计算方法-最佳一致逼近多项式-切比雪夫多项式
计算方法最佳一致逼近多项式切比雪夫多项式

路漫漫其修远兮, 吾将上下而求索
2020年4月11日星期六
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
路漫漫其修远兮, 吾将上下而求索
y
y=L (x)
路漫漫其修远兮, 吾将上下而求索
一致逼近的几何意义
x Home
切比雪夫多项式
路漫漫其修远兮, 吾将上下而求索
切比雪夫(Chebyshev)多项式
• 切比雪夫多项式在逼近理论中有重要的应用 • 。切比雪夫多项式的0点可以用于构造具有最佳
一致逼近性质的插值多项式。
切比雪夫多项式的(简单)定义:
三、切比雪夫多项式在函数逼近中的应用
希望构造最高次幂xn 系数为1 的多项式:
路漫漫其修远兮, 吾将上下而求索
…
三、切比雪夫多项式在函数逼近中的应用
证明比较复杂,省略。
路漫漫其修远兮, 吾将上下而求索
这个定理的 结论非常重要
怎样才能使得拉格朗日插值多项式成为最佳逼近 ?
…
偏差估计
路漫漫其修远兮, 吾将上下而求索
吾将上下而求索
(5)切比雪夫多项式的极值点 …
路漫漫其修远兮, 吾将上下而求索
…
1
T2(x )
T1(x
)
-1
1
T3(x ) 路漫漫其修远兮,
吾将上下而求索
T4(x )
-1
T3(x)有3个0值点,4个极值点
总结: Tn(x)具有很好的性质。
y
x
Tn(x)是n阶多项式,具有n个0点,n+1个极值点;有 界[-1, 1]; T1(x), T3(x),…只含x的奇次项,是奇函数
最佳一致逼近多项式3.3

定理说明任意连续函数都可以用多项式来近似 3.3.1 基本概念及其理论
Bn ( f , x) =
f ( x) −
* pn ( x)
∞
=
max a≤ x≤b
f
n k =0* ( x ) − p n ( x ) n= kmin f n − k ( x) )− p k ( x ) = k xp n ((x1∈ Pn x )
f ( x) − pn ( x)
pn(x) 在[a,b]上的偏差。 为 f (x) 与 是点到集合的距离
p n ∈Pn pn ∈P a ≤ x ≤b
E n = inf {∆( f , pn )} = inf max f ( x ) − pn ( x )
称为f (x)在 [a, b]上与 Pn 的偏差。 定义2
f ( x 0 ) − p n ( x 0 ) = ∆ ( f , pn ) = f ( x ) − pn ( x )
称 x 0为 p n ( x )的偏差点 .
∞
f ( x 0 ) − pn ( x 0 ) = − E n
f ( x 0 ) − pn ( x 0 ) = E n
负偏差点 正偏差点
正负偏差点有多少? 有什么特点?
−1≤ x ≤1
p2 ( x ) − 3ax 4+3bx3+ c 2 3 = ( x) = 2 x x= x − x
3
⇓ 3次多项式!
(1 − a ) 2 ( 2 − b ) (1 + c ) max f ( x ) − p2 ( x ) = 2 max x + x + x− −1≤ x ≤1 −1≤ x ≤1 2 2 2
是两点之间的距离
∆( f , p n ) ≥ 0
第六章 正交多项式和最佳一致逼近

