。

(教师用书)高中数学 2.1 圆锥曲线配套课件 苏教版选修1-1

(教师用书)高中数学 2.1 圆锥曲线配套课件 苏教版选修1-1

已知 F1(-4,3),F2(2,3)为定点,动点 P 满足 PF1-PF2 =2a,当 a=2 或 a=3 时,求动点 P 的轨迹.
【解】 由已知可得,F1F2=6. 当 a=2 时,2a=4,即 PF1-PF2=4<F1F2,根据双曲线 的定义知,动点 P 的轨迹是双曲线的一支(对应于焦点 F2); 当 a=3 时,PF1-PF2=6=F1F2,此时动点 P 的轨迹是 射线 F2P,即以 F2 为端点向 x 轴正向延伸的射线. 故当 a=2 时,动点 P 的轨迹是双曲线的一支(对应于焦 点 F2);当 a=3 时,动点 P 的轨迹是射线 F2P.
●教学流程
演示结束
课 标 解 读
1.了解圆锥曲线的实际背景. 2.理解椭圆、双曲线、抛物线的定 义.(重点) 3. 能依据圆锥曲线的定义判断所给 曲线的形状.(难点)
圆锥曲线
【问题导思】 1 .平面中,到一个定点的距离为定值的点的轨迹是什 么?
【提示】 圆.
2.函数 y=x2 的图象是什么? 【提示】 开口向上的抛物线. 3.用刀切火腿肠时,截面会有什么形状? 【提示】 圆、椭圆.
图 2-1-1
【思路探究】
【自主解答】 设动圆 M 的半径为 r3,则 MF1=r1+r3, MF2=r2+r3. ∴MF2-MF1=(r2+r3)-(r1+r3)=r2-r1=1, 又∵F1F2=2+3=5, ∴MF2-MF1=1<5. 由双曲线的定义知, 动圆 M 的轨迹是以 F1,F2 为焦点的 双曲线的一支.
【证明】 连结 MC(如右图). ∵MD 是线段 PC 的垂直平分线, ∴MC=MP.∴MO+MC=MO+MP=PO=r 为定值. 又∵C 在圆 O 内, ∴OC<r. ∴点 M 的轨迹是以 O、C 为焦点的椭圆.

最新圆锥曲线轨迹问题(教师版)

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版)根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。

该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。

求轨迹方程的的基本步骤:建设现代化(检验)建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”)求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。

1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为122=+y x ,动点M 到圆C 的切线长与MQ的比等于常数)0(>λλ,求动点M 的轨迹。

【解析】设MN 切圆C 于N ,则222ONMO MN -=。

),(y x M ,则2222)2(1y x y x +-=-+λ化简得0)41(4))(1(22222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。

当1≠λ时,方程化为2222222)1(31)12(-+=+--λλλλy x 表示一个圆。

【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程.【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以221212(1)PO PO -=-.设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=)y xQMNO证明可以省略,但要注意“挖”与“补”。

10.11湖南高考真题之圆锥曲线(教师版)

10.11湖南高考真题之圆锥曲线(教师版)

科 目 数学 年级 高三 备课人 高三数学组第 课时10.11湖南高考真题之圆锥曲线1.(2013 湖南14).设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___。

【答案】32.(2012 湖南5).已知双曲线1:2222=-by a x C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C的方程为( )AA .152022=-y x B .120522=-y x C .1208022=-y x D .1802022=-y x 3.(2011 湖南5).设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .1 答案:C4.(2010 湖南14).过抛物线22(0)x py p =>的焦点作斜率为1的直线与该抛物线交于,A B 两点,,A B 在x 轴上的正射影分别为,D C .若梯形ABCD 的面积为122,则p = .25.(2013 湖南21).过抛物线2:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A ,B ,2l E 与相交于点C ,D 。

