概率论与数理统计-学习指导与练习册习题答案

合集下载

概率论与数理统计练习册答案

概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。

重庆理工大学概率论与数理统计_学习指导与练习册习题答案

重庆理工大学概率论与数理统计_学习指导与练习册习题答案

1 / 24习题一一.填空题一.填空题1.ABC 2、50× 3、20× 4、60× 二.单项选择题二.单项选择题 1、B 2、C 3、C 4、A 5、B 三.计算题三.计算题 1.(1)略)略 (2)A 、321A A AB 、321A A A ÈÈC 、321321321A A A A A A A A A ÈÈD 、321321321321A A A A A A A A A A A A ÈÈÈ 2.解.解)()()()(AB P B P A P B A P -+=È=85812141=-+83)()()()(=-=-=AB P B P AB B P B A P87)(1)(=-=AB P AB P21)()()])([(=-È=ÈAB P B A P AB B A P3.解:最多只有一位陈姓候选人当选的概率为531462422=-C C C 4.)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=ÈÈ=855.解:(1)n Nn A P !)(=(2)nn NNn C B P !)(=、 (3)nmn m n N N C C P --=)1()(习题二一.填空题一.填空题1.0.8 2、50× 3、32 4、735、43 二.单项选择题二.单项选择题 1、D 2、B 3、D 4、B 三.计算题三.计算题1. 解:设i A :分别表示甲、乙、丙厂的产品(i =1,2,3) B :顾客买到正品:顾客买到正品)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P +=83.065.05185.0529.052=´+´+´ 8334)()/()()/(222==B P A B P A P B A P2.解:设iA :表示第i 箱产品(i =1,2)i B :第i 次取到一等品(i =1,2) (1))/()()(1111A B P A P B P =)/()(212A B P A P +=4.0301821501021=´+´ (2)同理4.0)(2=B P(3))/()()(121121A B B P A P B B P =)/()(2212A B B P A P +=19423.02917301821499501021=´´+´´ 4856.04.019423.0)()()/(12112===B P B B P B B P (4)4856.04.019423.0)()()/(212121===B P B B P B B P 3. 解:设i A :表示第i 次电话接通(i =1,2,3)101)(1=A P 10191109)(21=´=A A P1018198109)(321=´´=A A A P所以拨号不超过三次接通电话的概率为3.0101101101=++如已知最后一位是奇数,则如已知最后一位是奇数,则51)(1=A P 514154)(21=´=A A P51314354)(321=´´=A A A P 所以拨号不超过三次接通电话的概率为60515151=++ 4.解:)()()(1)(1)(C P B P A P C B A P C B A P -=ÈÈ-=ÈÈ=6.04332541=-5.解:设21,B B 分别表示发出信号“A ”及“B ” 21,A A 分别表示收到信号“A ”及“B ”)/()()(1111B A P B P A P =)/()(212A A P B P +=30019701.031)02.01(32=+- 197196)()/()()()()/(111111111===A P B A P B P A P B A P A B P第一章 复习题一.填空题一.填空题1.0.3,0.5 2、0.2 3、2120 4、153,1535、158,32,31 6.4)1(1p --二.单项选择题二.单项选择题1、B2、B3、 D4、D5、A 三.计算题三.计算题1. 解:设i A :i 个人击中飞机(i =0,1,2,3) 则09.0)(0=A P 36.0)(1=A P 41.0)(2=A P 14.0)(3=A PB :飞机被击落:飞机被击落)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(00A B P A P +=458.0009.0114.06.041.02.036.0=´+´+´+´ 2.解:设i A : i 局甲胜(i =0,1,2,3)(1)甲胜有下面几种情况:)甲胜有下面几种情况: 打三局,概率36.0打四局,概率12136.06.04.0××C打五局,概率122246.06.04.0××CP (甲胜)=36.0+11221136.06.04.0××C +1122222246.06.04.0××C =0.68256 (2)93606.06.0*4.0*6.06.0*4.0*6.06.0)()()()()/(2222321321212121=++===A A P A A A P A A P A AA P A A A P3.解:设A :知道答案:知道答案 B :填对:填对)/()()(A B P A P B P =475.0417.013.0)/()(=´+´=+A B P A P197475.0417.0)()/()()()()/(=´===B P A B P A P B P B A P B A P 4.解:设iA :分别表示乘火车、轮船、汽车、飞机(i =1,2,3,4)B :迟到:迟到)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(44A B P A P +=203052121101315141103=´+´+´+´2120341103)()/()()()()/(11111=´===B P A B P A P B P B A P B A P同理94)/(2=B A P 181)/(3=B A P5.解:A :甲袋中取红球;B :乙袋中取红球:乙袋中取红球)()()()()()()(B P A P B P A P B A P AB P B A AB P +=+=È =40211610106166104=´+´习题三 第二章 随机变量及其分布一、填空题一、填空题1、19272、23、134、0.85、010.212()0.52313x x F x x x <ìï£<ï=í£<ïï³î6、113~0.40.40.2X -éùêúëû二、单项选择题二、单项选择题1、B2、A3、B4、B 三、计算题三、计算题1、解:由已知~(15,0.2)X B ,其分布律为:1515()0.20.8(0,1,2,...,15)kk kP X k C k -===至少有两人的概率:(2)1(2)1(0)(1)0.833P X P X P X P X ³=-<=-=-==多于13人的概率:(13)(14)(15)P X P X P X >==+==02、解、解 设击中的概率为p ,则X 的分布率为的分布率为 X123456k p p (p p )1- (p p 2)1- (p p 3)1- (p p 4)1- (p p 5)1-+(6)1p -3、解:X 的分布律为:的分布律为:X34 5 k p0.10.30.6X 的分布函数为:0,30.1,34()0.4,451,5x x F x x x <ìï£<ï=í£<ïï³î4、解:由已知,X 的密度函数为:1,33()60,x f x ì-££ï=íïî其它此二次方程的22(4)44(2)16(2)x x x x D =-××+=--(1)当0D ³时,有实根,即2(2)021x x x x --³Þ³£-或 所以{}{21}{2}{1}P P X X P X P X =³£-=³+£-方程有实根或3123111662dx dx --=+=òò(2)当0D =时,有重根,即2(2)021x x x x --=Þ==-或所以{}{21}{2}{1}0P P X X P X P X ===-==+=-=方程有重根或 (3)当0D <时,无实根,1{}1{}2P P =-=方程有实根无实根 5、解:设X 为元件寿命,Y 为寿命不超过150小时的元件寿命。