§1 正交多项式 一、正交函数系的概念
考虑函数系
1,cosx,sinx,cos2x,sin2x,…,connx,sinnx,… 此函数系中任何两个不同函数的乘积在区间[- , ] 上的积分都等于0 ! 我们称这个函数中任何两个函数在[- , ]上是正交 的,并且称这个函数系为一个正交函数系。
College of Science
计算方法与数值计算
函数逼近问题的一般提法: 对于函数类A(如连续函数类)中给定的函数f (x),要求在另 一类较简单的且便于计算的函数类B(如多项式、三角函数类等)
中寻找一个函数p (x),使p (x)与f (x)之差在某种度量意义下最小。
最常用的度量标准为:一致逼近、 平方逼近
上海理工大学理学院
University of Shanghai for Science and Technology
College of Science
计算方法与数值计算
特别地,当Ak 1时,则称该函数系为标准正交函数系。 若定义 4中的函数系为多项式函数系,则称为以 (x) 为权的在[a, b]上的正交多项式系。并称pn(x)是[a, b]上
(4) 对任意实数k,(kf, g) = k (f, g )。
上海理工大学理学院
University of Shanghai for Science and Technology
College of Science
计算方法与数值计算
3.正交
定义3 设 f (x),g(x) C [a, b] 若
( f , g ) ( x) f ( x) g ( x)dx 0
带权 (x)的n次正交多项式。
上海理工大学理学院
University of Shanghai for Science and Technology
最佳一致逼近多项式共67页文档

图3-3
14
例4 求 f(x) 在1x2 上的[0,最1]佳一次逼近多项式.
解
由(3.6)可算出
又 f (x) x ,
1x2
a1 210.41,4
故 x2 2 1, 解得
这样的点组称为切比雪夫交错点组.
证明
只证充分性.
假定在 [a上, b有] 个n点使2(3.4)成立,
P ( x) 是 f ( x在) [上a , 的b ]最佳逼近多项式
要证明的是
4
用反证法, 若存在 Q (x ) H n ,Q ( ,x ) P (x )使
由于
f( x ) Q ( x ) f( x ) P ( x ).
为
P* n1
(
x),
即 n (是x)与零的偏差最小的多项式.
定理得证.
8
例3 求 f(x)2x3x在22x 上1的最[佳1,21]次逼
近多项式.
解 由题意,所求最佳逼近多项式 P2*(应x)满足
m 1x1 afx (x)P 2 *(x)mi.n
由定理6可知,当
f(x)P2*(x)1 2T3(x)
EnP in n Hn{ f(f,Pn)}P in H n nm a fx ba f(x x)P n(x),(3.2)
则称之为 f ( x在) [上a , 的b ]最小偏差.
1
定义8
假定 f C[a,b],若存在 Pn*(x)Hn 使得
(f,Pn*)En,
(3.3)
则称 Pn*(x) 是Hn 在f ( x上) 的最[a佳, b一] 致逼近多项式 或最小偏差逼近多项式,简称最佳逼近多项式.
计算方法-最佳一致逼近多项式-切比雪夫多项式

xn )
|
要使 max 1 x 1
|
(x
x0 )(x
x1) … (x
xn )
|
取极小值, 只需令:
(x x0 )(x x1) … (x xn)
1 2n
Tn1(x),
最佳一致 逼近0的 多项式
而上式成立的充分必要条件是x0, x1,…xn是切比雪夫 多项式的0点。
将Lagrange插值多项式Ln(x)的节点取为Tn1(x) 的0点 :
最佳一致逼近多项式
§3 最佳一致逼近多项式
一、基本概念及其理论
不超过n次的实系 数多项式的全体
本节讨论f(x) C[a, b], 求多项式pn* (x) Hn , 使得误差
||
f(x)
pn* (x)
||
min
pn Hn
||
f(x)
pn(x)
||
此即所谓最佳一致逼近 或切比雪夫逼近问题 。
Hn
设f(x) Cn1[a, b], 则函数通过变换
x a b b a t, 1 t 1
2
2
化为
f(x)
f(a b 2
b 2
a t)
g(t)
针对g(t) 使用定理7
例如:为将[0, 1] [-1, 1],可以令:
则
x
0
2
1
1 0 2
t
1 (t 2
1)
f(x) f(1 (t 1)) g(t) , 1 t 1. 2
f(x)
p(x)
|
可以证明存在唯一的(a*0 , a1* , … , an* ), 使得
(a*0 , a1* , … , an* )
min{max
高中数学竞赛切比雪夫(Chebyshev)多项式知识整理-教学文档