以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在的直线记为l 。

(I )若120,0k k >>,证明;22FM FN P <; (II )若点M 到直线l 的距离的最小值为755,求抛物线E 的方程。

【答案】 (Ⅰ) 见下 (Ⅱ)y x 162= 【解析】 (Ⅰ) ,设),(),,(),,(),,(),,(),,().2,0(3434121244332211y x N y x M y x D y x C y x B y x A pF 02,221211=++-+=p x pk x E px k y l :方程联立,化简整理得与抛物线方程:直线),(2,20,2211211212112221121p k p k FM p p k y p k x x x p x x p k x x -=⇒+==+=⇒=-=⋅=+⇒),(2,2,222223422134p k p k FN p p k y p k x x x -=⇒+==+=⇒同理. )1(2121222221221+=+=⋅⇒k k k k p p k k p k k FN FM222121221212121212)11(1)1(,122,,0,0p p k k k k p FN FM k k k k k k k k k k =+⋅⋅<+=⋅∴≤⇒≥+=≠>> 所以,22p FN FM <⋅成立. (证毕) (Ⅱ),)]2(2[21)]2()2[(21,212121121p p k p p k p y p y p r r r N M +=++=+++=⇒的半径分别为、设圆,2同理,221211p p k r p p k r +=+=⇒.,21r r N M 的半径分别为、设圆则21212212)()(r y y x x N M =-+-的方程分别为、,的方程为:,直线l r y y x x 22234234)()(=-+- 0-)(2)(2222123421223421212341234=+-+-+-+-r r y y x x y y y x x x .))(-())(())(()(2)(212123412341234123412212212=++--+--+-+-⇒r r r r y y y y x x x x y k k p x k k p2))((1))(()(2)(2)(2222121222222122212212212212=++-+++-+-+-+-⇒k k k k p k k k k p k k p y k k p x k k p 0202)(1)(222212221=+⇒=+++++--+⇒y x k k p k k p p y x55758751)41()41(2|512||52|),(212112121212==+-+-⋅≥++⋅=+=p p k k p y x d l y x M 的距离到直线点y x p 1682=⇒=⇒抛物线的方程为 .(完)6.(2012 湖南21).(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,A B ,,C D 的纵坐标之积为定值.【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得222(5)3x x y +=-+-,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以22(5)5x y x -+=+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是0254 3.1k y kk ++=+整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ②由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.7.(2011 湖南21)如图7,椭圆22122:1(0)x y C a b a b +=>>的离心率为32,x 轴被曲线22:C y x b =- 截得的线段长等于1C 的长半轴长。

07 圆锥曲线中的二级结论及应用(教师版)

07 圆锥曲线中的二级结论及应用(教师版)

查补易混易错点07 圆锥曲线中的二级结论及应用圆锥曲线有许多形式结构相当漂亮的结论,记住圆锥曲线中一些二级结论,能快速摆平一切圆锥曲线压轴小题。

1设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点,记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cos θ;(2)S△PF1F2=b2tan θ2;(3)e=sin∠F1PF2sin∠PF1F2+sin∠PF2F1.2设P点是双曲线x2a2-y2b2=1(a>0,b>0)上异于实轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则(1)|PF1||PF2|=2b21-cos θ;(2)S△PF1F2=b2tanθ2;(3)e=sin ∠F1PF2|sin ∠PF1F2-sin ∠PF2F1|.3.设A,B为圆锥曲线关于原点对称的两点,点P是曲线上与A,B不重合的任意一点,则k AP·k BP =e2-1.4.设圆锥曲线以M(x0,y0)(y0≠0)为中点的弦AB所在的直线的斜率为k.(1)圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k AB=-b2x0a2y0,k AB·k OM=e2-1.(2)圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k AB=b2x0a2y0,k AB·k OM=e2-1.(3)圆锥曲线为抛物线y2=2px(p>0),则k AB=py0.5.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F且倾斜角为α(α≠90°)的直线交椭圆于A,B两点,且|AF → |=λ|FB → |,则椭圆的离心率等于1(1)cos λλα-+.6.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 且倾斜角为α(α≠90°)的直线交双曲线右支于A ,B 两点,且|AF → |=λ|FB → |,则双曲线的离心率等于|λ-1(λ+1)cos α|.7.过抛物线y 2=2px (p >0)的焦点F 倾斜角为θ的直线交抛物线于A ,B 两点,则两焦半径长为p 1-cos θ,p 1+cos θ,1|AF |+1|BF |=2p ,|AB |=2p sin 2θ,S △AOB =p 22sin θ.1.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1【答案】B【解析】由题意可知k AB =-15-0-12-3=1,k MO =-15-0-12-0=54,由双曲线中点弦中的斜率规律得k MO ·k AB =b 2a 2,即54=b 2a 2,又9=a 2+b 2,联立解得a 2=4,b 2=5,故双曲线的方程为x 24-y 25=1.3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =32,经过右焦点且斜率为k (k >0)的直线交椭圆于A ,B 两点,已知AF → =3FB →,则k =( )A .1 B.2 C.3 D .2【答案】B【解析】∵λ=3,由结论可得,e =32,由规律得32cos α=3-13+1,cos α=33,k =tan α=2.4.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( )A .5B .6 C.163 D.203【答案】C 【解析】因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163.6.已知双曲线C :()22105x y k k -=>的左、右焦点分别为1F ,2F ,且123F PF π∠=,则12F PF △的面积为().【答案】C【解析】由()22105x y k k -=>,b =123F PF π∠=,由结论可知122tan 2F PF b S θ==△7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,点P 在椭圆上异于A ,B 两点,若AP 与BP 的斜率之积为-12,则椭圆的离心率为( )【答案】22【解析】k AP ·k BP =-12,e 2-1=-12,∴e 2=12,e =22.8.在椭圆x 225+y 29=1上,△PF 1F 2为焦点三角形,如图所示.(1)若θ=60°,则△PF 1F 2的面积是________;(2)若α=45°,β=75°,则椭圆离心率e =________.【答案】(1)33 (2)6-22【解析】(1)由结论得S △PF 1F 2=b 2tan θ2,即S △PF 1F 2=33.(2)由公式e =sin (α+β)sin α+sin β=sin 60°sin 45°+sin 75°=6-22.9.(2022·荆州模拟)已知P是椭圆x24+y2=1上的一点,F1,F2是椭圆的两个焦点,当∠F1PF2=π3时,则△PF1F2的面积为________.【答案】3 3【解析】由结论可得:S=b2tan θ2,可得S=1·tanπ6=33.标原点,则|AB |为【答案】12【解析】易知2p =3,由结论可得知|AB |=2psin 2α,所以|AB |=3sin 230°=12.15.设F 为抛物线C :y 2=16x 的焦点,过F 且倾斜角为6π的直线交C 于A 、B 两点,O 为坐标原点,则△AOB 的面积为。

