三轴压缩实验_3

合集下载

岩石常规三轴压缩实验

岩石常规三轴压缩实验

二.实验设备、仪器和材料
➢ 钻石机、锯石机、磨石机; ➢ 游标卡尺,精度0.02mm; ➢ 干燥器; ➢ 直角尺、水平检测台、百分表及百分表架; ➢ YE-2000型液压材料试验机; ➢ 三轴室,三轴液压源; ➢ 热缩管、胶带、密封圈等。
三.试样规格、精度、数量及含水状态
➢ 试样规格:采用直径为50 mm,高为100 mm的标准 圆柱体;
1
2 3
4
1—百分表 2-百分表架 3-试样 4水平检测台
图5-1 试样平行度检测示意图
1
2 3
1—直角尺 2-试样 3- 水平检测台
图5-2 试样轴向偏差度检测示意图
➢ 试样数量:每种岩石同一状态下,试样数量一般不少 于5个,每个试样在一定围压下的进行实验。
➢ 含水状态:采用自然状态,试样制成后放在底部有水 的干燥器内1~2 d,以保持一定的湿度,但试样不得 接触水面。
图6-2 围压与纵向抗压强度关系曲线
根据库伦-摩尔准则,岩石的内摩擦角和粘结力 c可利用参数m和b按下式计算:
arcsin m 1
m 1
c b 1 sin 2 cos
1 m 3 b
3.绘制摩尔圆及其包络线
用回归后的直线方程计
算出相应的σ1值。再分别以
(σ3+σ1)/2,0为圆心,以
6.接通电源,开动开压力机,打开送油阀,使压力机的 下承压板的拖轮离开轨道10 cm左右,关闭送油阀, 然后调整试验机上承压板位置与压力室的上压头接 触,缓缓打开送油阀施加50 kN的纵向载荷固定试 样。
7.施加围压,缓缓施加围压到指定值,稳定数2分钟后, 使围压保持恒定时,要求变动范围不应超过选定的 2%。
五.实验结果整理
计算一定侧压力作用下岩石的抗压强度σ1:

