第六章实数复习课教案设计
新人教第六章实数复习课教案

平方根的性质:① ________________ ② ③
平方根与算术平方根的关系:
_
;
;
;
2. 算术平方根的定义: _________________________________________________________________。__
a 的双重非负性的理解: a ≥0 ,a≥0
3. 立方根的定义:
(1) 7 _____ 2.7 8. 已知实数 x,y 满足 x 5
(2) y4
2
5
_____
2
3
0 ,求代数式 x
2011
y 的值
4 ,③ 2 2
A.1 个
7.若 a 2
B .2 个
C . 3个
b3
2
c4
0,则 a b
c
8. 求下列各式中的 x. (1) x2 81 (2)
2( x 1)2 8
22
1 1 11 9 2 ,④
16 25 4 5 20
D. 4 个
.
【专题二:立方根的定义与性质】
1. 8 的立方根是(
)
A.2
B. 2
_____________________
;
实数: ____________________________________________._
实数性质: _____________与数轴上的点是一一对应的,有理数的运算法则、
运算律等在实数范围内同样适用。
二、专题复习
【专题一:平方根与算术平方根】 1. (1)16 的平方根是
(2) 2 3 的相反数是 ________,倒数是 ________,绝对值是 _______.
人教版七年级数学下册第六章实数复习教学设计

人教版七年级数学下册第六章实数复习教学设计教学目标本节课的教学目标主要包括以下几点: - 复习并巩固学生对于实数的基本概念和性质的理解和掌握; - 引导学生运用实数的性质解决实际问题; - 培养学生的数学思维能力和解决问题的能力。
教学重点•实数的概念与性质的理解和掌握;•运用实数的性质解决实际问题。
教学难点•运用实数的性质解决复杂的实际问题。
教学准备•教材:人教版七年级数学下册;•教具:黑板、白板、彩色粉笔。
教学过程导入(5分钟)1.利用黑板上挂图,复习并巩固实数的概念和性质。
概念复习(10分钟)1.分发复习内容的手册并让学生互相检查彼此的手册。
老师利用黑板板书关键字让学生来解释。
2.整理学生的解释,对不明白的地方进行讲解和补充。
性质复习(15分钟)1.利用白板上的题目进行回顾复习,引导学生回想实数的性质和规律。
2.提问学生,让学生说出一些实数的性质,并解释其原因。
3.列举一些实例,让学生根据实数性质判断其真假。
实际问题解决(15分钟)1.通过黑板上的题目让学生掌握实数运算与实际问题解决的方法。
2.引导学生将日常生活中的实际问题转化为数学问题,并用实数的性质进行分析和解答。
3.讨论不同解题方法的优缺点,并让学生给出自己的思考和结论。
知识小结(5分钟)1.让学生根据课堂内容进行小结,总结实数复习的重点和难点。
练习与拓展(15分钟)1.分发练习册并布置一些巩固练习和拓展题目,让学生独立完成。
课堂讨论(10分钟)1.随机选择几道练习题进行课堂讨论,引导学生分享解题过程和策略。
2.对学生的答案进行点评,并讲解正确解题方法。
作业布置(5分钟)1.布置相应的家庭作业,要求学生继续巩固和拓展实数的相关知识。
教学反思通过本节课的复习教学设计,学生能够进一步巩固和理解实数的概念和性质,并能够运用实数的性质解决实际问题。
通过课堂上的讨论和练习,学生的数学思维能力和解决问题的能力得到了有效的培养和提升。
对于一些学习较慢的学生,可以给予更多的辅导和指导,帮助他们更好地理解和掌握实数的概念和性质。
数学七年级下册实数复习课教案

基于标准的课程纲要和教案教案:实数复习课教材来源:七年级数学(下册)教科书人民教育出版社内容来源:七年级《数学(下册)》第六章主题:实数复习课时:2课时授课对象:七年级学生目标确定的依据1 课程标准相关要求(1)理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根。
(2)会用计算器进行数的加、减、乘、除、乘方及开方运算。
(3)了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义。
