两轮独立驱动电动平衡车设计

合集下载

双轮平衡车设计与控制系统研究

双轮平衡车设计与控制系统研究

双轮平衡车设计与控制系统研究随着科技的进步和城市化的发展,出行方式也逐渐向着更加便捷和环保的方向发展。

目前,电动滑板车、电动自行车、共享单车等出行方式已经成为了人们生活中不可或缺的一部分。

其中,双轮平衡车作为一种新型交通工具,已经逐渐地走进人们的生活,成为一种新时代的代步方式。

双轮平衡车是一种基于倒立摆原理的电动车辆。

双轮平衡车的设计和控制系统分别起着极其重要的作用。

其中,设计是保证车辆稳定性的重要因素,控制系统则是保证车辆动态性能的关键。

本文将对双轮平衡车的设计与控制系统进行研究。

一、双轮平衡车的设计双轮平衡车的设计需要考虑对称性、重心、车宽、车高、灵活性等因素。

其中,对称性和重心是保证车辆稳定性的关键。

在设计双轮平衡车时,需要使车的上下对称性尽量完美,并使车的重心尽量靠近车轮的轴心,这样车辆才能够更好地保持平衡。

另外,车宽和车高也是设计过程中需要考虑的因素。

车宽过大会影响车辆的操控性,而车高过高则会影响车辆的稳定性。

因此,在设计过程中需要探索出适合双轮平衡车的车宽和车高的最佳比例。

同时,双轮平衡车需要拥有一定的灵活性,以便于车辆在不同路况下更好地适应。

二、双轮平衡车的控制系统双轮平衡车的控制系统是保证车辆动态性能的重要因素。

控制系统包括传感器、控制器、电机和电池等四个部分。

它们之间互相配合,相互影响,保证了车辆在运行过程中的稳定性。

传感器负责感知车辆的角度、速度、加速度等信息。

传感器通过反馈这些信息给控制器,控制器再根据这些信息对电机进行控制,使车辆能够维持平衡。

电机则是提供驱动力的关键,它通过电池进行动力转换,将电能转化为机械能,带动车轮转动。

在控制系统中,控制器的设计和控制算法是至关重要的。

目前,常用的控制算法有PID算法和模糊控制算法。

PID算法是一种比较成熟的控制算法,它通过不断调整控制参数来调节车辆的平衡状态。

而模糊控制算法则是一种基于模糊逻辑的控制算法,它通过构建模糊规则库来控制车辆的平衡状态。

两轮自平衡小车设计报告

两轮自平衡小车设计报告

两轮自平衡小车设计报告设计报告:两轮自平衡小车一、引言二、设计理念本设计希望实现一个简洁、稳定和高效的两轮自平衡小车。

考虑到小车需要快速响应外界环境变化,并迅速做出平衡调整,因此采用了传感器、控制器和执行机构相结合的设计思路。

通过传感器获取小车倾斜角度和加速度等数据,通过控制器对采集的数据进行处理和判断,并通过执行机构实时调整车身的倾斜角度,以实现平衡行走。

三、原理四、硬件结构1.车身结构:车身由两个电机、一个控制器、一个电池和一个平衡摆杆组成。

2.电机:采用直流无刷电机,具有较高的转速和输出功率。

3.控制器:采用单片机控制模块,能够对传感器数据进行处理和判断,并输出控制信号给电机。

4.传感器:主要包括陀螺仪、加速度计和倾斜传感器,用于感知小车的倾斜角度和加速度等数据。

5.电池:提供小车的电力供应,保证小车正常运行。

五、软件控制小车的软件控制主要包括数据处理和判断、控制信号生成和输出三个方面。

1.数据处理和判断:通过获取的传感器数据,包括倾斜角度和加速度等信息,根据预设的控制算法进行数据处理和判断。

2.控制信号生成:根据处理和判断得出的结果,生成相应的控制信号。

控制信号包括电机的转动方向和速度。

3.控制信号输出:将生成的控制信号输出给电机,实现倒立摆的平衡。

六、小车性能测试为了验证小车的设计和功能是否符合预期,进行了多项性能测试。

1.平衡行走测试:将小车放在平坦的地面上,通过传感器检测到小车的当前倾斜角度并进行调整,实现小车的自平衡行走。