三轴压缩试验原理

三轴压缩试验原理

三轴压缩试验原理什么是三轴压缩试验?三轴压缩试验是一种广泛用于土力学和岩石力学领域的实验方法,用于研究材料在压力作用下的物理和力学特性。

这种试验可以模拟土壤、岩石等材料在地下深处承受地压的情况。

在三轴压缩试验中,样品在垂直荷载(轴向)和水平荷载(径向)的作用下进行。

三轴压缩试验的装置三轴压缩试验的主要装置包括试样室、应力应变控制器、荷载施加系统和数据采集系统。

试样室试样室是一个密封的容器,用于容纳试样。

它通常由钢制或钢铝复合材料制成,并配有绝缘材料以防止能量散失。

试样室内应具有足够的刚度和密封性,以确保试验结果的准确性。

应力应变控制器应力应变控制器用于控制试样受到的载荷。

它通常由液压系统组成,包括液压油源、传感器和控制器。

应力应变控制器通过施加压力来产生试样的轴向和径向应力,并通过测量压力和变形来控制试样的应变状态。

荷载施加系统荷载施加系统用于施加试样的轴向和径向荷载。

它通常由液压活塞和液压缸组成,液压活塞用于施加轴向荷载,而液压缸用于施加径向荷载。

荷载施加系统还包括各种传感器和仪器,用于测量施加的载荷大小。

数据采集系统数据采集系统用于记录试验过程中的各种数据。

它可以包括压力传感器、变形传感器、温度传感器等。

通过数据采集系统,可以实时监测试验过程中的应力、应变、位移和温度变化,从而获取准确的试验结果。

三轴压缩试验的原理三轴压缩试验是基于以下原理进行的:1.应力平衡原理:在试样受到轴向和径向荷载的同时,试样内部各点的应力应满足平衡条件。

轴向应力和径向应力之间存在一定的关系。

2.孔隙水压力原理:在试样内部存在孔隙水。

孔隙水的存在会影响试样的应力分布和强度特性。

通过控制孔隙水压力,可以模拟实际情况下试样的应力状态。

3.应力应变关系:应力应变关系描述了试样在不同应力作用下的变形特性。

通过测量应力和变形,可以得到试样的应力应变曲线,从而了解材料的力学性质。

三轴压缩试验流程三轴压缩试验通常包括以下步骤:1.准备试样:选择合适的材料制备试样。

土的三轴压缩实验报告

土的三轴压缩实验报告

土的三轴压缩实验报告一、实验目的本次实验的目的是通过三轴压缩实验,了解土体的力学性质,掌握土体的压缩变形规律,为土的工程应用提供理论依据。

二、实验原理三轴压缩实验,是指在三个互相垂直的轴向上施加压力,测定土体在不同应力状态下的压缩变形及强度参数。

实验中,应变量为土体的轴向应变和径向应变,应力量为轴向应力。

三、实验设备本次实验所需的设备有:三轴试验机、应变仪、振动筛、天平、刷子、塑料袋等。

四、实验步骤1.制样:按照标准规定,取一定量的土样,经过筛分、清洗、调节含水率等处理后,制成规定尺寸的试样。

2.装置:将试样放入试验机中,放置在三轴压缩装置中央。

3.施压:逐渐施加压力,保持速率均匀,直到试样产生明显的压缩变形。

4.记录:在试验过程中,记录轴向压力、轴向应变、径向应变和应变速率等数据。

5.实验结束:当试样变形趋于稳定时,停止施压,记录最大轴向应力和最大径向应变。

6.清理:将试样从试验机中取出,清洁试验机和周围环境。

五、实验结果通过对实验数据的处理和分析,得出了土体的应力-应变曲线和压缩模量等力学参数。

六、实验注意事项1.试样应制备均匀,避免出现裂隙和空洞。

2.施加压力的速率应逐渐加大,避免过快或过慢。

3.实验过程中应注意安全,避免发生意外事故。

七、实验结论本次实验通过三轴压缩实验,测定了土体在不同应力状态下的压缩变形及强度参数,得出了土体的应力-应变曲线和压缩模量等力学参数。

实验结果表明,土体的压缩变形呈现出明显的非线性特性,随着轴向应力的增大,土体的压缩变形逐渐增大,压缩模量逐渐减小。

此外,不同土体的力学性质也存在差异,这需要在工程应用中进行针对性分析和处理。

三轴压缩试验

三轴压缩试验

三轴压缩试验中文名称:三轴压缩试验英文名称:triaxial compression test定义:遵循技术程序,用3—4个圆柱形试样,分别在不同的围压(即小主应力σ3)下,施加轴向压力(即主应力差σ1-σ3)直至试样破坏,计算抗剪强度参数(黏聚力,内摩擦角)的技术操作。

应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科)以上内容由全国科学技术名词审定委员会审定公布三轴压缩试验示意图三轴压缩试验三轴压缩试验是测定土抗剪强度的一种较为完善的方法。

三轴压缩仪由压力室、轴向加荷系统、施加周围压力系统、孔隙水压力量测系统等组成。

常规试验方法的主要步骤如下:将土切成圆柱体套在橡胶膜内,放在密封的压力室中,然后向压力室内压入水,使试件在各个方向受到周围压力,并使液压在整个试验过程中保持不变,这时试件内各向的三个主应力都相等,因此不发生剪应力。

然后再通过传力杆对试件施加竖向压力,这样,竖向主应力就大于水平向主应力,当水平向主应力保持不变,而竖向主应力逐渐增大时,试件终于受剪而破坏。

设剪切破坏时由传力杆加在试件上的竖向压应力为Δσ1,则试件上的大主应力为σ1=σ3+Δσ1,而小主应力为σ3,以(σ1-σ3)为直径可画出一个极限应力圆,如图中的圆I,用同一种土样的若干个试件(三个上)按以上所述方法分别进行试验,每个试件施加不同的周围压力σ3,可分别得出剪切破坏时的大主应力σ1,将这些结果绘成一组极限应力圆,如图中的圆Ⅰ、Ⅱ和Ⅲ。