(4)了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围,会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算。
2 教材分析学习算数平方根,平方根,立方根为学习实数打下基础,由于实际运算中引入了无理数,使数的范围从有理数扩展到了无理数,完成了初中阶段数的扩展。
运算方面,在乘方的基础上引入了开方运算,使代数运算得以完善。
因此本章是今后学习根式运算,函数,方程等知识的重要基础。
3 学情分析要重视从有理数到实数的发展过程的教学,要充分运用实际例子克服这一数的扩展过程的抽象性,是学生退回到平方根,无理数,实数等概念是由于人们生产和生活而产生的,在我们的周围普遍存在着,在教学活动中应通过实际例子帮助学生了解这些抽象概念的实际意义,并学会在实际中应用它们。
目标1.知识与技能:(1)理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根。
(2)了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义。
(3)运用数形结合的思想,了解实数与数轴上的点一一对应的关系。
2.过程与方法:在探索实数的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生的数感。
3.情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。
评价任务1理解算数平方根的概念,会求非负数的算数平方根并会用符号表示。
人教版七年级数学下册第六章《实 数》章末复习教学设计

人教版七年级数学下册第六章《实数》章末复习教学设计设计背景《实数》是人教版七年级数学下册的第六章内容,主要讲解实数的相关知识,包括正数、负数、非负数、非正数、绝对值等。
这是学生初次接触到负数概念的章节,对于他们来说可能会感到困惑。
因此,为了帮助学生更好地掌握这一知识点,我设计了本节课的复习教学活动。
设计目标•理解正数、负数、非负数、非正数的概念与特征。
•掌握实数的绝对值的计算方法与性质。
•运用实数的知识解决实际问题。
设计内容复习概念首先,我将通过复习概念来帮助学生巩固对正数、负数、非负数、非正数的理解。
我会利用数字卡片,让学生将不同类型的数进行分类,同时要求他们解释为什么将某个数归为某一类。
这样可以帮助学生思考并深入理解每种类型数的概念及其特征。
计算绝对值接着,我将重点讲解绝对值的概念和计算方法。
我会给学生提供一些绝对值的计算例子,并引导他们思考如何进行计算。
然后,我会让学生进行实际操作,计算一系列绝对值,并帮助他们发现绝对值计算的规律和性质。
绝对值运算在学生理解绝对值的基础上,我会进一步引导他们运用绝对值解决一些实际问题。
我会给学生一些具体的情景,例如温度上升与下降的问题,要求他们通过使用绝对值来解决。
通过这些实际问题的练习,学生可以更好地理解使用绝对值进行运算的意义和方法。
综合应用最后,我会设计一些综合应用题,要求学生通过运用已学的知识来解决问题。
这些综合应用题会结合实际生活和数学内容,让学生认识到数学的实用性和重要性。
同时,这些问题还可以培养学生的综合思考能力和解决问题的能力。
教学方法•活动导向教学:通过引导学生自主探索、合作学习、问题解决等方式,激发学生的兴趣和主动性,提高学习效果。
•多媒体教学:利用多媒体工具展示相关概念和例题,形象直观地呈现给学生,加深学生对知识点的理解和记忆。
•课堂讨论:鼓励学生积极参与课堂讨论,互相交流思想和观点,促进知识的共建和共享。
课堂活动安排时间活动内容5分钟导入活动,复习概念10分钟讲解绝对值的概念和计算方法15分钟练习计算绝对值15分钟运用绝对值解决实际问题15分钟综合应用题解答和讨论5分钟课堂小结总结通过本节课的复习教学设计,学生可以巩固并深入理解正数、负数、非负数、非正数的概念和特征,掌握绝对值的计算方法与性质,培养实际问题解决能力,并加深对实数的理解与应用。
人教版七年级数学下册第六章实数复习说课稿

2.设计有趣的数学游戏,如数轴游戏,让学生在游戏中理解和掌握实数与数轴的关系。
3.采用小组合作学习的方式,让学生在讨论和交流中解决问题,增强他们的合作意识和团队精神。
