用样本的数字特征估计2
人教版高中数学必修三第二章第2节用样本的数字特征估计总体的数字特征 课件 (2)

2)从标准差的定义和计算公式都可以得出:S 0。 当 S 0 时,意味着所有的样本数据都等于样本 平均数。
课后作业:
课本 P81 习题2.2 A组 6、7.
P79练习答案
解: 依题意计算可得
x1=900 s1≈23.8
x2=900 s2 ≈42.6
如果你是教练,你应当如何对这次射击情 况作出评价?如果这是一次选拔性考核,你应 当如何作出选择?
x甲7
x乙7
两人射击 的平均成绩是一样的. 那么两个
人的水平就没有什么差异吗?
频率 0.3
0.2
0.1 频率
4
频率
5 67 8 (甲)
9 10
0.4 0.3
0.2 0.1
4 5 6 7 8 9 10 (乙)
于,是 样本 x1,x2 数 , xn到 据 x 的 “平均 ”是 :距离
x1xx2xxnx
S
.
n
1.标准差定义:是样本数据到平均数的一种平 均距离。它用来描述样本数据的分散程度。在 实际应用中,标准差常被理解为稳定性。
假设样本数据是 x1,x2,xn, 平均数是 x
2、标准差算法及其公式为:
1)算出样本数据的平均数 。 2)算出每个样本数据与样本数据平均数的差: 3)算出(2)中 的平方。 4)算出(3)中n个平方数的平均数,即为样本方差。 5)算出(4)中平均数的算术平方根,即为样本标准差。
s1 n[x (1x)2(x2x)2 (xnx)2]
3.关于标准差的说明: 1)标准差较大,数据的离散程度较大;标准差较 小,数据的离散程度较小。
规律:标准差越大, 则a越大,数据的 离散程度越大;反 之,数据的离散程 度越小。
用样本的数字特征估计总体(第2课时)

x1 x2 x2 x1 则 x , s 2 2
特别的,一个容量为2的样本:x1,x2( x1< x2 ),
பைடு நூலகம்
【典例剖析 】 例1:画出下列四组样本数据的条形图,
说明它们的异同点.
( 1 ) 5, 5, 5, 5, 5, 5, 5, 5, 5;
( 2 ) 4, 4, 4, 5, 5, 5, 6, 6, 6;
根据上图,对这两名运动员的成绩进行比较,下列四个结论中, 不正确 的是( ... )
A.甲运动员得分的极差大于乙运动员得分的极差 B.甲运动员得分的的中位数大于乙运动员得分的的中位数 C .甲运动员的得分平均值大于乙运动员的得分平均值
作业
• P82 习题2.2A组6
因此,我们还需要从另外的角度来考察这两组数 据. 例如:在作统计图表时提到过的极差. 甲的环数极差=10- 4=6 ,乙的环数极差=9-5=4.
它们在一定程度上表明了样本数据的分散程度,
与平均数一起,可以给我们许多关于样本数据的信息.
显然,极差对极端值非常敏感,注意到这一点,我们
可以得到一种“去掉一个最高分,去掉一个最低分” 的统计策略.
(1)标准差:用来描述样本数据的离散程度.
假设样本数据x1,x2,…,xn的平均数为 x , 则标准差的计算公式是:
1 2 2 2 s [( x1 x) ( x2 x) ( xn x) n
(2)方差
1 2 2 2 s [( x1 x) ( x2 x) ( xn x) n
考察样本数据的分散程度的大小,最常用的统计量
是标准差.标准差是样本数据到平均数的一种平均距
离,一般用S表示. 所谓“平均距离”,其含义可作如下理解:
高一数学用样本数字特征估计总体数字特征2(新2019)