由于这些试件都剪切至破坏,根据莫尔-库伦理论,作一组极限应力圆的公共切线,即为土的抗剪强度包线,通常可近似取为一条直线,该直线与横坐标的夹角即为土的内摩擦角ψ,直线与纵坐标的截距即为土的内聚力c。

对应于直接剪切试验的快剪、固结快剪和慢剪试验,三轴压缩试验按剪切前的固结程度和剪切时的排水条件,分为以下三种试验方法:(1)不固结不排水试验试样在施加周围压力和随后施加竖向压力直至剪切破坏的整个过程中都不允许排水,试验自始至终关闭排水阀门。

土三轴压缩试验报告文档

土三轴压缩试验报告文档

土三轴压缩试验报告文档摘要:本次实验通过土体三轴压缩试验,研究了不同围压条件下土体的应力应变关系。

实验结果表明,土体在不同围压条件下具有不同的应力应变特性,围压越大,土体的抗压性能越好。

1.引言土体作为工程中常见的材料,其力学性质的研究对于工程设计和施工具有重要意义。

土体的应力应变关系是研究土体力学性质的基础,三轴压缩试验是常用的研究土体力学性质的方法之一2.实验原理三轴压缩试验是通过施加垂直于土体断面的垂直负荷和平行于土体断面的水平应力,来研究土体在不同围压条件下的应力应变关系。

实验中使用的仪器设备包括三轴试验机、应变仪和压力计等。

3.实验过程首先,将土样样品进行制备和取样。

然后,将土样放入三轴试验机的压实装置中,施加垂直负荷并逐渐增加水平应力。

同时,使用压力计和应变仪记录土样的应力和应变数据。

在不同的围压条件下,进行多次试验,获得多组数据。

4.实验结果与分析实验结果显示,在相同围压条件下,土体的应力随着应变的增加而增加,呈现线性关系。

在同一应变下,不同围压条件下的应力值有所不同,围压越大,土体的应力值越大。

这表明土体的抗压性能随着围压的增加而增强。

5.结论通过土三轴压缩试验,我们得出以下结论:1)土体的应力应变关系是非线性的,在相同围压条件下,应力随着应变的增加而增加。

2)在同一应变下,围压越大,土体的应力值越大,表明围压对土体的抗压性能有着重要影响。

3)三轴压缩试验是研究土体力学性质的重要手段之一,可以为工程设计和施工提供参考数据。

[1]张三,李四、土三轴压缩试验报告。

《土工力学研究》,2000年,29(1)。

附录:实验数据表格表格1不同围压条件下土体应力应变数据围压(kPa)应变(%)应力(kPa)1000.1501000.21001000.31502000.1702000.21402000.3210 3000.190 3000.2180。

土力学实验报告_3

土力学实验报告_3

课程名称: 岩土工程测试技术课程编号: S021D05 课程类型: 非学位课考核方式:学科专业: 岩土工程年级: 2007研姓名: 学号:河北工程大学2007~2008学年第二学期研究生课程论文报告三轴压缩试验测定邓肯张模量参数实验报告一. 实验内容测定试样密度、含水量、界限含水率;采用静三轴仪不固结不排水剪试验测不排水强度参数及定邓肯张模量参数。

二. 实验原理1不排水强度参数以主应力差为纵坐标, 轴向应变为横坐标, 绘制主应力差与轴向应变关系曲线。

取曲线上主应力差的峰值作为破坏点, 无峰值时, 取15%轴向应变时的主应力差值作为破坏点。

以剪应力为纵坐标, 法向应力为横坐标, 在横坐标轴以破坏时的应力平面上绘制破损应力圆, 并绘制不同周围压力下破损应力圆的包线(破损应力圆的公切线), 求出不排水强度参数。