4.提供丰富的练习题,让学生在实践中巩固知识,提高他们的实际应用能力。
(二)学习障碍
在学习本节课之前,学生需要具备有理数、无理数等基本概念,以及简单的数学运算能力。可能存在的学习障碍主要是对实数概念的理解,尤其是无理数的概念和性质,以及实数与数轴的关系。此外,部分学生可能对数轴的理解存在困难,无法直观地理解数轴上点的坐标与实数的关系。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾所学知识,总结实数的定义、分类、性质以及实数与数轴的关系。然后,我会鼓励学生反思自己的学习过程,找出自己的不足和需要改进的地方。最后,我会根据学生的表现和反馈,给予他们个性化的建议和指导,帮助他们进一步提高。
(二)教学目标
1.知识与技能:使学生掌握实数的定义、分类、性质,能够正确理解和运用实数的相关知识。
2.过程与方法:通过复习,使学生能够运用实数的性质和概念,解决实际问题,提高学生的数学应用能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神,使学生认识到数学在生活中的重要性。
5.对学习有困难的学生给予个别辅导,鼓励他们克服困难,增强他们的自信心。
三、教学方法究式教学法。情境教学法通过生活实例引入实数概念,让学生感受到数学与生活的紧密联系,提高他们的学习兴趣。探究式教学法鼓励学生主动参与,自主探究,培养他们的独立思考能力和问题解决能力。这两种方法的理论依据是建构主义学习理论,即学习者通过主动建构知识,形成自己的认知结构。
沪科版数学七年级下册第6章《实数》复习教学设计

沪科版数学七年级下册第6章《实数》复习教学设计一. 教材分析沪科版数学七年级下册第6章《实数》复习教学设计,主要涵盖实数的定义、分类和性质,以及实数与数轴的关系。
本章内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
教材内容主要包括有理数、无理数和实数的概念,实数的性质,实数与数轴的对应关系等。
二. 学情分析学生在七年级上学期已经学习了有理数和无理数的基本概念,对实数有一定的了解。
但部分学生对实数的性质和实数与数轴的关系理解不够深入,需要通过复习教学进一步巩固和提高。
学生的学习兴趣较高,但由于实数的概念较为抽象,部分学生可能在理解上存在困难。
三. 教学目标1.理解实数的定义和分类,掌握实数的性质。
2.建立实数与数轴的对应关系,能运用实数解决实际问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.实数的定义和分类。
2.实数的性质和实数与数轴的关系。
五. 教学方法1.采用问题驱动法,引导学生主动探究实数的性质和实数与数轴的关系。
2.利用数轴直观展示实数,帮助学生理解实数与数轴的对应关系。
3.通过实例分析,让学生学会运用实数解决实际问题。
六. 教学准备1.准备相关的教学PPT,内容包括实数的定义、分类、性质和实数与数轴的关系等。
2.准备数轴教具,用于展示实数与数轴的对应关系。
3.准备一些实际问题,用于巩固学生对实数的理解和应用。
七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,引出实数的概念。
提问:实数有哪些分类?实数与数轴有什么关系?2.呈现(10分钟)通过PPT展示实数的性质,如:实数有大小、可以进行加减乘除等运算。
同时,展示实数与数轴的对应关系,解释实数在数轴上的位置与其实数值的关系。
3.操练(10分钟)让学生分组讨论,通过数轴教具和PPT上的实例,自主探究实数的性质和实数与数轴的关系。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对学生探究的结果,进行巩固练习。
人教版初中数学七年级下册第六章《实数》复习课教案

人教版初中数学七年级下册第六章实数复习课教案课题 实数复习 课型 复习 备课人教学目标 1.体会特殊到一般、化零为整的认识过程,运用类比思想,强化符号意识,进一步培养估算和运算能力。
2.理解算术平方根、平方根、立方根概念;掌握算术平方根和平方根的区别于联系;了解平方根、立方根的计算器求法;巩固实数的运算。
