《稀土在功能材料中的应用》

合集下载

稀土在结构陶瓷材料和功能陶瓷中的应用有哪些?

稀土在结构陶瓷材料和功能陶瓷中的应用有哪些?

稀土在结构陶瓷材料和功能陶瓷中的应用有哪些?稀土及稀土氧化物在陶瓷材料中的应用,主要是作为添加物来改进陶瓷材料的烧结性、致密性、显微结构和晶相组成等,从而在极大程度上改善了它们的力学、电学、光学或热学性能,以满足不同场合下使用的陶瓷材料的性能要求。

本文简要综述了稀土氧化物在结构陶瓷材料和功能陶瓷中的应用。

1 稀土氧化物在陶瓷材料中的作用机理2 稀土氧化物在结构陶瓷材料中的应用结构陶瓷是指晶粒间主要是离子键和共价键的一类陶瓷材料,具有良好的力学性、高温性和生物相容性等。

结构陶瓷在日常生活中应用很普遍,目前已向航空航天、能源环保和大中型集成电路等高技术领域拓展。

2.1 氧化物陶瓷氧化物陶瓷是指陶瓷中含有氧原子的陶瓷,或高于二氧化硅(SiO2:熔点1730℃)晶体熔点的各种简单氧化物形成的陶瓷。

氧化物陶瓷具有良好的物理化学性质,电导率大小与温度成反比。

氧化物陶瓷常作为耐热、耐磨损和耐腐蚀陶瓷,应用在化工、电子和航天等领域。

2.1.1 氧化铝陶瓷氧化铝陶瓷被广泛用于制造电路板、真空器件和半导体集成电路陶瓷封装管壳等。

为了获得性能良好的陶瓷,需要细化晶粒并使其以等轴晶分布,降低陶瓷的气孔率,提高致密度,最好能达到或接近理论密度。

氧化铝陶瓷的烧结温度高,烧制原料高纯氧化铝价格也高,限制了其在部分领域的推广及应用。

研究表明,稀土氧化物的加入可与基体氧化物形成液相或固溶体,降低烧结温度,改善其力学性能。

常用的稀土氧化物添加剂有Dy2O3、Y2O3、La2O3、CeO3、Sm2O3、Nd2O3、Tb4O7和Eu2O3等。

2.1.2 氧化锆陶瓷氧化锆(ZrO2)有单斜相、四方相和立方相三种晶型。

在一定温度下,氧化锆发生晶型转化时伴随体积膨胀和切应变,体积膨胀可能导致制品开裂。

氧化锆的熔点高,耐酸碱侵蚀能力强,化学稳定好,抗弯强度和断裂韧性很高。

三种晶型相互转化会伴随着体积的膨胀或收缩,导致性能不稳定,须采取稳定化措施。

稀土材料的应用简介

稀土材料的应用简介

稀土矿的应用简介一、稀土矿的简介1、稀土的发现史从1794年发现元素钇,到1945年在铀的裂变物质中获得钷,前后经过151年的时间,人们才将元素周期表中第三副族的钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥17个性质相近的元素全部找到,把它们列为一个家族,取名稀土元素。

我国稀土品种全,17种元素除钷尚未发现天然矿物,其余16种稀土元素均已发现矿物、矿石。

2、资源储量分布我国稀土矿产主要集中在内蒙古白云鄂博铁-铌、稀土矿区,其稀土储量占全国稀土总储量的90%以上,是我国轻稀土主要生产基地。

即轻稀土主要分布在北方地区,重稀土则主要分布在南方地区,尤其是在南岭地区分布可观的离子吸附型中稀土、重稀土矿,易采、易提取,已成为我国重要的中、重稀土生产基地。

此外,在南方地区还有风化壳型和海滨沉积型砂矿,有的富含磷钇矿(重稀土矿物原料);在赣南一些脉钨矿床(如西华山、荡坪等)伴生磷钇矿、硅铍钇矿、钇萤石、氟碳钙钇矿、褐钇铌矿等重稀土矿物,在钨矿选冶过程中可综合回收,综合利用。