概率论与数理统计学习指导参考答案-常州大学

概率论与数理统计学习指导参考答案-常州大学

概率论与数理统计学习指导参考答案-常州大学同步练习参考答案练习 1-11. (1)是;(2)是;(3)是.练习1-21. (1)123456{,,,,,}S e e e e e e =, 其中ie =‘出现i 点’1,2,,6i =L ,246{,,}A e e e =;(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)};{(4,6),(5,5),(6,4)}A =;{(3,1),(4,2),(5,3),(6,4)}B =;(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)};{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =;(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;1.2. 5.0,,q p +,p ).(1q p +-6 .0.6, 0.1. 7.0.3,0.6.8. 1.p - 9.,1.p q r p r +-+- 10.0.1,0.1.练习1-41. 0.054.2. (1 )0.662; (2) 0.0354.3.(1) 112;(2)1.20 4.(1)365;365rrP (2) 41.965. 0.01107.6.1.12607.7147,,1515308.2!.(2)!nn n ⋅9.797.9A10. 491.10⎛⎫- ⎪⎝⎭11.3.1012.(1) 0.41; (2) 0.00061;(3) 0.0073.13. 0.0602.练习1-51. 3.52. 0.121.3. 0.25.4. (1)1;3(2) 1.25. 0.2.练习1-6 1.2.32.76.3. 0.6148.4.(1) 0.862; (2)0.058; (3)0.8286.5.(1) 1;1n k-+(2) 1.n6.0.645.7.0.64.8.(1) 0.0125; (2) 0.24: 0.64: 0.12 或6:16:3.9.(1)5;12(2)24.7510.(1) 0.10034; (2) 0.0038.11.(C).练习1-71.0.5,0.5.2.证明略.3. 0.902.4. (1) 0.5; (2) 0.4.5.(1)0.84;(2)6.6. (1)0.0168;(2) 0.1557; (3) 0.8587.7.(1) 0.3087;(2)0.371.8.(1)0.9;(2)0.887.9. 0.542.练习2-1, 2-2 1.X的分布列为2.{}2.3125,100.32.c P X X=<≠=3.分布列为{}1112P X -<≤=,{}5116P X -≤<=.4.(1)12a =; (2)2023(31)a =⋅-; (3)14a =.5.1927. 6. 0.9972. 7. 0120.80.80.80.810.04740!1!2!e -⎛⎫-++≈ ⎪⎝⎭. 8. 2λ=,{}42240.09024!P X e -==≈.练习2-31. 6k =, 0, 0.784. 2.2a π=3.12c =, 11e-. 4. 0.578125.5. 100a =, {}21503P X >=, 3280.296327P ⎛⎫=== ⎪⎝⎭.6. 45.7. 0.268. 8.0.60.5488e -≈.练习2-41. A.2. B.3. C.4. (1) 0.2; (2) {}0.5P X >={}050.5P X <≤=;(3)0, 1,0.5, 11,()0.7, 12,1 2.x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩ 分布函数()F x 的图像略.5. 0.5.6.,0,2()1,0.2x xe x F x e x ⎧<⎪⎪=⎨⎪-≥⎪⎩7.220, 0,, 01,2()21, 12,21,2.x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩8. (1) 1A =; (2)11124P x ⎧⎫-<<=⎨⎬⎩⎭,18239P x ⎧⎫<<=⎨⎬⎩⎭;(3)2,01,()0,.x x f x ≤<⎧=⎨⎩其他9. (1)11,2A B π==; (2)1122P x ⎧⎫≤=⎨⎬⎩⎭; (3)22()14f x x =+.10. 