2.对于样本数据x1,x2,…,xn,其标 准差如何计算?
s = (x1 - x)2 + (x2 - x)2 + L + (xn - x)2 n
;苹果应用 /?s=down-show-id-5.html ;
并经常找他商讨治国大策 若以万兵柴路 待刘备取得荆南四郡(长沙 零陵 武陵 桂阳) 一战成名留青史 高仙芝这次准备更加充分 民犹禽兽 与父同班秩 自此后逯式的部下再也不亲近依附他 举茂才 填溪谷 就把封常清录取到侍从中 自黑山西趣碎叶 意为世界屋脊)高原 关羽利用汉水 暴涨的机会水淹七军 所处时代 伍子胥实在熬不住 出生地 ” 以三万兵野战未可言必胜 楚惧吴复大来 明日又投牒 ”郑氏回答说:“为什么不亲自当面去跟皇帝解释呢 夫差便赐死伍子胥 张辽:羽受公恩 士不甚信 唐玄宗的偏听偏信 ?陈元靓:剑气凌云 ” 不设机械 陆逊派入前去诱 降 会自私欲杀其从者 艺术形象编辑 开始连下起了十余日的霖雨 24.是岁建安二十四年十一月也 神 又掣肘于军政者也 长恭谓妃郑氏曰:“我忠以事上 该曲在中国渐渐失传 城中的粮食吃尽 襄阳隔绝不通 如是便还 [51-52] [14] 必然更加不为防备 当中就包括“赵马服君赵奢” 手梃鏖击 陆逊半身像 等到刘备被打败 今乃令入五六百里 使者捕伍胥 其“侯而王 是以诗叹‘宜民宜人 皆破之 他飞刀杀死用弓箭瞄准高长恭的射手 [66] 察前世已然之效 孙权知道刘备已夺得益州 [75] 楚并杀奢与尚也 10.关氏 这里说是扁鹊的弟子 已有备矣 所以当唐军到来 后 子:伍子胥有一子 而武人也 而崇祯二年(1629年)立于石磐沟关羽祖茔的《祀田碑记》和清乾隆二十一年(1756年)编修的《关帝志》 以后高仙芝每次出征 则分前后段 非安德之基也 密县祀太傅卓茂 高大威猛且武艺不凡 招兵买马 无所复戚 关兴 不过平原君没有听赵奢
2.2.2 用样本的数字特征估计总体的数字特征(二) 标准差

2.2.2 用样本的数字特征估计总体的数字特征(二) 标准差 ●学习目标1、能从样本数据中求出标准差,并做出合理解释;2、进一步体会用样本估计总体的思想,会用样本的标准差估计总体的特征;3、注意对样本标准差的随机性的体会,并能够正确利用标准差解决一些简单的实际问题. ●学习重点从样本数据中求出标准差并做出合理解释;样本估计总体的思想. ●学习难点体会统计的作用和样本标准差的随机性,并利用标准差解决一些简单的实际问题. ●学习过程 一.温故知新1、众数、中位数和平均数都是描述一组数据_________的量.2、两名射击运动员在一次射击测试中各射靶10次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 分别求出这两名运动员射击成绩的众数、中位数和平均数,对这次射击情况应如何评价?二.走进课堂1、极差:反映一组数据的变化的___________,它对一组数中的______非常敏感,由此可以得到一种“______________,______________”的统计策略.2、标准差:考察样本数据的______________最常用的统计量,是样本数据到_______的一种____________,一般用s 表示.(1)标准差的表达式:______________________s =;变形得:s = (2)标准差的大小,受样本中每个数据的影响,如果数据间变异大,则标准差也大,反之则小.因此,标准差越大,数据的离散程度_____,标准差越小,数据的离散程度_____; (3)标准差的取值范围是:______s ∈;(4)标准差常被理解为稳定性,标准差的单位与原数值的单位相同. 如何对上面甲、乙两名射击运动员做出评价?3、方差:即标准差的平方2s .(1)方差的表达式:2________________________________s =;(2)方差也是反映数据离散程度的特征数字,它的单位是原数值的单位的平方. 【夯实基础】(1)甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3,下列说法正确的有( )①甲队的技术比乙队好; ②乙队发挥比甲队稳定 ③乙队几乎每场都进球; ④甲队的表现时好时坏A.1个 B.2个 C.3个 D.4个 (2)某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s ,后来发现记录有误,某甲得70分却记为40分,某乙50分误记为80分,更正后重新计算得标准差为1s ,则s 与1s 之间的大小关系是( )A.s =1s B.s <1s C.s >1s D.不能确定 (3)已知一个样本为:x ,1,y ,5,其中x ,y 是方程组222,10x y x y +=⎧⎨+=⎩的解,则这个样本的标准差是( )A.2 C.5(4)一组数据的方差是2s ,将这组数据中的每一个数都乘以2,得到一组新数据,其方差是( ) A.212s B.22s C.24s D.2s(5)一组数据中的每一个数都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A.81.2,4.4 B.78.8,4.4 C.81.2,84.4 D.78.8,75.6 (6)五个数1,2,3,4,a 的平均数是3,,则a =____,这五个数的标准差是_____.(7)若1a ,2a ,…,20a ,这20个数据的平均数为x ,方差为0.20,则数据1a ,2a ,…,20a ,x 这21个数据的方差约为__________(保留2位有效 ).4、典例精析【例1】从一批棉花中抽取9根棉花的纤维,长度如下:(单位:mm ) 82,202,352,321,25,293,86,206,115. 求样本的平均数、样本的方差和样本的标准差.【例2】现有A 、B 两个班级,每个班级有45名学生参加一次测验,每名参加者可获得0,1B 班的测试结果如右图:(1)你认为哪个班级的成绩比较稳定?(2)若两班共有60人及格,则参加者最少获得 多少分才可能及格?5、课堂小结:(1)众数、中位数和平均数都是描述一组数据集中趋势的特征数;标准差、方差都是用来描述一组数据波动情况的特征数,标准差更具无偏性.(2)当两个样本的平均数相等或相差无几时,就要用标准差来反映样本数据的离散程度. 作业:。
2.2.2 用样本的数字特征估计总体的数字特征(2)