2.转向测试:在平衡行走的基础上,通过控制信号调整两个电机的速度差,从而实现小车的转向。

3.避障测试:在平衡行走和转向的基础上,添加超声波传感器等避障装置,实现小车的避障功能。

七、总结通过本设计报告的详细介绍,我们可以看出两轮自平衡小车具备平衡行走、转向和避障等功能,为用户提供了一个稳定、高效的移动平台。

未来,我们将进一步优化小车的设计和控制算法,提高小车的性能和应用范围。

两轮自平衡车控制系统的设计与实现

两轮自平衡车控制系统的设计与实现

两轮自平衡车控制系统的设计与实现一、自平衡车系统概述1、定义自平衡车是一种以双轮直立结构/双轮平移结构的小型无线遥控电动车,最初由电动车作为主要的运动机构,但也有可能有其他特殊机构,进行实时控制,使其能够在平衡和模式控制下,保持水平稳定态,实现自动平衡、自主康复和自由行走。

2、系统功能自平衡车系统的功能是通过实时控制平衡并实现模式控制,使自平衡车实现自动平衡、自主康复和自由行走,从而达到智能化的操作目的,解决双轮自行车无主动平衡功能的问题。

二、系统设计1、硬件系统自平衡车的硬件系统由电池、ESC(电子转向控制器)、遥控组件、周边传感器组件、电路板组件等构成。

2、软件系统自平衡车的控制系统主要由ARMCortex-M0 MCU、单片机程序、PID算法组成。

三、系统实现1、硬件系统实施(1)第一步,在自平衡车上安装ESC,ESC的电池由智能充电器连接,使自平衡车进行自动充电;(2)第二步,给控制器方向键插上遥控器,使用户可以控制车辆移动;(3)第三步,在车辆上安装多个传感器,在控制板上增加芯片,使用户可以对车辆进行实时监测;(4)第四步,在控制板上安装一个ARM Cortex-M0 MCU处理器,将控制算法由单片机程序烧录形成可控制的处理系统。

2、软件系统实施(1)随着ARM处理器的安装,自平衡车可以被SONI的特殊的烧录器进行烧录,该程序可以控制车辆的转向和速度;(2)安装完毕后,需要建立多个变量从传感器接受数据,读取车辆的平衡状态,并控制车辆前后左右的运动;(3)最后,我们选择PID算法来实现车辆实时的控制,根据车辆当前的实际情况,调节PID距离和速度增量使自平衡车实现实时的模式控制。

四、结论本文介绍了自平衡车控制系统的设计思想和实现步骤,通过控制平衡,实现自动平衡、自主康复和自由行走,使得自平衡车有更多的功能,在以后的应用中,自平衡车的研究和应用实际会有很大的推动作用。

两轮自平衡小车设计

两轮自平衡小车设计

两轮自平衡小车设计一、任务要求图1两轮自平衡车两轮自平衡车结构原理如图1所示,主控制器(DSP)通过采集陀螺仪和加速度传感器得到位置信号,通过控制电机的正反转实现保持小车站立。

1、通过控制两个电机正反运动,实现小车在原地站立。

2、实现小车的前进、后退、转弯、原地旋转、停止等运动;二、方案实现2.1电机选型图2直流电机两轮自平衡车由于需要时刻保持平衡,对于倾角信号做出快速响应,因此对电机转矩要求较大。

在此设计中选用国领电机生产的直流电机,其产品型号为GB37Y3530,工作电压6v-12v。

为增大转矩,电机配有1:30传动比的减速器。

2.2电机测速方案图3霍尔测速传感器在电机测速方案上主流的方案有两种,分别是光电编码器和霍尔传感器。

光电编码器测量精度由码盘刻度决定,刻度越多精度越高;霍尔传感器精度由永磁体磁极数目决定,同样是磁极对数越高精度越高。

由于两轮自平衡车工作于剧烈震动环境中,光电编码器不适应这种环境,因此选用霍尔传感器来测量速度。

电机尾部加装双通道霍尔效应编码器,AB双路输出,单路每圈脉冲16CPR,双路上下沿共输出64CPR,配合1:30的减速器传动比,可以计算出车轮转动一圈输出的脉冲数目为64X30=1920CPR,完全符合测速要求。