3.从局部到整体,一点一练,分层过关。
教学过程设计教学环节教学学活动设计 一、知识网络专题一:平方根与立方根【1】算术平方根: 1.如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”。
特别规定:0的算术平方根仍然为0。
2.算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
总体复习这一章的概况先复习平方根和立方根这一专题,熟悉概念,性质,以及这两个概念,性质之间的区别与联系3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
【2】平方根: 1.概念:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即)0(2≥=a a x ,当时,我们称x 是a 的平方根,记做)0(≥±=a a x :。
2.性质:(1)正数有两个平方根,他们互为相反数 (2)0的平方根是0; (3)负数没有平方根 3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
【3】立方根 1.概念:如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。
记做:3a (注意:这里的3是根指数,不能省略) 2.立方根的性质: (1)正数的立方根是正数, 负数的立方根是负数; 0的立方根是0. (2) 2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。
最新人教版初中数学七年级下册第六章《实数》复习教案

最新人教版初中数学七年级下册第六章《实数》复习教案第六章《实数》复习课教学设计一、教学目标1、理解平方根、算数平方根、立方根的概念;理解乘方与开方互为逆运算。
2、理解无理数及实数的有关概念;知道实数与数轴上的点一一对应;理解实数的分类。
3、学生能运用开方运算求复杂算式的平方根或立方根。
4、学生能利用已知平方根立方根求值。
5、学生能利用数形结合解决问题。
二、教学重、难点1、平方根和算术平方根、立方根的概念、性质,无理数与实数的意义理解与应用;2、对数即是形,形也是数的认识与理解。
3、灵活运用已学知识解决问题。
三、教学准备多媒体课件、视频、学案四、教学过程二、课中环节一:组内互助,答疑解惑1、小组内合作交流:解决自主学习过程中遇到的疑难问题。
2、小组代表提出问题。
3、小组之间交流合作:小组无法解决的问题,组与组之间进行解决,教师实时点拨。
4、课前学习达标检测(1):若121x的值为()(2):下列说法中,正确的有()①任何实数的平方根都有两个,且他们互为相反数;②无理数就是带根号的数;③数轴上的所有点都表示实数;④负数的立方根仍为负数。
环节二:巩固提高,归纳提升1、概括提升学案中不易解决的几种问题的类型,形成本节课学习目标并展示学习目标。
2、展示疑难问题一,利用开方运算求复杂算式的平方根和立方根①的算术平方根是_____②的立方根_____③|-0.64|的平方根是_______3、展示疑难问题二,利用已知平方根立方根求值。
①已知3x-4是25的算术平方根,求x的值_____=16-,求x的1、学生组内交流,集思广益,互帮互助,解决自主学习过程中遇到的疑难问题。
2、学生归纳提出疑难问题。
3、组间学生交流答疑解惑4、各层级学生独立完成,各尽其能学生了解本节课的学习目标学生解决问题,完成后提交展示,学生交流解题思路。
小组合作交流,学生点评,分析讲解方法和思路。
所有同学完成后提交展示弄清解析过程,存在困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章实数复习课教案
枣阳市新市镇钱岗中学莘义成
一、内容和内容解析
1.内容
平方根、立方根的概念和求法,实数的有关概念、运算.
2.内容解析
本章的内容是从典型的实际问题出发,首先介绍了算术平方根的概念和它的符号表示.然后学习了平方根和立方根的概念及符号表示,并通过开平方、开立方运算认识了不同于有理数的数-----无理数,使数的范围由有理数扩充到实数.随着数的扩充,数的运算也有了新的发展,并能在实数范围内进行简单运算.