-模型)参数2邓肯张模量(Eν详见《三轴试验原理与应用技术》P117-P122(朱思哲等, 中国电力出版社2003年6月第一版)三. 仪器设备1应变控制式三轴仪: 由压力室、轴向加压设备、周围压力系统、反压力系统、孔隙水压力量测系统、轴向变形和体积变化量测系统组成。

2 附属设备: 包括压样器;环刀、饱和器、切土器、原状土分样器、切土盘、承膜筒和对开圆膜。

3 天平: 称量200g,最小分度值0.01g;称量1000g,最小分度值0.1g。

4 橡皮膜: 弹性乳胶膜, 厚度0.1-0.2mm。

5 透水板:直径与试样相等, 其渗透系数大于试样的渗透系数, 使用前在水中煮沸并泡于水中。

四. 实验步骤1试样制备本试验采用的原状土样, 试样制备, 步骤如下:⑴将土样筒按标明的上下方向放置, 剥去蜡封和胶带, 开启土样筒取出土样。

检查土样结构, 当确定土样已受扰动或取土质量不符合规定时, 舍弃此组土样。

⑵用环刀切取试样时, 在环刀内壁涂一薄层凡士林, 刃口向下放在土样上, 将环刀垂直下压, 并用切土刀沿环刀外侧切削土样, 边压边削至土样高出环刀, 采用钢丝锯或切土刀整平环刀两端土样, 擦净环刀外壁, 称环刀和土的总质量。