2.3电机驱动控制系统概述本平台电机驱动采用全桥驱动芯片L298N,内部包含4通道逻辑驱动电路,两个H-Bridge的高电压、大电流双全桥式驱动器。

本驱动桥能驱动46V、2A 以下的电机。

其输出可以同时控制两个电机的正反转,非常适合两轮自平衡车开发,其原理图如下图所示图4L298N原理图采用脉宽调制方式(即PWM,Pulse Width Modulation)来调整电机的转速和转向。

脉宽调制是通过改变发出的脉冲宽度来调节输入到电机的平均电压,即通过不同方波的平均电压不同来改变电机转速。

图5PWM脉宽调节示意2.4倾角位置采集倾角和角速度采集是两轮自平衡车控制的重点,选用MPU6050模块作为其采集模块。

智能双轮平衡车的设计原理

智能双轮平衡车的设计原理

智能双轮平衡车的设计原理
智能双轮平衡车是一种能够自主平衡并移动的机器人。

其设计原理基于以下几个方面:
1. 姿态控制原理:智能双轮平衡车通过检测车身的姿态来进行平衡控制。

通常使用陀螺仪或加速度计等传感器来检测车身倾斜的角度,然后使用控制算法来调整电机转速,使得车身保持平衡。

2. 转向控制原理:智能双轮平衡车通过控制两个电机的转速差来实现转向。

当需要车身左转时,右边的电机转速减小,左边的电机转速增加,从而使车身向左转动。

反之,当需要车身右转时,左边的电机转速减小,右边的电机转速增加。

3. 速度控制原理:智能双轮平衡车通过控制两个电机的转速来调节车辆的速度。

通常使用电机控制器或闭环控制算法来根据用户输入的速度指令,控制电机的转速。

4. 充电与电池管理原理:智能双轮平衡车通常使用锂电池作为电源,需要有充电电路和管理系统来管理电池的充电和放电过程。

充电电路通常与电源适配器相连,可以通过检测电池电量来自动充电。

同时,电池管理系统还需要监测电池的电压和温度等参数,以确保使用安全。

5. 用户交互原理:智能双轮平衡车通常会配备有界面或传感器,供用户与车辆
进行交互。

这些界面可以是按钮、触摸屏、语音控制等,用户可以通过这些界面给车辆发送指令,比如控制车辆前进、后退、转向等。

综上所述,智能双轮平衡车的设计原理主要涉及姿态控制、转向控制、速度控制、充电与电池管理以及用户交互等方面,通过使用传感器、控制算法和相应的硬件设备,实现车辆的平衡和移动。

双轮自平衡车设计报告

双轮自平衡车设计报告

双轮自平衡车设计报告学院…………..........班级……………………姓名………………..手机号…………………..姓名………………..手机号…………………..姓名………………..手机号…………………..目录一、双轮自平衡车原理二、总体方案三、电路和程序设计四、算法分析及参数确定过程一.双轮自平衡车原理1.控制小车平衡的直观经验来自于人们日常生活经验。

一般的人通过简单练习就可以让一个直木棒在手指尖上保持直立。

这需要两个条件:一个是托着木棒的手掌可以移动;另一个是眼睛可以观察到木棒的倾斜角度和倾斜趋势(角速度)。

通过手掌移动抵消木棒的倾斜角度和趋势,从而保持木棒的直立。

这两个条件缺一不可,让木棒保持平衡的过程实际上就是控制中的负反馈控制。

图1 木棒控制原理图2.小车的平衡和上面保持木棒平衡相比,要简单一些。

因为小车是在一维上面保持平衡的,理想状态下,小车只需沿着轮胎方向前后移动保持平衡即可。

图2 平衡小车的三种状态3.根据图2所示的平衡小车的三种状态,我们把小车偏离平衡位置的角度作为偏差;我们的目标是通过负反馈控制,让这个偏差接近于零。

用比较通俗的话描述就是:小车往前倾时车轮要往前运动,小车往后倾时车轮要往后运动,让小车保持平衡。

4.下面我们分析一下单摆模型,如图4所示。

在重力作用下,单摆受到和角度成正比,运动方向相反的回复力。

而且在空气中运动的单摆,由于受到空气的阻尼力,单摆最终会停止在垂直平衡位置。

空气的阻尼力与单摆运动速度成正比,方向相反。

图4 单摆及其运动曲线类比到我们的平衡小车,为了让小车能静止在平衡位置附近,我们不仅需要在电机上施加和倾角成正比的回复力,还需要增加和角速度成正比的阻尼力,阻尼力与运动方向相反。