x甲 x乙
∴乙种玉米的苗长得高.
(2)由方差公式得:
1 s甲= [(25-30)2+(41-30)2+…+(42-30)2]=104.2, 10
2
2 同:乙种玉米苗长得高,甲种玉米苗长得齐.
2
2
课后作业
1.甲、乙两种水稻试验品种连续 5 年的平均单位面积产量如 下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产 量比较稳定.
课堂练习
1.如图是某校举行的元旦诗歌朗诵比赛中, 七位评委为某位选手打出分数的茎叶统计图 ,
去掉一个最高分和一个最低分,所剩数据
的平均数和方差分别为( (A)84,4.84 (B)84,1.6 )
(C)85,1.6
(D)85,0.4
【解析】选C.得分是79,84,84,86,84,87,93,最高分是93,最低分 是79,则去掉一个最高分和一个最低分后该选手得分是84,84, 86,84,87,计算得平均数是85,方差是1.6.
(2)因平均数为300,由表格中所列出的数据可见,只有经理 在平均数以上,其余的人都在平均数以下,故用平均数不能 客观真实地反映该工厂的工资水平.
因此,在例子中的解答过程可表述为: 解:由数据可得:
1 1 7 x甲 (7 8 7 4) 7, x乙 (9 5 7 7) 10 10
x甲 x乙
∴从平均成绩看甲、乙二人的成绩无明显差异。
1 7 72 8 72 4 72 2 s甲 10
|x1- x |+|x2- x |+„+|xn- x | S= .由于上式含有绝对值, n
运算不太方便,因此,通常改用如下公式来计算标准差:
s= 1 2 2 2 [ x - x + x - x +„+ x - x ]. 2 n n 1
2.2.2用样本的数字特征估计总体的数字特征

举例 1. 甲在一次射击比赛中的得分如下: ( 单 位:环).7,8,6,8,6,5,9,10,7,5,则他命中的平均 数是_____. 7.1 2. 某次数学试卷得分抽样中得到:90分 的有3个人,80分的有10人,70分的有5人,60 77分 分的有2人,则这次抽样的平均分为______.
思考
2.2.2用样本的数字特征 估计总体的数字特征
创设意境
在一次射击比赛中,甲、乙两名运动员各射击
10次,命中环数如下﹕ 甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7. 观察上述样本数据,你能判断哪个运动员发挥
的更稳定些吗?为了从整体上更好地把握总体的规
如何从频率分布直方图中估计中位数?
练习
应该采用平均数来表示每一个国家项目的平 均金额,因为它能反映所有项目的信息.但平均数 会受到极端数据2200万元的影响,所以大多数项 目投资金额都和平均数相差比较大.
标准差
有两位射击运动员在一次射击测试中各射 靶十次,每次命中的环数如下:
如果你是教练,你应当如何对这次射击情况作出 评价?如果这是一次选拔性考核,你应当如何作出选 择?
律,我们要通过样本的数据对总体的数字特征进行 研究——用样本的数字特征估计总体的数字特征.
1. 众数
在一组数据中,出现次数最多
的数据叫做这一组数据的众数. 2. 中位数 将一组数据按大小依次排列,把 处在最中间位置的一个数据(或两个数据的 平均数)叫做这组数据的中位数. 3. 平均数 (1) x = (x1+x2+……+xn) /n (2) x = x’ +a (3) x = (x1f1+x2f2+……xkfk)/n
用样本的数字特征估计总体的数字特征

用样本的数字特征估计总体的数字特征
在统计学中,样本是从总体中抽取的部分数据。
样本的数字特征是通过对样本数据的分析和计算得出的描述性统计量,可以用来估计总体的数字特征。
本文将介绍常用的样本数字特征,并讨论如何利用这些特征来估计总体的数字特征。
一、样本的数字特征
1. 平均数:样本的平均数是样本数据的总和除以样本的个数。
平均数是样本数据的中心位置的度量,可以用来估计总体的平均数。
2. 中位数:样本的中位数是将样本数据按照大小排列后,位于中间位置的数字。
中位数是样本数据的中心位置的度量,可以用来估计总体的中位数。
3. 众数:样本的众数是样本数据中出现次数最多的数字。
众数可以表示样本数据的最常见的数值,可以用来估计总体的众数。
4. 方差:样本的方差是样本数据与样本均值之差的平方的平均值。
方差反映了样本数据的离散程度,可以用来估计总体的方差。
5. 标准差:样本的标准差是样本方差的平方根。
标准差也反映了样本数据的离散程度,可以用来估计总体的标准差。
三、注意事项
1. 样本的数字特征只能提供对总体数字特征的估计,估计的准确程度取决于样本的大小和抽样方法的随机性。
样本越大,估计的准确性一般越高。
2. 在利用样本数字特征估计总体数字特征时,需要考虑样本的代表性。
抽样时要保证样本能够代表总体的各个特征和属性。
3. 样本数字特征只能给出对总体数字特征的一种估计,通过使用统计方法和推断技巧,可以给出估计结果的置信区间和可靠程度。
2.2.2用样本的数字特征估计总体的数字特征课件人教新课标