二、稀土的用途稀土(RE)常被冠以“工业味精”的美誉。

稀土元素因其具有独特的电子结构而表现出特殊的光、电、磁学等物理化学性质。

无论是稀土金属还是其化合物都有良好的应用价值。

1、传统领域中的稀土材料(1)稀土在农轻工中的应用稀土元素作为微量元素用于农业有2个优点:一是作为植物的生长、生理调节剂;二是稀土属低毒、非致癌物质,合理使用对人畜无害、环境无污染。

如添加稀土元素的硝酸盐化合物作为微量元素化肥施用于农作物可起到生物化学酶或辅助酶的生物功效,具有增产效果。

纺织业中:铈组元素(Eu以前的镧系元素)的氯化物或醋酸盐可提高纺织品的耐水性,并使织物具有防腐、防蛀、防酸等性能。

某些稀土化合物还可以作为皮革的着色剂或媒染剂,La、Ce、Nd的一些化合物可用作油漆的干燥剂,增强油漆的耐腐蚀性。

(2)稀土在冶炼工业中的应用稀土元素对O、S和某些非金属具有强亲和力,利用这一特点,将稀土用于炼钢中能净化钢液,能起到脱S和脱O的作用,其原理是加入钢中的稀土能结合钢中可能生成的MnS、Al2O3和硅铝酸夹杂物中的O和S形成化合物。

稀土在电子功能材料领域的应用

稀土在电子功能材料领域的应用

稀土在电子功能材料领域的应用作者:暂无来源:《稀土信息》 2020年第5期文/杨丽张文灿郭咏梅一、稀土与电子信息产业电子信息产业具有技术含量高、投入产出比大、附加值高、效益明显的特点。

电子材料和元器件是电子信息制造业的重要组成部分,处于电子信息产业链的前端,支撑着现代通信、信息网络技术、微机械智能系统、工业自动化与家电等信息处理系统,以及由新能源汽车、风电、光伏、智能电网组成的电能互连网等信息产业的运行和发展。

在全球经济持续低迷、国内经济增速放缓的情况下,电子信息行业仍保持稳定的增长速度。

数据显示,2019年,我国规模以上电子信息制造业营业收入同比增长4.5%,达到11万亿元;利润总额同比增长3.1%,接近5200亿元。

其中, 2019年我国电子信息制造业虽仍保持平稳增长,但增长力度有所减缓,电子材料和元器件行业利润下幅明显。

稀土与电子信息产业关系密切。

稀土元素具有特殊的4f层电子结构,表现出许多光、电、磁的特性。

通过纳米化后,稀土元素又有许多新特性,如小尺寸效应、高比表面效应、量子效应、极强的光电磁声性质、超导性、高化学活性等,综合性能大大提高,再通过掺杂或作为原料与其它材料组成性能各异、品种繁多的新型电子功能材料,如半导体材料、光电子材料、磁性材料、电子功能陶瓷材料、电能源材料、电子通讯材料,是电子信息产业不可或缺的重要组成部分。

这些材料已应用于众多电子元器件行业的产品中,且已形成一定的产业规模。

因此,电子信息产业是稀土重要的终端用户。

从应用需求看,可持续发展战略、《中国制造2025》等为电子信息产业的发展创造了新空间,电子功能材料的市场需求也正在大幅增加。

由于通过稀土改性的电子功能材料大幅提升了应用器件的使用性能、丰富了使用场景、推动了电子信息产业的快速发展。

因此,大力发展电子功能材料及器件,着力拓展稀土电子功能材料的中高端应用,发挥好稀土在改造传统产业、发展新兴产业及国防科技工业中的战略价值和支撑作用是整个行业重点关注和发展的主要方向。