5 平衡小车直立控制原理图5.根据上面的分析,我们还可以总结得到一些调试的技巧:比例控制是引入了回复力;微分控制是引入了阻尼力,微分系数与转动惯量有关。

在小车质量一定的情况下,重心位置增高,因为需要的回复力减小,所以比例控制系数下降;转动惯量变大,所以微分控制系数增大。

两轮自平衡小车的设计与实现

两轮自平衡小车的设计与实现

两轮自平衡小车的设计与实现一、本文概述随着科技的飞速发展,智能化、自主化已经成为现代机器人技术的重要发展方向。

两轮自平衡小车作为一种典型的动态稳定控制机器人,其设计与实现技术对于推动机器人技术的进步具有重要意义。

本文旨在深入探讨两轮自平衡小车的设计理念、实现方法以及关键技术,为相关领域的研究者和爱好者提供有益的参考。

本文将首先介绍两轮自平衡小车的基本概念和原理,阐述其动态稳定控制的基本思想。

随后,将详细介绍两轮自平衡小车的硬件设计,包括电机驱动、传感器选型、控制器设计等关键部分,并阐述各部件之间的协同工作原理。

在此基础上,本文将重点探讨两轮自平衡小车的软件实现,包括平衡控制算法、运动控制算法以及人机交互界面设计等。

本文还将对两轮自平衡小车的性能优化和实际应用进行深入分析,探讨如何提高其稳定性、响应速度以及续航能力等问题。

本文将对两轮自平衡小车的发展趋势和前景进行展望,为相关领域的研究和发展提供有益的参考。

通过本文的阐述,读者可以全面了解两轮自平衡小车的设计与实现过程,掌握其关键技术和应用方法,为推动机器人技术的发展做出贡献。

二、两轮自平衡小车的基本原理两轮自平衡小车,又称作双轮自稳车或双轮倒立摆,是一种基于动态稳定技术设计的个人交通工具。

其基本原理主要涉及到力学、控制理论以及传感器技术。

两轮自平衡小车的稳定性主要依赖于其独特的力学结构。

与传统三轮或四轮的设计不同,双轮自平衡小车只有两个支撑点,这意味着它必须通过动态调整自身姿态来维持稳定。

这种动态调整的过程类似于杂技演员走钢丝,需要精确的平衡和快速的反应。

实现自平衡的关键在于控制理论的应用。

两轮自平衡小车通常搭载有先进的控制系统,该系统通过传感器实时监测小车的姿态(如倾斜角度、加速度等),并根据这些信息计算出必要的调整量。

控制系统随后会向电机发送指令,调整小车的运动状态,以保持平衡。

传感器在两轮自平衡小车中扮演着至关重要的角色。

常见的传感器包括陀螺仪、加速度计和角度传感器等。

毕业设计(论文)-两轮自平衡小车的设计

毕业设计(论文)-两轮自平衡小车的设计

本科毕业设计(论文)题目两轮自平衡小车的设计学院电气与自动化工程学院年级专业班级学号学生姓名指导教师职称论文提交日期两轮自平衡小车的设计摘要近年来,两轮自平衡车的研究与应用获得了迅猛发展。

本文提出了一种两轮自平衡小车的设计方案,采用陀螺仪ENC-03以及MEMS加速度传感器MMA7260构成小车姿态检测装置,使用卡尔曼滤波完成陀螺仪数据与加速度计数据的数据融合。