本章的重点内容是平方根、立方根的概念和求法,实数的有关概念和运算.算术平方根是学习平方根的基础,类比平方根的探究思路和方法,对立方根进行了探究;通过类比有理数及其运算,引入了实数的相反数、绝对值等概念,以及实数的运算和运算律,体会类比的研究方法和作用.实数与数轴上的点是一一对应的,可以利用数轴将“数”与“形”联系起来,体验数形结合的数学思想.
基于以上分析,可以确定本课的教学重点是:复习平方根、立方根的概念和求法,实数的有关概念和运算,构建本章知识结构.
二、目标和目标解析
1.目标
(1)梳理本章的相关概念,通过回顾平方根、立方根、实数及有关的概念,强化概念之间的联系,形成知识体系;
(2)巩固开平方和开立方运算.
2.目标解析
达成目标(1)的标志是:通过复习本章的主要内容,进一步理解平方根、立方根、实数及有关概念,能建立这些概念之间的联系;明确算术平方根和平方根之间的区别和联系,平方根和立方根的之间的区别和联系,有理数和无理数之间的区别.
达成目标(2)的标志是:学生能够运用乘方与开方是互逆运算及实数的运算律和运算性质进行实数的简单运算;能求实数的相反数与绝对值;能用有理数估计无理数的大致范围,
会进行实数的大小比较.
三、教学问题诊断分析
学生对正数开平方会有两个结果感到不习惯,容易将算术平方根和平方根混淆.对于负数没有平方根,学生接受起来也有一定的难度.平方根和立方根虽都是开方运算,但它们的表示方法和性质及运用是学生在练习中经常出错的地方;无理数是从现实世界中抽象出来的一种数,其定义比较抽象,学生没有任何感性认识,真正理解这个概念也有一定的困难.学生在复习课中既要对所学的知识能够重新回忆出来,又要在原有的基础上进行知识的建构,建立起不同知识之间的内在联系,从而建立起本章的知识结构,形成知识体系.基于以上分析,本课的教学难点是:本章知识点间的内在联系,知识体系的建构.
四、教学过程设计
(一) 知识梳理,构建体系
知识回顾
问题1 (±2)2=_____,23=_____;
x2=4,则x=_____;x3=8,则x=_____.
追问(1):解答中用到了什么运算?乘方运算与开方运算有什么关系?
追问(2):平方根的概念是什么?算术平方根的概念什么?
追问(3):立方根的概念是什么?
师生活动:学生独立完成问题1中的题目,教师用问题引导学生回顾平方根和立方根的概念,梳理它们之间的内在联系.师生一起构建出乘方、开方、平方根及立方根之间的知识结构图:
设计意图:用问题引导学生回忆平方根与立方根的概念及它们之间的联系,梳理知识,构建体系.
问题2 x2=2,则x=_____.
追问(1):什么样的数是无理数?请举出几个无理数的例子?
追问(2):实数由哪些数组成?从小数的角度来看有理数和无理数有什么区别?
追问(3):实数与数轴上的点有什么关系?有理数关于相反数和绝对值的意义是否适用
于实数?随着数的不断扩充,在实数的运算中有理数的运算性质、运算法则及运算律始终保持不变吗?
师生活动:学生回答上述问题,师生共同构建出实数及相关知识的结构图:
设计意图:复习实数及相关概念、实数与数轴的关系,让学生体会在数的不断扩充的过程中,数的运算性质、运算律等的不变性,体会类比的数学思想方法.
(二)典型例题,深化理解
例1已知下列各数:
(1)64;(2)-8; (3)2)2
( ;(4) 81.
问题:你能求出哪些数的平方根?算术平方根?立方根?
师生活动:学生思考后回答,师生共同点评.教师关注:学生对平方根及立方根知识的掌握和运用情况,分析易错的问题.
设计意图:用各具代表性的数,设计的开放性题目引导学生对平方根与立方根的知识的运用,考查学生灵活运用知识的能力.