稀土在环境与建筑材料方面的应用

稀土在环境与建筑材料方面的应用

立志当早,存高远稀土在环境与建筑材料方面的应用稀土在环境材料方面的一项重要用途是作为汽车尾气净化催化剂。

它具有良好的催化活性、热稳定性、抗毒性、使用寿命和价格优势。

北京有色金属研究总院研制的稀土尾气净化催化剂主要采用氧化铈,中国科学院大连化学物理研究所用铂/氧化锆-氧化铈作为催化剂。

可使汽车尾气中的CO(一氧化碳)、HC(碳氢化物)、NOX(氮氧化物)的净化率达到60%-70%乃至更高。

国外,最近利用CEO(二氧化铈)作为SO(二氧化硫)的吸附剂,使烟道中二氧化硫的净化率达到95%。

采用硫酸铈脱除NOX 的净化率达90%以上。

用氧化铈吸附硫化氢可与其形成硫氧化铈,在1000℃气化脱硫时,可再生氧化铈。

自1973 年提出二氧化碳甲烷化的设想以来,科学家们进行了多方面的研究,当用氢气作为二氧化碳的还原剂,将氧化镧结合到铜锆烙铝(Cu-Zr-Cr-Al)氧化物催化剂内,以使二氧化碳转化为甲醇,既开发了新能源,又减少了二氧化碳的排放量。

稀土的原子半径大,极易失去外层电子,具有特殊的变价特性和化学活性。

中国建筑材料科学研究院的科研工作都利用氧化钛、氧化锆等氧化物半导体光催化特性和稀土激活手段,在材料的禁带中增加新的表面能级,增加了光催化过程中的活性氧自由基,从而在可见光的条件下也具有了光催化剂效果。

由此特性开发出稀土激活抗菌剂(24 小时抗菌率可达95%)和空气净化剂(NH、NO、NCHO、CO 的净化率均可达到60%以上)。

这种催化剂采用了稀土和其它氧化物等多成分的协同效应,目前已开始应用于多种涂料、陶瓷、搪瓷和水泥制品等建筑材料方面,能产生良好的抗菌和净化效果。

玻璃陶瓷是应用稀土较早的传统产业。

在玻璃陶瓷中添加稀土可改善材料性能,引起颜色变化。

稀土用作玻璃的抛光材料,可提高抛光效果。

稀土在玻。

稀土功能材料

稀土功能材料

稀土功能材料稀土功能材料是一类具有特殊功能和广泛应用领域的材料,其主要成分为稀土元素及其化合物。

稀土功能材料具有独特的磁、光、电、声、热等物理性能,被广泛应用于电子信息、光电通信、新能源、环境保护等领域。

本文将就稀土功能材料的分类、性能及应用进行详细介绍。

首先,稀土功能材料可以分为磁性、光学、电学、声学、热学等多个类别。

其中,磁性稀土功能材料主要包括永磁材料、铁磁材料和磁光材料,具有高磁导率、低磁损耗、良好的磁学稳定性等特点;光学稀土功能材料主要包括发光材料、荧光材料和光学玻璃,具有发光强度高、发光时间长、抗辐照性能好等特点;电学稀土功能材料主要包括铁电材料、压电材料和电光材料,具有高介电常数、低介电损耗、良好的电学稳定性等特点;声学稀土功能材料主要包括声表面波材料和声光材料,具有声波传输效率高、频率稳定等特点;热学稀土功能材料主要包括热电材料和热光材料,具有热电转换效率高、热光转换效率高等特点。

其次,稀土功能材料具有多种优异的性能。

例如,永磁材料具有高磁能积、高矫顽力、高抗腐蚀性等特点;铁电材料具有高介电常数、压电常数大、压电应变大等特点;发光材料具有发光效率高、发光波长可调、发光寿命长等特点;热电材料具有热电转换效率高、温度稳定性好等特点。