岩石三轴压缩试验实验报告

岩石三轴压缩试验实验报告

岩石三轴压缩试验实验报告本次实验主要研究了岩石在三轴压缩下的力学特性。

通过对不同类型的岩石样本进行实验,得出了不同类型岩石的应力-应变关系、破坏模式、强度指标等参数。

实验结果表明,不同类型的岩石在三轴压缩下呈现出不同的力学特性,应用于工程实践中具有很大的参考价值。

关键词:岩石,三轴压缩试验,应力-应变关系,破坏模式,强度指标1、实验目的本次实验的主要目的是研究岩石在三轴压缩下的力学特性。

通过对不同类型的岩石样本进行实验,得到不同类型岩石的应力-应变关系、破坏模式、强度指标等参数,为工程实践提供参考依据。

2、实验原理三轴压缩试验是一种用于研究岩石力学特性的常用实验方法。

实验时,将岩石样本放置于三轴压缩试验机中,施加垂直于样本轴线的三向等静力,使岩石样本受到均匀的三向压缩。

通过测量岩石样本的应力-应变关系,可以得到岩石样本的强度指标、破坏模式等参数。

3、实验步骤(1)准备不同类型的岩石样本,并对其进行标记。

(2)将岩石样本放置于三轴压缩试验机中,调整试验机的参数,使其能够施加垂直于样本轴线的三向等静力。

(3)根据实验要求,设置试验机的加载速度和加载次数。

(4)开始进行实验,并记录实验数据。

(5)根据实验数据,得出不同类型岩石的应力-应变关系、破坏模式、强度指标等参数。

4、实验结果本次实验共使用了3种不同类型的岩石样本进行测试,分别是花岗岩、石灰岩和砂岩。

实验结果如下:(1)花岗岩花岗岩在三轴压缩下呈现出较高的强度和较强的韧性。

在实验过程中,花岗岩样本的应力-应变关系曲线较为平稳,直至破坏前仍能维持较高的应力水平。

破坏模式为剪切破坏。

(2)石灰岩石灰岩在三轴压缩下呈现出较低的强度和较脆弱的特性。

在实验过程中,石灰岩样本的应力-应变关系曲线呈现出明显的弹性和塑性阶段,但在应力达到一定水平时,样本迅速破坏。

破坏模式为爆炸破坏。

(3)砂岩砂岩在三轴压缩下呈现出中等强度和较强的韧性。

在实验过程中,砂岩样本的应力-应变关系曲线呈现出明显的弹性和塑性阶段,但在应力达到一定水平时,样本开始出现微小裂缝,继而破坏。

三轴压缩试验原理

三轴压缩试验原理

三轴压缩试验原理一、引言三轴压缩试验是土工试验中最常见的一种试验方法,它是用来研究岩石和土壤在三轴状态下的力学性质。

该试验方法可以测定材料的强度、变形和应力-应变关系等重要参数,是岩土工程设计和施工中不可或缺的一项基础性试验。

二、试验设备及样品准备1. 仪器设备:三轴压缩试验机、荷重传感器、变形计等。

2. 样品准备:样品应具有代表性,通常采用直径为5cm,高度为10cm左右的圆柱形样品。

在制备过程中需要注意保证样品密实度和湿度,避免空隙和水分对试验结果的影响。

三、试验原理1. 应力状态:三轴压缩试验是将圆柱形样品置于两个平行平板之间,在垂直于样品轴线方向施加垂直荷载,并在两个侧面施加水平荷载,使得样品受到均匀的三向应力作用。

这种应力状态被称为三向压缩或三向受压状态。

2. 应变状态:在三轴压缩试验中,样品会发生不同形式的变形。

主要包括径向收缩和轴向延伸两种形式。

径向收缩是指样品直径在垂直荷载作用下的减小,轴向延伸则是指样品高度在水平荷载作用下的增加。

3. 应力-应变关系:三轴压缩试验可以得到材料在三向压缩状态下的应力-应变关系曲线。

该曲线可以反映出材料的强度和变形特性,并且可以用于岩土工程设计中的计算和分析。

四、试验步骤1. 样品制备:按照标准规范制备圆柱形样品。

2. 试验前处理:将样品放入恒温室中保持一定湿度,避免干燥或过湿对试验结果的影响。

3. 试验装置:将样品放置于三轴压缩试验机中,并连接荷重传感器和变形计等设备。

4. 荷载施加:根据试验要求,施加垂直荷载和水平荷载,使得样品受到均匀的三向应力作用。

5. 数据采集:记录荷重传感器和变形计等设备的数据,得到材料在三向压缩状态下的应力-应变关系曲线。

6. 数据处理:根据试验结果进行数据处理和分析,得出样品的强度、变形和应力-应变关系等参数。

五、试验误差及注意事项1. 样品制备过程中需要注意保证样品密实度和湿度,避免空隙和水分对试验结果的影响。

2. 试验装置需要严格按照标准规范进行校准和调整,避免设备误差对试验结果的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三轴压缩实验
一、实验原理:
三轴试验采用圆柱形试样,可以对试样的空间三个坐标方向上施加压力。

试验时先通过压力室内的有压液体,使试样在三个轴向受到相同的周围压力
(其大小由压力计测
3
定),并维持整个试验过程不变。

然后通过活塞向试样施加垂直轴向压力,直到试样剪坏。

二、实验过程
1、仪器准备
(1)应变控制式三轴仪:包括压力室、轴向位移计等装备
(2)天平、其他:击实筒、饱和器、承膜筒、橡皮膜等
2、操作步骤
试样安装:(1)检查排水管路是否通畅;活塞在套内滑动是否正常;连接处有无漏水、漏气现象。

检查完成后关闭周围压力阀、孔隙压力阀和排水阀,以备使用。

(2)组件击样筒:将三瓣膜拼装好,夹板拧紧,并放置好透水石,在击样筒内部涂抹油
(3)制作土样:(本实验才去的土样为沿海淤泥土),将淤泥土分层放入击样土中并击实,每层击实至相同高度,击实用力均匀,直至击完最后一层。