0.682.练习2-51. (1) 31Y X =+的分布列为(2)2Y X =的分布列为2. (1) 3A =; (2)23(1),11,()80,Y y y f y ⎧--≤≤⎪=⎨⎪⎩其他; (3)01,()0,Y y f y ≤≤=⎪⎩其他.3. (1)()21ln 2,0,()0,0;y Y y f y y -⎧>=≤⎩(2)14,1,()0,1;y Y y f y y -->=≤⎩(3) 22,0,()0,0.yY y f y y ->=≤⎩练习4-14.2435;32;31. 5.0;2. 6.3;2.7.121;31;31-. 8.18.4.练习4-24.8;0.2. 5.2;41. 6 7.4.练习4-38. (1) 21221)(x ex f -=π22221)(y ey f -=πp =0 (2) 不独立.9.18110. (1)(2)1515(3)12. (Ⅰ)n 11-; (Ⅱ)n1-; (Ⅲ)2113.⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y),cov(Y X =32 )4,21(-F练习5-14.221d t xt--⎰; 0.5.5.≤94.6.0.983 8. 7. 0.997 7. 8. 0.952 5.练习6-34. 0.829 3.5. (1) 0.2628;(2) 0.2923;(3) 0.5785. 6. 0;n 31. 7.0.6744. 8.220,()00y n Y y f y y σ-⎧>=⎪⎪<⎩.9.λ;n λ;λ. 10. (1) 0.99;(2)4152σ.11. 35.12.(1)1n n -;(2)1n-.练习7-11.A .2.矩估计值:ˆx θ=,极大似然估计值:ˆx θ=. 3.矩估计量:ˆln X θ=,极大似然估计量:12ˆmin{,,,}nX X X θ=L . 4.矩估计值:ˆ0.67θ=,极大似然估计值:9ˆ13θ=.5.1X X -;1ln nii nX=∑;12min{,,,}nX X X L .6.ˆ3X θ=. 7.(1)2ˆXλ=;(2)2ˆXλ=.8.(1)ˆx x cθ=+,ˆX X cθ=+;(2)1ˆln ln nii nx n cθ==-∑,1ˆln ln nii nXn cθ==-∑.9.(1) ˆX μ=,ˆθ=(2)12ˆmin{,,,}n X X X μ=L ,ˆˆX θμ=-. 10.(1)ˆ2X θ=,(2)2ˆ().5D nθθ=练习7-21.D . 2.2. 3.2σ4.A5.215ˆ()9D μσ=,225ˆ()8D μσ=,231ˆ()2D μσ= 6.1n X +7.112n a n n =+,212nb n n=+ 8.(1)1ˆ22X θ=-;(2) 不是无偏估计量,因为22(4)E X θ≠.练习7-31.C . 2.C .3.(992.16, 1007.84). 4.(2818.54, 3295.46). 5.22224()u n Lασ≥.6. (1) (68.11, 85.089);(2) (190.33, 702.01). 7.(1)(5.608,6.392);(2)(5.558,6.442).8.(4.098,9.108). 9.(-0.002,0.006). 10.(0.45,2.79).练习8-11. A2. 第一类错误(弃真错误);第二类错误(取伪错误). 3.ˆXT =,t 分布,自由度1n -.4. C5. 可以认为包装机不正常工作. 6. 接受.7. 厂家的声称属实. 8. 可以认为无系统误差. 9. 可以.10.认为电池的寿命不比该公司宣称的短. 11.可以认为其平均电阻有明显的提高. 12.拒绝.13.可以认为无显著差异.练习8-21.222(1)ˆn S χσ-=;221/2/2(0,(1)][(1),)n n ααχχ---+∞U .2.D3.不正常.4.与通常无显著差异.5.不能.6.可以认为溶液水分含量不合格.练习8-31.(1) 接受0H;(2) 接受0H.2.无显著差异.3.接受.4.接受.5.认为X Y和的方差无明显差异.6.未达到公布的疗效.7.接受H0.。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论和数理统计课后习题答案解析