系统选用飞思卡尔16位单片机MC9S12XS128为控制核心,完成了传感器信号的处理,滤波算法的实现及车身控制,人机交互等。

整个系统制作完成后,各个模块能够正常并协调工作,小车可以在无人干预条件下实现自主平衡。

同时在引入适量干扰情况下小车能够自主调整并迅速恢复稳定状态。

小车还可以实现前进,后退,左右转等基本动作。

关键词:两轮自平衡陀螺仪姿态检测卡尔曼滤波数据融合IDesign of Two-Wheel Self-Balance VehicleAbstractIn recent years, the research and application of two-wheel self-balanced vehicle have obtained rapid development. This paper presents a design scheme of two-wheel self-balanced vehicle. Gyroscope ENC-03 and MEMS accelerometer MMA7260 constitute vehicle posture detection device. System adopts Kalman filter to complete the gyroscope data and accelerometer data fusion.,and adopts freescale16-bit microcontroller-MC9S12XS128 as controller core. The center controller realizes the sensor signal processing the sensor signal processing, filtering algorithm and body control, human-machine interaction and so on.Upon completion of the entire system, each module can be normal and to coordinate work. The vehicle can keep balancing in unmanned condition. At the same time, the vehicle can be adjusted independently then quickly restore stability when there is a moderate amount of interference. In addition, the vehicle also can achieve forward, backward, left and right turn and other basic movements.Key Words: Two-Wheel Self-Balance; Gyroscope; Gesture detection; Kalman filter; Data fusionII目录1.绪论 (1)1.1研究背景与意义 (1)1.2两轮自平衡车的关键技术 (2)1.2.1系统设计 (2)1.2.2数学建模 (2)1.2.3姿态检测系统 (2)1.2.4控制算法 (3)1.3本文主要研究目标与内容 (3)1.4论文章节安排 (3)2.系统原理分析 (5)2.1控制系统要求分析 (5)2.2平衡控制原理分析 (5)2.3自平衡小车数学模型 (6)2.3.1两轮自平衡小车受力分析 (6)2.3.2自平衡小车运动微分方程 (9)2.4 PID控制器设计 (10)2.4.1 PID控制器原理 (10)2.4.2 PID控制器设计 (11)2.5姿态检测系统 (12)2.5.1陀螺仪 (12)2.5.2加速度计 (13)2.5.3基于卡尔曼滤波的数据融合 (14)2.6本章小结 (16)3.系统硬件电路设计 (17)3.1 MC9SXS128单片机介绍 (17)3.2单片机最小系统设计 (19)3.3 电源管理模块设计 (21)3.4倾角传感器信号调理电路 (22)III3.4.1加速度计电路设计 (22)3.4.2陀螺仪放大电路设计 (22)3.5电机驱动电路设计 (23)3.5.1驱动芯片介绍 (24)3.5.2 驱动电路设计 (24)3.6速度检测模块设计 (25)3.6.1编码器介绍 (25)3.6.2 编码器电路设计 (26)3.7辅助调试电路 (27)3.8本章小结 (27)4.系统软件设计 (28)4.1软件系统总体结构 (28)4.2单片机初始化软件设计 (28)4.2.1锁相环初始化 (28)4.2.2模数转换模块(ATD)初始化 (29)4.2.3串行通信模块(SCI)初始化设置 (30)4.2.4测速模块初始化 (31)4.2.5 PWM模块初始化 (32)4.3姿态检测系统软件设计 (32)4.3.1陀螺仪与加速度计输出值转换 (32)4.3.2卡尔曼滤波器的软件实现 (34)4.4平衡PID控制软件实现 (36)4.5两轮自平衡车的运动控制 (37)4.6本章小结 (39)5. 系统调试 (40)5.1系统调试工具 (40)5.2系统硬件电路调试 (40)5.3姿态检测系统调试 (41)5.4控制系统PID参数整定 (43)5.5两轮自平衡小车动态调试 (44)IV5.6本章小结 (45)6. 总结与展望 (46)6.1 总结 (46)6.2 展望 (46)参考文献 (47)附录 (48)附录一系统电路原理图 (48)附录二系统核心源代码 (49)致谢 (52)V常熟理工学院毕业设计(论文)1.绪论1.1研究背景与意义近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科学研究最活跃的领域之一,移动机器人的应用范围越来越广泛,面临的环境和任务也越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两轮独立驱动电动平衡车的设计摘要两轮电动平衡车是一种能够载人直立行走的交通工具,依靠电能提供动力。