将击样筒中的式样两端整平,去除称其质量。

(4)将橡皮膜套在承膜筒内,两端翻出膜外,从吸嘴稀奇,使膜紧贴承膜筒内壁,然后要在式样外,放弃,翻起橡皮膜取出承膜筒。

将包裹着土样的橡皮膜分别扎紧放在一起底座和试样帽上。

(5)装上压力室外罩。

装是应将活塞提高,以防碰撞试样,然后将活塞你试样帽中心,病均匀地旋紧螺丝,再将轴向测力计对准活塞
(6)开排气孔,向压力室冲水,当压力室快注满水时,降低进水速度,水从排气孔溢出时,关闭排气孔
(7)开周围压力阀,施加所需的周围压力。

周围压力应与工程的实际荷重相适应,并尽可能使最大周围压力与土体的最大实际荷重大致相等。

(8)旋转手轮,当量力环的量表微动时表示活塞已与试样帽接触,然后将量力环的量表和变形量表的指针调整到零位。

试样剪切:(1)打开周围压力阀,关闭体变管阀、排水管阀、孔隙压力阀、量管阀。

(2)开动马达,接上离合器,进行剪切。

开始阶段,试样每产生垂直应变0.3~0.4%测记量力环量表读数和垂直变形量表读数各一次。

当垂直应变达3%以后,读数间隔可延长为0.7~0.8%各测记一次。

当接近峰值时应加密读数,如果试样特别硬脆或软弱,可酌情加密或减少测读的次数。

(3)当出现峰值后,再继续剪3~5%垂直应变;若量力环的量表读数无明显减少,则当垂直应变进行到15~20%时,停止剪切。

(4)试验结束后关闭马达,关周围压力阀,拨开离合器,倒转手轮,然后打开排气孔,排去压力室内的水,拆除压力室外罩,擦干试样周围的余水,脱去试样外的橡皮膜,描述破坏后形状,称试样质量,测定试验后含水率。

三、计算与记录
1.轴向应变:
ε1=
1000
1⨯∆h
h % 式中:ε1——轴向应变;%
h 1——试样剪切时高度变化,cm h 0 ——试样原始高度,cm 2.试样面积的校正,应按下式计算:
1
1ε-=
A A a 式中 a A -剪切过程中校正断面积(cm 2

0A -土样初始断面积(cm 2

1ε-轴向应变(%) 3.主应力差应按下式计算
1031⨯⋅=
-a
A R
C σσ
式中:σ1—大主应力,kPa ;
σ3—小主应力,kPa ;
C —测力计率定系数(N/0.01mm 或N/mV ); R —测力计读数(0.01mm 或mV ); A a —试样剪切时的校正面积,cm 2;
10 —单位换算系数。

4.以主应力差为纵坐标,轴向应变为横坐标,绘制以主应力差与轴向应变关系曲线。

取曲线上主应力差的峰值作为破坏点,无峰值时,取15%轴向应变的主应力差值作为破坏点。

5.以法向应力σ为横坐标,剪应力τ为纵坐标。

在横坐标上以(σ1f +σ3f )/2为圆心,(σ1f -σ3f )/2为半径,绘制破坏总应力圆,该包线的倾角为内摩擦角φu 或φcu ,包线上纵轴上的截距为粘聚力C u 或C cu 。

在横坐标轴上以()2/31f f '+'σσ为圆心,以(σ1f -
σ3f )/2 为半径绘制有效破坏应力圆,包线的倾角为有效内摩擦角φ′,包线在纵轴上的
截距为有效粘聚力C ,如下图所示
四、试样记录
周围压力 2Kpa 剪切应变速率: 3 mm/min 测力计率定系数 C :3.937N/0.01m 试样高度:8cm 试样面积:12cm 2
轴向应变读数
mm
轴向应变%
试样校正面积
测力环读数
mm
应力差kpa
Δh
1000
1⨯∆h
h %
1
1ε-=
A A a R
1031⋅=
-a
A R
C σσ。

相关文档
最新文档