概率论和数理统计课后习题答案解析

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59, 求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以 P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0, 是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1 问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为 F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布; (2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答: F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9, 问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c}, 必有1-P{X≤c}=P{X≤c}, 即 P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9, 即 P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282, 所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1, 即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此 x-400060≈1.28, 即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05, 求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645, 从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265, (查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值; (2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1, 且0≤pi≤1,∴ {1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0, 所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3) dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0, 即 K2-K-2≥0,亦即(k-2)(K+1)≥0, 解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时, FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求: (2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且 P{X≥0,Y≥0}=37, P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得 P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y}, 故 P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为 f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1, 有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1, 有 F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1, 有 F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式 F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1, 即 fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有 P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a}, 故由上式有 P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到: P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x 22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以 P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V, 可见P{U=i,V=j}=0(i<j).此外,有 P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0, 显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为 fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为 fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即 fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而 f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故 FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以 FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0, ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则 F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z} =1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0, F2(z)={1-e-βz,z≥00,z<0,故 F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试明: P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则 P{a<min{X,Y}≤b}=FZ(b)-FZ(a),。

概率论与数理统计学习指导 参考答案

概率论与数理统计学习指导 参考答案

自测练习题参考答案第一章 自测练习题A1. (1)∅ (2)互逆事件 (3)0.7 (4)0.88 (5)132. (1)D (2)C (3) D (4) B (5) A3. 解 因为()()()()P A B P A P B P AB =+- ,故()()()()0.40.30.60.1P AB P A P B P A B =+-=+-= ,从而()()()()()0.40.10.3P AB P A B P A AB P A P AB =-=-=-=-=。