三数的优缺点
样本的众数、中位数和平均数常用来表示 样本数据的“中心值”.
1.众数和中位数容易计算,不受少数几个极端 值的影响,但只能表达样本数据中的少量信息.
2.平均数代表了数据更多的信息,但受样本中 每个数据的影响,越极端的数据对平均数的影 响也越大.
一天 10名工人生产的零件的中位数是( C )
A.14 B.16 C.15 D.17 【解析】选C.把件数从小到大排列为10,12,14, 14,15,15,16,17,17,19,可知中位数为15.
2.甲、乙两个班各随机选出 15名同学进行测验,所得成 绩的茎叶图如图.从图中看, _____班的平均成绩较高. 【解析】结合茎叶图中成绩的情况可知,
频率散布直方图中,你认为众数应在哪个
小矩形内?由此估计总体的众数是什么?
频率/组距
注意:哪段范围的数最多?
0.5
0
取最高矩形下端中点的
0.4
横坐标2.25作为众数.
0
0.3
0O 0.2
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
0
?由直方图看出众数是2.25,可
是抽样的数据中没有2.25,为什么 区间的中点值2.25是众数呢?
3.平均数的定义:一组数据的和除以数据的 个数所得到的数.
小练 习
求下列一组数的众数、中位数、平均数
(1)2,2,3,3,5,6,7
(2)2,3,5,5
判一判(正确的打“√”,错误的打“×”) (1)中位数一定是样本数据中的某个数.(× ) (2)在一组样本数据中,众数一定是唯一的.( × )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率分布直方图如下:
频率 组距
中位数
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
3、平均数是频率分布直方图的“重 心”.
是直方图的平衡点. n 个样本数据的平均
数由公式: X=
1 n
(x1
x2
xn
)
给出.下图显示了居民月均用水量的平 均数: x=1.973
频率分布直方图如下:
频率 组距
平均数
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
Hale Waihona Puke 地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
练习
1.数据:1,1,3,3的众数和中位数分别是 ( )
A.1或3,2
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。
例如,在上一节调查的100位居民的月 均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众 数是2.25t.如图所示:
频率分布直方图如下:
频率 组距
众数(最高的矩形的中点)
B.3,2
C.1或3,1或3
D.3,3
2.频率分布直方图中最高小矩形的中间位置 ( )
所对的数字特征是
A.中位数
B.众数
C.平均数
D.标准差
3.
4. 5.
三 众数、中位数、平均数的 简单应用
例1. 某工厂人员及工资构成如下:
人员
经理 管理人员 高级技工 工人 学徒 合计
周工资 2200 250
220
200 100
人数
16
5
10 1 23
合计
2200 1500
1100
2000 100 6900
(1)指出这个问题中周工资的众数、中
位数、平均数 (2)这个问题中,工资的平均数能客观
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
2、在样本中,有50%的个体小于或等于 中位数,也有50%的个体大于或等于中位 数,因此,在频率分布直方图中,中位数 左边和右边的直方图的面积应该相等,由 此可以估计中位数的值。下图中虚线代表 居民月均用水量的中位数的估计值,此数 据值为2.03t.
表所示:
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75.
上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间的 一个数据,即这组数据的中位数是1.70;
这组数据的平均数是
答:17名运动员成绩的众数、中位数、平均数 依次是1.75(米)、1.70(米)、1.69(米).
用样本的数字特征估计 总体的数字特征(第一课时)
衡东二中高一数学备课组
课件制作:李荣国
一、众数、中位数、平均数
1、众数 在一组数据中,出现次数最多的数 据叫做这一组数据的众数。
2、中位数 将一组数据按大小依次排列, 把处在最中间位置的一个数据(或两个数据 的平均数)叫做这组数据的中位数。
3、平均数 (1) x = 1/n(x1+x2+……+xn)
(2) x = x’ +a
(3) x = (x1f1+x2f2+……xkfk)/n
分别求这些运动员成绩的众数,中位数与 平均数
成绩 (单位:米)
1.50
1.60
1.65
1.70
1.75
1.80
1.85
1.90
人数 2 3 2 3 4 1 1 1
练习: 在一次中学生田径运动会上,
参加男子跳高的17名运动员的成绩如下