12圆锥曲线(教师版)

12圆锥曲线(教师版)

第十二讲:圆锥曲线1.已知双曲线的一条渐近线的方程为,则该双曲线的离心率为( )A. B. C.D. 2【答案】B【解析】由于焦点在x 轴,由渐近线可知,选B.2.已知双曲线的离心率为,抛物线的焦点为,则实数的值为( )A. 4B.C. 8D. 【答案】D【解析】双曲线中: ,即抛物线的焦点坐标为 ,结合抛物线的性质可得: . 本题选择D 选项.3.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,焦距为2(0)c c >,抛物线22y cx =的准线交双曲线左支于,A B 两点,且120AOB ∠=,其中O 为原点,则双曲线的离心率为( )A. 2B. 12+C. 13+D. 15+ 【答案】C【解析】如下图:,2cOD =, 32c c A ⎛- ⎝⎭,代入双曲线方程,可得22223144c c a b -=,解得31e =,选C. 点睛:对于求离心率的题,重要的是根据几何关系,或代数关系建立关于,a b 或,a c 的等式,再进一步求出离心率。

4.已知抛物线方程为²4y x =则焦点到准线的距离为( )A. 18B. 14C. 1D. 2【答案】D【解析】由题可知抛物线的焦点为()1,0 ,准线为1x =- ,所以焦点到准线的距离为2 ,故选D.5.已知双曲线2214x y m -=与2218x y m-=有相同的离心率,则m 等于( ) A. 6 B. 2 C. 42 D. 42±【答案】C【解析】由题意可得84m m=,所以42m =。

选C. 6.已知12,F F 分别是双曲线2222:1x y C a b-=的左、右焦点,若点2F 关于直线0bx ay -=的对称点恰好落在以1F 为圆心, 1OF 为半径的圆上,则双曲线C 的离心率为 ( )A. 2B. 2C. 3D. 3 【答案】B【解析】由题意可知直线0bx ay -=为12DF F 的中位线所在线,所以直线2F D 为圆的切线, 12122,F F F D c ==,所以直线0bx ay -=的倾斜角为,tan 333b a ππ==, 21132b e a ⎛⎫=+=+= ⎪⎝⎭,如图:,选B.7.设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右两个焦点,若双曲线右支上存在一点P ,使()220OP OF F P +⋅=(O 为坐标原点),且123PF PF =,则双曲线的离心率为 ( )A.212B. 21C. 312D. 31【答案】D【解析】因为()220OP OF F P +⋅=, ()()220OP OF OP OF +⋅-=, 所以2220OP OF -=, 21OP OF c OF ===,所以12PF PF ⊥,12Rt PF F ∆中,因为123PF PF =,所以01230PF F ∠=由双曲线的定义得122PF PF a -=,所以231PF =-, 所以())212131sin30231231PF a cF F c-====⇒=- ,所以31ca=,故选D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线与方程考纲导读1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考导航圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。

纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.第1课时椭圆基础过关1.椭圆的两种定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距. 注:①当2a =|F 1F 2|时,P 点的轨迹是 . ②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+by ax ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+b x a y ,其中a ,b 满足: .(3)焦点在哪个轴上如何判断? 3.椭圆的几何性质(对12222=+b y a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== 。