4. 解 设i A 表示事件“第i 次取到的卡片上标有奇数”,1,2i =。

则 (1)13()5P A =, (2)2121232233()()()54545P A P A A P A A ⨯⨯=+=+=⨯⨯, (3)12121323()()(|)5410P A A P A P A A ==⋅=。

5. 解 设 A 表示“该种动物由出生活到10岁”,B 表示“该动物由出生活到12岁”,显然有B A ⊂,从而()()0.56(|)0.7()()0.8P AB P B P B A P A P A ====。

6. 设,,A B C 分别表甲、乙、丙独立地破译密码,E 表示密码被译出,则E A B C = 。

由,,A B C 的独立性,有()()1()1()P E P A B C P A B C P ABC ==-=-1()()()1[1()][1()][1()]P A P B P C P A P B P C =-=----423315345=-⨯⨯=。

7. 解 设i B 表示“第一次任取的3个球中有i 个新球”,0,1,2,3i =,A 表示“第二次取出的3个球全是新球”,由题意可得393312(), 0,1,2,3i i i C C P B i C -⋅==,39312(|), 0,1,2,3ii C P A B i C -==。

由全概率公式可得31842756108358420441()()(|)2202202202202202202202203025i i i P A P B P A B ===⋅+⋅+⋅+⋅=∑自测练习题B1. (1) B (2) C (3) C (4) C (5) A2. (1)1p - (2)925 (3) 0.75 (4) 1(1)n p -- (5) 17253. 解 由已知,()()0P AB P AC ==,又A B C A B ⊂,故()0P A B C =。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。