这些优异的性能使稀土功能材料在各个领域得到了广泛的应用。

最后,稀土功能材料在各个领域都有着重要的应用价值。

在电子信息领域,稀土功能材料被广泛应用于电子元器件、磁存储材料、光学器件等方面;在新能源领域,稀土功能材料被应用于太阳能电池、燃料电池、热电材料等方面;在环境保护领域,稀土功能材料被应用于污水处理、固体废物处理、环境监测等方面。

可以看出,稀土功能材料在现代科技和工业生产中具有不可替代的重要作用。

总之,稀土功能材料以其独特的性能和广泛的应用领域,成为当今材料科学领域的研究热点之一。

随着科技的不断发展,相信稀土功能材料将会在更多领域展现出其巨大的应用潜力,为人类社会的进步和发展作出更大的贡献。

稀土功能材料

稀土功能材料

稀土功能材料稀土功能材料是一类具有特殊物理、化学性质和广泛应用前景的材料。

稀土元素是化学元素周期表中的一类元素,包括镧系元素和钪系元素。

它们在材料科学领域中具有重要的地位,因为它们具有独特的电子结构和磁性特性,可以被应用于光学、磁学、电子学等多个领域。

稀土功能材料在光学领域中有着广泛的应用。

稀土元素可以被用来制备各种发光材料,如氧化镓掺杂稀土发光材料、氧化铟掺杂稀土发光材料等。

这些发光材料可以被用于LED照明、显示器件、激光器件等领域,具有很高的应用价值。

此外,稀土元素还可以被用来制备光学玻璃、光学陶瓷等材料,用于制备各种光学器件。

在磁学领域中,稀土功能材料也发挥着重要的作用。

稀土元素具有很强的磁性,可以被用来制备各种永磁材料、软磁材料等。

永磁材料可以被应用于电机、发电机、传感器等设备中,具有很高的磁化强度和磁能积。

而软磁材料则可以被用来制备变压器、电感器等电磁器件,具有很高的磁导率和低的磁滞回线。

在电子学领域中,稀土功能材料也有着重要的应用。

稀土元素可以被用来制备各种半导体材料、电子陶瓷材料等。

这些材料可以被用来制备各种电子器件、电路器件等,具有很高的电子性能和稳定性。

此外,稀土元素还可以被用来制备电子浆料、电子封装材料等,用于电子器件的制备和封装。

总的来说,稀土功能材料具有很高的应用价值和广泛的应用前景。

随着科学技术的不断发展,稀土功能材料将会在各个领域中发挥着越来越重要的作用,为人类社会的发展和进步做出更大的贡献。

希望未来能够有更多的科研人员投入到稀土功能材料的研究和应用中,为这一领域的发展注入更多的活力和创新力。

稀土材料的光谱研究及应用

稀土材料的光谱研究及应用

稀土材料的光谱研究及应用光谱研究是一种分析微观结构和物质性质的方法,也是现代材料科学发展的重要领域之一。

稀土材料作为一种特殊的功能材料,在光谱研究和应用中发挥着重要的作用。

本文将从稀土材料的分类、光谱研究方法及其应用等方面详细介绍稀土材料的光谱研究及应用。

一、稀土材料的分类稀土元素是指周期表中的镪(La)、铈(Ce)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、钇(Y)、镱(Yb)、铥(Tm)这14种元素和其相邻的2个元素镨(Pr)和掺入的铥质钨等元素。