4.焦点三角形应注意以下关系补充画出图形): (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)变式训练2:已知P (x 0,y 0)是椭圆12222=+by a x (a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切. 证明 设以PF 2为直径的圆心为A ,半径为r .∵F 1、F 2为焦点,所以由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r ∴|PF 1|+2r =2a ,即|PF 1|=2(a -r )连结OA ,由三角形中位线定理,知 |OA |=.)(221||211r a r a PF -=-⨯= 故以PF 2为直径的圆必和以长轴为直径的圆相内切.评注 运用椭圆的定义结合三角形中位线定理,使题目得证。

变式训练3:在平面直角坐标系xOy 中,已知点A (-1, 0)、B (1, 0), 动点C 满足条件:△ABC 的周长为2+2 2.记动点C 的轨迹为曲线W . (1)求W 的方程; .例4. 已知椭圆W 的中心在原点,焦点在x 轴上,离心率为63,两条准线间的距离为6. 椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C . (1)求椭圆W 的方程; . 典型例题小结归纳1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效. 2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏. .4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,应引起重视.第2课时 双 曲 线变式训练4:)已知中心在原点,左、右顶点A 1、A 2在x 轴上,离心率为321的双曲线C 经过点P (6,6),动直线l 经过△A 1PA 2的重心G 与双曲线C 交于不同两点M 、N ,Q 为线段MN 的中点. (1)求双曲线C 的标准方程5.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.第3课时 抛 物 线1.抛物线定义:平面内到 和 距离 的点的轨迹典型例题 基础过关 基础过关叫抛物线, 叫抛物线的焦点, 叫做抛物线的准线(注意定点在定直线外,否则,轨迹将退化为一条直线). 2.抛物线的标准方程和焦点坐标及准线方程 ① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦) i) 若),(11y x A ,),(22y x B ,则AB= ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB=. 特别地,当θ2π=时,AB 为抛物线的通径,且AB= .iii) S △AOB = (表示成P 与θ的关系式). iv) ||1||1BF AF +为定值,且等于 .例1. 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.变式训练1:求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛典型例题物线方程.例2. 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B . (1) 若316=AB ,求直线l 的方程.变式训练2:过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无数条D .不存在例3. 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.1.(2008·辽宁理,10)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为 .1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.第4课时 直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的基础过关小结归纳直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————. 利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y ax 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.变式训练2:若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为( )A .2B .-2C .31 D .-21变式训练3:设抛物线y x 122=的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则=+BF AF .1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二典型例题是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.圆锥曲线单元测试题一、选择题1. 中心在原点,准线方程为x =±4,离心率为21的椭圆方程是 ( )A .13422=+y x B .14322=+y x C .1422=+y xD .1422=+y x2. AB 是抛物线y 2=2x 的一条焦点弦,|AB|=4,则AB 中点C 的横坐标是 ( ) A .2B .21C .23D .253. 若双曲线18222=-b y x的一条准线与抛物线y 2=8x 的准线重合,则双曲线的离心率为 ( ) A .2B .22C .4D .245.已知双曲线x 2-22y =1的焦点为F 1、F 2,点M 在双曲线上且21MF MF ⋅=0,则点M 到x 轴的距离为 ( ) A .34 B .35C .332D .36.点P(-3,1)在椭圆12222=+by ax (a >b >0)的左准线上,过点P 且方向为a=(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A .33B .31C .22 D .219. 已知θ为三角形的一个内角,且sinθ+cosθ=21,则方程x 2sinθ-y 2cosθ=1表示 ( ) A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线 二、填空题11.抛物线y =x 2上到直线2x -y =4的距离最近的点是 .14.椭圆191622=+y x 中,以M(-1,2)为中点的弦所在直线的方程为 .15.以下四个关于圆锥曲线的命题中:① 设A 、B 为两个定点,k 为非零常数,若k PB PA =-,则动点P 的轨迹为双曲线;② 过定圆C 上一定点A 作圆的动弦AB 、O 为坐标原点,若OP 21=(OB OA +),则动点P 的轨迹为椭圆;③ 方程2x 2-5x +2=0的两根可分别作为椭圆和双曲线的离心率; ④ 双曲线192522=-y x 与13522=+y x 有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号). 三、解答题16.已知双曲线的离心率为2,它的两个焦点为F 1、F 2,P 为双曲线上的一点,且∠F 1PF 2=60°,△PF 1F 2的面积为312,求双曲线的方程.。

相关文档
最新文档