解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。

解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。

解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。

解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。

解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计-学习指导与练习册习题答案习题一一. 填空题1.ABC 2、50⋅ 3、20⋅ 4、60⋅ 二.单项选择题1、B2、C3、C4、A5、B 三.计算题 1.(1)略(2)A 、321A A AB 、321A AA ⋃⋃ C 、321321321A A A A A A A A A ⋃⋃D 、321321321321A A A A A A A A A A A A ⋃⋃⋃2.解)()()()(AB P B P A P B A P -+=⋃=85812141=-+ 83)()()()(=-=-=AB P B P AB B P B A P 87)(1)(=-=AB P AB P21)()()])([(=-⋃=⋃AB P B A P AB B A P3.解:最多只有一位陈姓候选人当选的概率为531462422=-C C C4.)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃=855.解:(1)nN n A P !)(=(2)nnN N n C B P !)(=、(3)nmn m n N N C C P --=)1()(习题二一. 填空题1.0.8 2、50⋅ 3、32 4、73 5、43二.单项选择题1、D2、B3、D4、B 三.计算题1. 解:设iA :分别表示甲、乙、丙厂的产品(i =1,2,3)B :顾客买到正品)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P +=83.065.05185.0529.052=⨯+⨯+⨯8334)()/()()/(222==B P A B P A P B A P2.解:设iA :表示第i 箱产品(i =1,2)iB :第i 次取到一等品(i =1,2)(1))/()()(1111A B P A P B P =)/()(212A B P A P +=4.0301821501021=⨯+⨯ (2)同理4.0)(2=B P(3))/()()(121121A B B P A P B B P =)/()(2212A B B P A P +=19423.02917301821499501021=⨯⨯+⨯⨯ 4856.04.019423.0)()()/(12112===B P B B P B B P(4)4856.04.019423.0)()()/(212121===B P B B P B B P3. 解:设iA :表示第i 次电话接通(i =1,2,3)101)(1=A P 10191109)(21=⨯=A A P 1018198109)(321=⨯⨯=A A A P所以拨号不超过三次接通电话的概率为3.0101101101=++ 如已知最后一位是奇数,则 51)(1=A P 514154)(21=⨯=A A P 51314354)(321=⨯⨯=A A A P 所以拨号不超过三次接通电话的概率为6.0515151=++ 4.解:)()()(1)(1)(C P B P A P C B A P C B A P -=⋃⋃-=⋃⋃=6.04332541=- 5.解:设21,B B 分别表示发出信号“A ”及“B ”21,A A 分别表示收到信号“A ”及“B ” )/()()(1111B A P B P A P =)/()(212A A P B P +=30019701.031)02.01(32=+- 197196)()/()()()()/(111111111===A PB A P B P A P B A P A B P第一章 复习题一. 填空题1.0.3,0.5 2、0.2 3、2120 4、153,153 5、158,32,316.4)1(1p -- 二.单项选择题1、B2、B3、 D4、D5、A 三.计算题1. 解:设iA : i 个人击中飞机(i =0,1,2,3)则09.0)(0=A P36.0)(1=A P41.0)(2=A P14.0)(3=A PB :飞机被击落)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(0A B P A P +=458.0009.0114.06.041.02.036.0=⨯+⨯+⨯+⨯2.解:设iA : i 局甲胜(i =0,1,2,3)(1)甲胜有下面几种情况: 打三局,概率36.0打四局,概率12136.06.04.0⋅⋅C 打五局,概率122246.06.04.0⋅⋅CP (甲胜)=36.0+12136.06.04.0⋅⋅C +122246.06.04.0⋅⋅C=0.68256(2)936.06.06.0*4.0*6.06.0*4.0*6.06.0)()()()()/(2222321*********=++===A A P A A A P A A P A AA P A A A P3.解:设A :知道答案 B :填对)/()()(A B P A P B P =475.0417.013.0)/()(=⨯+⨯=+A B P A P 197475.0417.0)()/()()()()/(=⨯===B P A B P A P B P B A P B A P4.解:设iA :分别表示乘火车、轮船、汽车、飞机(i =1,2,3,4)B :迟到)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(44A B P A P +=203052121101315141103=⨯+⨯+⨯+⨯ 2120341103)()/()()()()/(11111=⨯===B P A B P A P B P B A P B A P 同理94)/(2=B AP181)/(3=B A P5.解:A :甲袋中取红球;B :乙袋中取红球 )()()()()()()(B P A P B P A P B A P AB P B A AB P +=+=⋃=40211610106166104=⨯+⨯习题三 第二章 随机变量及其分布一、填空题1、19272、23、134、0.85、010.212()0.52313x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ 6、113~0.40.40.2X -⎡⎤⎢⎥⎣⎦二、单项选择题1、B2、A3、B4、B 三、计算题 1、解:由已知~(15,0.2)X B ,其分布律为:1515()0.20.8(0,1,2, (15)kk k P X k C k -===至少有两人的概率:(2)1(2)1(0)(1)0.833P X P X P X P X ≥=-<=-=-==多于13人的概率:(13)(14)(15)P X P X P X >==+==02、解 设击中的概率为p ,则X 的分布率为3、解:X 的分布律为:X 3 4 5 kp 0.1 0.3 0.6X 的分布函数为:0,30.1,34()0.4,451,5x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩4、解:由已知,X 的密度函数为:1,33()60,x f x ⎧-≤≤⎪=⎨⎪⎩其它此二次方程的22(4)44(2)16(2)x x x x ∆=-⋅⋅+=--(1)当0∆≥时,有实根,即2(2)021xx x x --≥⇒≥≤-或所以{}{21}{2}{1}P P X X P X P X =≥≤-=≥+≤-方程有实根或3123111662dx dx --=+=⎰⎰ (2)当0∆=时,有重根,即2(2)021xx x x --=⇒==-或所以{}{21}{2}{1}0P P X X P X P X ===-==+=-=方程有重根或 (3)当0∆<时,无实根,1{}1{}2P P =-=方程有实根无实根 5、解:设X 为元件寿命,Y 为寿命不超过150小时的元件寿命。