其中,钕、铕、钆、铽、镝、铒、铥、镱和铈是常见的稀土元素。

而稀土材料是指由稀土元素组成的多种化合物、合金、氧化物、陶瓷和玻璃等复杂的功能材料。

按照晶体结构和化学成分的不同,稀土材料可以分为单晶体、多晶体、氧化物、复合材料和配合物等多种类型。

二、光谱研究方法1. 紫外可见光谱紫外可见光谱是一种常用的分析稀土元素的方法。

由于稀土元素处于内层电子结构中,紫外光和可见光能激发其价电子到空轨道上,形成特有的吸收峰。

利用紫外可见光谱,可以准确测定稀土元素在材料中的含量,刻画其能级结构,研究其光物理和电子结构等性质。

2. 荧光光谱稀土材料具有良好的荧光性能,能够产生强烈的荧光信号。

荧光光谱是一种研究稀土材料光物理性质的方法。

在荧光光谱中,稀土材料受到光激发后会发生荧光发射,光谱图中的峰值位置和强度反映了材料的激发态和发射态能级差异。

荧光光谱可用于研究稀土材料的荧光增强机制,设计高效的荧光探针和显微成像材料等。

3. 磁共振光谱磁共振光谱是一种测量物质中核自旋共振信号的方法。

在稀土元素中,具有自旋磁矩的核子有Nd、Gd、Tb、Dy中的一些同位素,可以利用核磁共振谱(NMR)和电子顺磁共振谱(EPR)技术,研究稀土材料的晶体结构、分子构型和磁学行为等。

三、稀土材料的应用稀土材料的应用领域非常广泛,涉及光电、催化、生物医学、环境保护、新能源等多个方面。

《稀土材料及应用》教学大纲

《稀土材料及应用》教学大纲

《稀土材料及应用》教学大纲一、《稀土材料及应用》课程说明(一)课程代码:08131022(二)课程英文名称:Rare-Earth Material and Application(三)开课对象:材料物理专业方向(四)课程性质:《稀土材料及应用》是材料物理专业的专业选修课程之一,本课程旨在使学生掌握各种稀土材料的性能、制备工艺的同时,培养学生实践能力,培养自学、讲解、协作和分析的综合能力。

要求学习本课程前应修完普通物理、材料物理、普通化学、材料科学基础、无机材料化学、材料制备技术等课程。

(五)教学目的:稀土是我国的优势资源。

目前稀土材料已在国民经济的各个领域获得了广泛的应用。

通过开设本课程,讲授各种稀土材料的设计、制备技术、稀土在新材料开发中的作用机理,了解稀土材料在各个领域的应用现状和发展趋势,从而掌握稀土材料的应用知识,为充分利用我国的稀土资源,发展我国自有知识产权的新型稀土材料培养人才。

(六)教学内容:本课程主要学习稀土材料的基础理论、组织结构、材料性能、制备工艺以及稀土材料在各个领域的应用现状和发展趋势。

内容共分四部分,第一部分介绍稀土的一般物理化学性质、冶炼特点和发展简史;第二部分介绍稀土化合物生产的工艺方法;第三部分稀土金属及合金的制备方法;最后一部分介绍稀土材料的制备和应用。

(七)学时数、学分数及学时数具体分配学时数: 72学时分数: 4学分(八)教学方式以多媒体教学手段为主要形式的课堂教学。

(九)考核方式和成绩记载说明考核方式为考试。

严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。

综合成绩根据平时成绩和期末成绩评定,平时成绩占40% ,期末成绩占60% 。

二、讲授大纲与各章的基本要求第一章稀土概述教学要点:通过本章的教学,使学生初步了解稀土材料的物理化学性质、冶炼特点以及发展历史和前景,了解稀土在地壳中的分布及其在矿物中的赋存状态,了解稀土的主要工业矿物和矿床。