思考:平方根和立方根之间的联系与区别:
数a算术平方根平方根立方根
表示方法
a的取值
性质正数0
师生活动:学生独立解答后,小组交流、全班展示.教师关注:学生对平方根及立方根的表示及性质的掌握情况.
设计意图:用图表的方式简洁、直观地引导学生总结归纳平方根与立方根的表示方法及性质,突出平方根与立方根之间的区别与联系.
变式练习:
1.-8是_____的平方根.
2.64的平方根是______,64-的立方根是______. 3.如果一个正数的平方根是3和a ,则a =_______.
4.一个正数的平方根是2a 与5-a ,则a =_______,这个正数是______; 5.已知2a +1的平方根是±3,2a +b -3的立方根是-3,求a -b 的算术平方根.
师生活动:学生独立完成题目,然后小组交流,全班集中展示.教师关注:学生易错题和思维的障碍处.
设计意图:第1,2题是考查学生对平方根与立方根正向与逆向运用及学生对用符号表示的数的意义的理解;第3,4题考查学生灵活运用平方根的性质解决问题的能力;第5题考查学生综合运用平方根及立方根的知识解决问题的能力.
例2 把下列各数分别填入相应的集合中:
3,
7
22,15,
π-,-8,-5
.3 , 0,3-,327,0.373773777…(相邻两个3之间的7的个数逐次加1) .
反思归纳:无理数有哪些表现形式?
师生活动:学生观察后完成解答,并说出无理数的几种表现形式.教师关注:学生能否正确识别题目中的有理数和无理数,归纳无理数的表现形式是否全面.
有理数集合
无理数集合
设计意图:考查学生对有理数和无理数的概念的理解及运用情况.
变式1:请把例2中的各数填入相应的集合中:
正实数集合:{_____________…};分数集合{__________________…} .
变式2:下图中数轴上标有字母的各点是上述一些实数在数轴上的表示,
你能找出对应的数吗?
变式3:你能在数轴上找出表示15的点的大致位置吗? 变式4:15的整数部分是______,小数部分是__________. 变式5:比较下列各组数的大小:
(1)327____15; (2)π-_____3-.
师生活动:学生观察并解答上述题目,师生共同点评.教师关注:学生估算能力及实数大小的比较方法的选择.
设计意图:考查学生对实数与数轴上的点的对应关系的理解与运用,培养学生估算的能力.体会解题策略的多样化和数形结合的数学思想.
变式6:315-的相反数是_________,315-的绝对值是____________. 变式7:计算:
(1))315(3--; (2))3
12(3+
.
师生活动:学生独立解答,并说出自己的解题思路.
设计意图:考查学生对实数的相反数和绝对值意义的理解与运用及实数的简单运算能力,进一步体会在数的不断扩充的过程中,数的运算性质和运算律的不变性.
(三)总结归纳,提炼升华
1.通过对本章内容的复习,平方根与立方根之间有怎样的联系与区别? 2.本章的学习中用到了什么数学思想和方法?
设计意图:通过小结,学生回顾复习的内容,梳理本章知识间的内在的联系,总结方法,体验数学思想方法,升华认识.
(四)目标检测,反馈矫正 1. 1649-
=______,38
3
21+=______. 2.一个正方形的面积是5m 2,则这个木箱的边长是______m ,一个正方体的木箱的体积是5m 3,则这个木箱的边长是______m (用根号表示) . 3.-8的立方根与4的平方根之和是( ).
A .12或0
B . 12或-4
C . 0或-4
D . 0或4 4.下列说法正确的是( ).
A .16的平方根是±4
B .6-
表示6的算术平方根的相反数
C .-0.008是-0.2的立方根
D .无限小数都是无理数 5.计算下列各式的值: (1)23)23(+-
; (2)2323--.
(五)布置作业,巩固提高
1.收集本章学习中的自己经常出错的题目. 2.教科书 复习题6 第3、8、10、12题.。