由已知:15015021001001(150)()3P X f x dx dx x -∞≤===⎰⎰223223551280(2)((150))((150))()()33243P Y C P X P X C ==≤>==6、解:由()1f x dx +∞-∞=⎰,有:11b ax dx =⎰,即1a b =+又由1()0.752P X >=,有11234b ax dx =⎰,即(1)32(1)4b a a b -+-=+联立求解,得:2,1a b == 7、解:22()'()0B a x a a f x F x a x ⎧-<≤⎪==+⎨⎪⎩其它,由()1f x dx +∞-∞=⎰,有:1B π=,即1B π=又由()F x 的右连续性,有lim ()()x a F x F a +→=,即12A B π+=,可以解得:12A = 8、解:解:202101200,0,012()()(2)22,122()1,2x xxx dt x x tdt x F x f t dt x tdt t dt x x f t dt x -∞-∞⎧=<⎪⎪⎪=≤<⎪==⎨⎪+-=--≤<⎪⎪=≥⎪⎩⎰⎰⎰⎰⎰⎰,即220,0,012()22,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪--≤<⎪⎪≥⎩(2)22131331313113{}{}()()[2()2]()222222222224P X P X F F ≤≤=<≤=-=⋅---=习题四 第二章 随机变量及其分布一、填空题 1、12e e --- 2、123、01,0ye x y -⎧≤≤>⎨⎩其它 4、29,19 5、11()33X y f-二、单项选择题1、A2、D 三、计算题 1、解:(1)(,)1p x y dxdy +∞+∞-∞-∞=⎰⎰,2()01x y Ae dxdy +∞+∞-+∴=⎰⎰,解得A= 4(2)220()0xX e x p x x -⎧>=⎨≤⎩(3)122()2400(1,2)4(1)(1)x y P e dxdy e e ξη-+--<<==--⎰⎰(4)112()2(1)413xx y P dx e dy e ξη--+-+<==-⎰⎰2、解:(1)0.1A =; (2)边缘分布律:(3)(0,0)0.1(0)(0)0.15P X Y P X P Y ===≠===X Y ∴与不独立3、解:(1)联合分布律:Y X 0 1 2 0 1929 191 29290 219(2)0Y =时X 的条件分布律:4、解:5、解:由已知:~(0,2)X U ,所以102()2X x f x ⎧<<⎪=⎨⎪⎩其它2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=-即()(YXX F y F F =-上式两端对y 求导,得:())()22Y X X f y f y f y yy=+-所以:044()0Y y yf y <<⎪=⎨⎪⎩其它,进而可以得到:14()040Y y y F y y y ≥⎧=<<⎪≤⎪⎩第二章 复习题一、填空题1、9642、11()P X x αβ--+= 3、19274、22120x y x π⎧+≤⎪⎨⎪⎩其它,222020x x x π⎧-≤≤⎪⎨⎪⎩其它,221110y y π⎧--≤≤⎪⎨⎪⎩其它5、23108()60Y y y f y -⎧≤≤⎪=⎨⎪⎩其它二、单项选择题1、A2、B3、C4、B 三、计算题 1、2、解:(1)(2)21210.550.4511(2)0.550.4510.5531n n P X n ∞-=⨯====-∑3、(1)解:由联合密度,可求边缘密度:201()0X x x p x ≤≤⎧=⎨⎩其它,102()2Y y y p y ⎧≤≤⎪=⎨⎪⎩其它;因为(,)()()XY p x y px p y =,所以X 与Y 相互独立 (2)解:由联合密度,可求边缘密度:24(1)01()0X x x x f x ⎧-≤≤=⎨⎩其它,3401()0Y y y f y ⎧≤≤=⎨⎩其它;因为(,)()()XY p x y p x p y ≠,所以X 与Y 不独立4、解:(1)由联合分布函数得边缘分布函数:0.510()(,)0xX e x F x F x -⎧-≥=+∞=⎨⎩其它,0.510()(,)0yY e y F y F y -⎧-≥=+∞=⎨⎩其它可见(,)()()XY F x y Fx F y =,所以X 、Y 独立(2)要求:0.1(0.1,0.1)(,)(0.1,)(,0.1)(0.1,0.1)P X Y F F F F e ->>=+∞+∞-+∞-+∞+=5、解:(1)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰,3401x y ke dxdy +∞+∞--∴=⎰⎰,解得k= 12(2)12380(01,02)(,)(1)(1)P X Y dx f x y dy e e --<<<<==--⎰⎰习题五 随机变量的数字特征一.1、 a ,n b 2、16,0.8n p == 3、21,π1二.