它突破了传统意义上的车的概念,其特点是:两个车轮共轴放置,差动式运动,零半径转向,依照倒立摆的原理达到动态平衡。

近年来国内外的研究方向主要是两轮平衡机器人的控制系统,针对其机械结构的研究却较少,有关平衡车机械结构的文献更少。

本文总结了国内外相关领域的研究成果,在此基础上对平衡车的平衡原理进行了介绍,建立了平衡车的动力学模型,并对平衡车的机械结构进行了设计。

所做的具体工作如下:(1)先介绍平衡车姿态测量的传感器以及为减少传感器的测量误差所常用的方法。

然后对平衡所需的驱动力矩进行了推导,为后续的机械结构设计提供理论依据。

(2)设计平衡车的机械结构。

本文所设计的平衡车由车轮、悬架、车架和操纵杆四部分组成。

轮毂电机和减速器集成在车轮内部,提高了电动车的动力性能和工作效率。

操纵杆用来控制平衡车的转向和车速。

(3)对平衡车进行动力学分析,建立了平衡车的三维动力学模型。

模型建立过程中的大部分计算由数学软件Mathematica进行。

关键词 平衡车;驱动力矩;机械结构;动力学模型;AbstractTwo‐wheeled self‐balancing electric vehicle is a way to walk upright manned vehicles , rely on electricity to power. Self‐balancing vehicle breaking the concept of vehicle in the traditional sense, it is characterized by two wheels that in one line , differential movement , zero turning radius and in accordance with the principle of inverted pendulum dynamic equilibrium. In recent years, research at home and abroad are mainly on two balancing robot control system, studies of its mechanical structure has less literature ,studies on self‐balancing vehicle’s mechanical structure even less. This paper summarizes the research results in related fields, then the principle of balancing of the vehicle was introduced,a dynamic model of the vehicle was derived,and the mechanical structure of the vehicle was designed. Specific works are as follows:(1)Describing the self‐balancing vehicle attitude measurement sensor and a method to reduce the measurement error of the sensor common .Then the required drive torque has been derived to provide a theoretical basis for the subsequent mechanical design .(2) Mechanical design of the vehicle. The vehicle is designed in this paper combined by four parts, means wheels, suspensions, frame and lever. Wheels motor and reducer integrated in the wheels inside , improve dynamic performance and efficiency of the vehicle. Joystick to control the balance of the car 's steering and speed.(3) The self‐balancing vehicle dynamics analysis, three‐dimensional dynamic model of the balance of the vehicle was derived. Most of calculations in the modeling process done by the mathematical calculation software Mathematica.Keywords: Self‐balancing vehicle; Driving torque; Mechinics structure; Dynamic model目录第1章 绪论 (1)1.1 研究的目的及意义 (1)1.2 国内外研究现状 (2)1.2.1 国外研究现状 (2)1.2.2 国内研究现状 (3)1.3 论文主要内容 (4)第2章 平衡车的平衡原理 (6)2.1 简介 (6)2.2 平衡车的姿态测量和平衡控制 (7)2.2.1 平衡车的姿态测量 (7)2.2.2 平衡车的平衡控制 (10)2.3 平衡车行驶时所需的驱动力矩 (11)2.3.1 平衡车要克服的行驶阻力 (11)2.3.2 平衡车保持平衡所需的驱动力矩 (15)2.4 本章小结 (17)第3章 平衡车的机械结构设计 (18)3.1 平衡车总体方案 (18)3.2 车轮设计 (20)3.2.1 车轮结构方案设计 (20)3.2.2 车轮详细设计 (23)3.3 悬架设计 (34)3.4 车架和操纵杆设计 (36)3.5 平衡车各部件的装配 (38)3.6 本章小结 (38)第4章 平衡车的动力学模型 (40)第5章 总结 (48)致谢 (49)参考文献 (50)第1章 绪论1.1 研究的目的及意义随着我国工业水平的提高,近年来汽车产业迅速发展。

汽车保有量的增加使得城市污染和交通拥堵等问题越来越严重,这是一个世界难题。

汽车保有量的增加速度超过城市交通基础设施建设的速度是造成交通拥堵的主要原因,交通管制措施如尾号限行、推行错峰上下班等只能在对交通拥堵只能起到一定程度的缓解作用,无法从根本上解决这个问题。