教学时数:8学时教学内容:第一节稀土诸元素和它们的发展简史第二节稀土的一般物理和化学性质及冶炼特点第三节稀土矿物一、稀土在地壳中的分布及其在矿物中的赋存状态二、稀土的主要工业矿物和矿床考核要求:第一节稀土诸元素和它们的发展简史(了解)第二节稀土的一般物理和化学性质及冶炼特点(识记)第三节稀土矿物一、稀土在地壳中的分布及其在矿物中的赋存状态(了解)二、稀土的主要工业矿物和矿床(了解)第二章稀土化合物生产的工艺方法教学要点:通过本章的教学使学生了解稀土化合物生产的工艺方法,掌握稀土精矿的分解方法,掌握稀土精矿的分解方法,掌握单一稀土的分离方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石油化工:稀土元素具有高氧化能和高电荷的大 离子,很容易获得和失去电子。因而广泛用做催化 剂。石油工业中的稀土分子筛裂化催化剂活性高、 选择性好、汽油生产率高。 玻璃工业:稀土在玻璃工业中的应用主要为三个 方面:玻璃着色、玻璃脱色、制造特种性能玻璃。 稀土光学玻璃(镧玻璃等)可提高折射率、降低色 散、增加抗腐蚀性,广泛用做各种透镜和高级照相 机、摄像机镜头。
4.我国稀土产品发展概况
自1986年以来,我国稀土产量已经超过美国,成 为世界第一的稀土生产大国,目前我国稀土产量已 占世界总产量的70%,已能够生产近千个规格的 400多种稀土产品,产品结构正从初级产品向高纯、 高附加值、单一稀土方向发展,单一稀土化合物和 金属的产量占总商品量的30%以上。稀土应用技术 日益成熟、应用范围不断扩大。具有“工业味精” 之称的稀土元素由于其特殊的性能,已广泛应用于 传统产业领域,同时稀土功能材料已逐步成为信息、 生物、新能源、新材料等高新技术领域中的关键材 料。
3.稀土在传统产业领域中的应用
农业:稀土是植物生长、生理调节剂,对农作物 具有增产、改善品质、增强抗旱抗涝抗伏倒抗病能 力等作用,低毒或无毒,对人畜无害,无环境污染。 其应用涉及粮食作物、蔬菜、水果、牧草及养鱼养 鸡等畜牧业。
冶金工业:钢中加入少量稀土,能起到脱氧、脱 硫、改变夹杂物形态等净化和变质作用,显著提高 钢的强度和韧性;不锈钢中加入少量稀土,能提高 其耐热耐蚀性,防止热加工裂纹;少量稀土可使合 金钢强度显著提高、能降低石墨对铸铁基体的分割 破坏作用;高活性的稀土加入到有色金属及合金中, 可以去除残留气体和有害杂质、细化组织、改善合 金组织形态、形成金属间化合物、产生固溶强化、 提高耐热性(再结晶温度)、改善工艺性能(减少 偏析、气孔、缩水、表面裂纹)。
二.我国稀土资源概况及在传统产业领域 中的应用
1.稀土元素(rare earth或RE)
稀土元素:是元素周期表第三副族中原子序数5771的15个镧系元素和钪(Sc)、钇(Y)的总称 (共17个元素)。镧系元素:镧(La)、铈(Ce)、 镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕 (Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬 (Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥 (Lu)。
2.我国稀土资源
中国稀土资源:占世界已探明储量的80%,储量 达3600万吨(以稀土氧化物计),远景储量一亿吨, 居世界首位。而且品种齐全、质量高、易开采。已 形成南、北两大体系。北方主要为轻稀土资源,分 布在内蒙古的包头白云鄂博(铁稀土共生矿)和四 川的冕宁(氟碳铈矿),有镧、铈、镨、钕和少量 钐、铕、钆。南方主要为中重稀土资源,分布在江 西、福建、广东、广西、湖南,有钐、铕、钆、铽、 镝、钬、铒、铥、镱、镥和镧、钕等。
陶瓷工业:稀土用做陶瓷颜料使陶瓷颜色柔和、 纯正、色调新颖、光洁度好。由于镧系元素对氧的 亲和力强,添加稀土元素的陶瓷熔点非常高,还能 改善陶瓷韧性、提高抗裂能力。稀土加入陶瓷釉料 中,可减少釉层破裂和增加光泽。稀土氧化物可以 制造耐高温透明陶瓷、耐高温坩埚、碳弧灯泡芯材。 用氧化钇部分稳定的氧化锆已被制成特殊用途的陶 瓷刀剪,因其高导热、低膨胀系数、热稳定性好可 用于制造汽车发动机。
通过各种稀土化合物或掺稀土物质的合 成、组成、结构、性质和器件的研究,国内 外已出现和将出现的各种新型稀土功能材料 包括光学功能材料、吸波功能材料、信息与 传感功能材料、环境功能材料、磁性功能材 料、储氢与能源功能材料、导电与电子功能 材料等。
通过各种稀土化合物或掺稀土物质的合成、组 成、结构、性质和器件的研究,国内外已出现和将 出现的各种新型稀土功能材料包括光学功能材料、 吸波功能材料、信息与传感功能材料、环境功能材 料、磁性功能材料、储氢与能源功能材料、导电与 电子功能材料等。 大量研究发现,稀土元素的加入将对材料的 性能有显著的改善。稀土在功能材料中的应用将大 大提高稀土资源开发利用的经济效益和社会效益。 开展新型稀土材料的基础理论研究、技术创新研究 及产业化研究是国家急需解决的一个极为重要的课 题。
稀土在功能材料中的应用
主要内容
一、引言 二、我国稀土资源概况及稀土在传 统产业领域中的应用 三、新型稀土功能材料 四、结束语