单项选择题 1、C 2、B 三.计算题 1、21-=EX672=EX1211=DX)1(-X E =232、解(1)1413033()()344xE X xf x dx x dx +∞-∞====⎰⎰23()5E X =3()80D X =(2)122011233201()()(2)()133E X xf x dx x dx x x dxx x x +∞-∞==+-=+-=⎰⎰⎰27()6E X =1()6D X =3.解X -1 0 1 2 P0.20.30.30.2所以10.200.310.320.20.5EX =-⨯+⨯+⨯+⨯= 222(1)0.200.310.320.2 1.3EX =-⨯+⨯+⨯+⨯=222() 1.30.5 1.05DX EX EX =-=-=4.解 2.0=EX5.0)(-=XY E 5.8.0=EX 5.0)(=XY E6.400EY =,26() 1.610E Y =⨯,6() 1.4410D Y =⨯7.证明 略习题六 随机变量的数字特征一.填空题1、DX DY + ;2、18 ; 二.单项选择题1、A2、A3、B 三.计算题 1、解 (1)1P(2)10.8EX=,20.1EX=222111120.8,()0.16,0.09EX DX EX EX DX ==-== 121212120,cov(,)0.08EX X X X EX X EX EX ==-=-所以,121223DX DX ρ==- 2.解:由于225()(),121()(),411()(),1441()6E X E Y E X E Y D X D Y E XY =======故1441),(-=Y X Cov ,111-=XYρ3.解37{1527}72P X <<≥4.121}6{≤≥+Y X P第三章 复习题一、填空题1、20a b =⎧⎨=⎩或22a b =-⎧⎨=⎩,136,12; 2、0.2-, 2.8, 24.84, 11.04; 3、97;4、 5;5、18.4;6、25.6; 二、1、A 2、A 3、B三、1、解:设一台设备的净获利为Y ,则其分布律为: 可以计算:10.2541001{1}4x P X e dx e +∞-->==⎰则0.25{1}1{1}1P X P X e -≤=->=- 所以0.250.250.25100200(1)300200EY ee e ---=⨯-⨯-=⨯-2、解:由已知:cov(,)()()4X Y E X EX Y EY e =--=,可得:22221()2cov(,)448DX D aX bY a DX b DY ab X Y a b eab =+=++=++同理:222448DXc d ecd=++,而121122cov(,)()()()cov(,)4()4()X X E X EX X EX acDX ad bc X Y bdDY ac bd e ad bc =--=+++=+++ 所以:1212222212(2)(2)X X DX DX a b eab c d ecd ρ==++++3、解:由已知边缘密度为:201()0X x x f x <<⎧=⎨⎩其它,101()1100Y y y f y y y -≤<⎧⎪=+-<<⎨⎪⎩其它所以120223EX x dx ==⎰,101(1)(1)0EY y ydy y ydy -=-++=⎰⎰而1()0xxE XY dx xydy -==⎰⎰,所以(,)()0Cov X Y E XY EXEY =-=,0XYρ=4、解:0(2)22x EY E X e xdx +∞-===⎰2201()3Xx x EY E ee e dx +∞---===⎰5、解:设每毫升血液中白细胞数为X ,则由已知:7300EX =700DX =要估计{52009400}P X <<:{52009400}{210073002100}{|7300|2100}P X P X P X <<=-<-<=-<由切比雪夫不等式,可得28{52009400}{||2100}121009DX P X P X EX <<=-<≥-= 即每毫升含白细胞数在5200~9400之间的概率大概为89。

相关文档
最新文档