另外汽车保有量的增加也使得停车更为困难,停车泊位缺口的扩大导致汽车占用人行道和自行车道停车,特别是在市中心等交通紧张地段更是如此,这进一步加剧了交通拥堵。

20实际80年代,科学家们提出并完善了双轮平衡机器人的概念,通过控制系统的合理控制,这种只有两个轮子的机器人可以保持平衡,其机械结构非常简单。

随着对上述机器人的认识的深入,有学者提出适于民用的平衡车的概念。

和双轮平衡机器人一样,运行时的平衡车质心与车轮轴线处于同一竖直平面内,通过传感器测量平衡车的空间姿态,并将测量结果传送到控制系统,控制系统根据平衡车的空间姿态进行合理的控制。

平衡车系统是一个不稳定的系统,如果没有控制的干预它就不能保持平衡。

通过控制系统并结合一些传感器,平衡车可以保持平衡并接收驾驶员的指令进行转弯、加速和减速。

对于一般的交通工具如普通自行车等,驾驶人需要自己进行平衡控制,与此不同,原则上平衡车只要电力充足,驾驶人和车身就不会翻倒。

平衡车无污染且操作容易、灵活性强、结构简单,非常适合作为代步工具。

在使用过程中,平衡车的主要优点如下:(1)占地面积较小,在要求运输灵活或场地面积小的场合非常实用;(2)旋转灵活,平衡车两个轮胎并且车轮轴线共线,从而能实现零半径转弯,可以在狭窄的空间内灵活运动;(3)驾驶简单,平衡车的平衡由控制系统控制保持,驾驶人只需控制车速和转向;(4)无刹车系统,平衡车行驶过程中的加速和减速都可以通过改变重心位置来实现;(5)由于控制系统和轮毂电机的使用,平衡车的机械结构可以得到很大程度的简化,与一般的交通工具相比平衡车可以做的更小更轻;(6)平衡车的驱动功率较小,使得电池可以长时间供电,增加了平衡车的行驶距离,从而更为实用。

作为汽车高密度的国家,我国的交通正愈加拥挤,平衡车的上述优点就使得它非常适合作为一个代步工具。

同时,作为不稳定的两轮系统,平衡车具有非线性、强耦合、多变量的特性,可以作为典型装置来检验各种控制理论。

平衡车的设计制造需要很多不同领域的知识,例如机械学、控制理论和控制技术、单片机和嵌入式计算机技术、蓄电池及材料技术等,其应用价值和研究背景都非常广泛。

1.2 国内外研究现状1.2.1 国外研究现状早在20世纪80年代,平衡车的理念就已经被提出,但当时的控制器性能低下,无法采用先进的算法保持平衡车的平衡,而且当时的微机械技术很不发达,生产的传感器无法及时准确的获取平衡车的空间姿态,所以这一理念在当时并没有受到相应的重视。

2001年,较为成熟的电动平衡车产品Segway由美国发明家迪恩卡曼公布[1],图1-1给出了Segway的实体图,它是全球第一个真正商业化的平衡车。

Segway 的电机和控制系统及传感器等都由锂电池供电,空间姿态通过5个陀螺仪检测,每秒采样率高达5000次,通过操纵杆来控制转向。

与同时代其它类型的平衡车相比,Segway更为安全,造型也更为美观。

其主要参数如下:整车重量:54.4 kg(越野型)、47.7 kg(规格)最高时速:20 km/h满电量行程:19 km(越野型)、48 km(规格)价格:59000元(越野型)、56000元(规格)Segway颠覆了交通工具传统的低重心、三点平衡、稳定地盘的设计方法,所以在其推出初期,很多专家都非常看好这款产品。

Segway的设计非常复杂,它使用的陀螺仪是航空级的,5个陀螺仪中的3个用于空间姿态的检测,剩余的两个用于冗余。

其主控芯片采用德州仪器生产的DSP芯片,为了提高系统的稳定性,Segway有两块主控芯片,当一块发生故障时,另一块可以实现上一块的所有功能,保证Segway的正常运行。

Segway的主控芯片中导入了合适的控制软件,负责对整车进行监测和调控。

然而Segway的价格十分高昂,作为新概念产品其安全性也无法确保,故而它的推广使用并不顺利。

相关文档
最新文档