稀土元素具有特殊的电、磁、 光与催化性能。稀土在传统产业中 有许多应用,而在现代功能材料领 域用途更加广泛。
一、引


稀土元素化学性质活泼,具有特异的电、磁、 光和催化性能,因而在工业生产和科学研究中应 用广泛。稀土产品在传统产业领域(如冶金、石 油化工、玻璃、陶瓷、农业)中的应用市场已大 致稳定,而新型稀土材料尤其是功能材料却在快 速增长。稀土元素已成为现代功能材料中不可缺 少的原料。
性质:稀土元素由于其独特的4f电子结构,因而 有典型的金属特性。金属形态的稀土元素有良好的 导电性、延展性和金属光泽,燃点低,化学性质活 泼,易与其他元素作用,几乎能与所有非金属元素 生成稳定的化合物,其氧化物有很高的熔点和多种 颜色。其金属活泼性仅次于碱金属和碱土金属,活 泼性按原子序数递增。另外还具有独特的电、磁、 光和催化性能。稀土元素是亲石元素,常见的是以 氧化物、硅酸盐、磷酸盐、磷硅酸盐、氟碳酸盐以 及氟ห้องสมุดไป่ตู้物等形式存在,在矿物中常与其他元素共生。
湖南稀土资源:湖南稀土矿产资源丰富,分布广、 规模较大。主要矿床为冲击型独居石沙矿床、风化 壳独居矿物型矿床、离子吸附型稀土矿床。独居石 的探明储量居全国第一。冲击型独居石沙矿床集中 分布在湘东北岳阳地区(华容、岳阳、湘阴),风 化壳独居矿物型矿床和离子吸附型稀土矿床集中在 湘南地区(江华、桂东、资兴、郴县、蓝山、汝城、 临武、耒阳、宜章),一般为重稀土矿床,也有轻 稀土。矿石品位高、质量好。 华容三廊堰,岳阳埂口,湘阴望湘;江华姑婆 山,耒阳上堡小冲头,宜章莽山,桂东寨前,汝城 诸广山,资兴彭公庙,郴县骑田山,蓝山西山,临 武香花岭,等。
“轻稀土元素”:钪(Sc)、钇(Y)、镧 (La)—铕(Eu)。 “重稀土元素”:钆(Gd)—镥(Lu)。 地球上稀土分布:约占地壳总量的0.016%,丰度比 常见的铜、铅、锌、锡还多,但目前真正成为可开采的 稀土矿并不多,且在世界上的分布很不均匀,主要集中 在中国、美国、印度、前苏联国家、南非等国。
相关文档
最新文档