方法一:余弦倍角公式是由余弦的幂整系数线性组合来表示倍角的余弦.这样就产生余弦的n 倍角能否用余弦的幂次的整系数线性组合表示等问题.通过研究,发现cos n α都是关于2cos α的首项系数为1的、次数等于α的倍数的、系数符号正负相间的整系数多项式,还进一步得到cos n α的一些性质.应用此性质,可以得到一些求和公式及解决许多数学问题.进一步研究,发现此多项式可以转化为切比雪夫多项式.在初等数学中,三角函数是一个十分有用的工具,余弦cos n α是众所周知的偶函数,它的倍角公式如:2cos 22cos 1αα=- ,(1)3cos34cos 3cos ααα=-. (2)它们都是由余弦cos α的幂整系数线性组合来表倍角的余弦.这样就自然产生了余弦的n 倍角能否用余弦cos α的幂次的整系数线性组合表示问题,稍作计算可以得42cos 48cos 8cos 1ααα=-+ ,(3)53cos516cos 20cos 5cos αααα=-+ .(4)观察公式(1—4),可以发现.如果公式两端同乘以2,则公式右边都是关于2cos α的首系数为1的、次数等于公式左边α的倍数的、系数符号正负相间的整系数多项式.由此猜测2cos n α也具有这一性质,下面用数学归纳法加以证明.猜想2,02cos (1)(2cos )m n m n m m n a αα-==-∑,(;n N m N +∈∈) (5)(5)式可改写为:n/312112cos (2cos )(1)(2cos )ent n mm n m n m m n n C mααα----==+-∑ ,(9) (9)式称为n 倍角余弦公式.12424cos 2(cos )(cos )(cos )n n n n n n n αααααα-----=-++…,其中i α为正整数. 因为余弦cos α在[]0,απ∈上单调,对应值为1降到1-,即cos α[]1,1∈-,[]0,απ∈ .因此存在反函数,若令cos x α=,则arccos x α=,[]1,1x ∈-,[]0,απ∈.因此,在余弦n 倍角公式中令arccos x α=,[]0,απ∈,[]1,1x ∈-,则倍角公式为于是cos(arccos )n x 首项系数为12n -的多项式,各项系数是整数,符号依次变化,x 的幂依次递减2次,若递减到最后,幂次为负,则该项取零.若记cos(arccos )n x =()n T x ,则()n T x 满足,12()2()()n n n T x xT x T x --=-,()n T x 称为切比雪夫多项式.从递推关系可以得到:第一类切比雪夫多项式有许多良好的性质,例如:1.(cos )cos(),,n T n R n N θθθ=∈∈.(分析:令cos x θ=,arccos x θ=) 2.()(1)()n n n T x T x -=-,,x C n N ∈∈.这表明()n T x 当n 为奇(偶)数时是奇(偶)函数.3.()1,,1n T x x R x ≤∈≤.4.21(0)0m T +=,2(0)(1),m m T m N =-∈.5.函数列{}()n T x 的生成函数为(分析:生成函数又叫母函数,在数学中,某个序列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的方法称为母函数方法.母函数的思想就是把离散数列和幂级数一一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造.母函数是解决组合计数问题的有效工具之一,其思想方法是把组合问题的加法法则和幂级数的乘幂的相加对应起来.)6.函数列{}()n T x 满足2阶递推关系(分析:由三角恒等式cos(1)cos(1)2cos cos n n n θθθθ++-=)最小偏差切比雪夫在1857年提出这样一个问题:在最高项系数为1的n 次多项式中,寻求在区间[]1,1-上与零的偏差最小的多项式.换句话说,就是寻求[]1,1n x C ∈-在1n H -中的最佳一致逼近多项式1()n P x *-,这里定理 在区间[]1,1-上所有最高项系数为1的多项式中,与零的偏差最小,其偏差为112n -. ()n U x 称为第n 个第二类切比雪夫多项式,前7个第二类切比雪夫多项式为: 第二类切比雪夫多项式也有许多良好的性质,例如:1.()(1)(),,n n n U x U x x C n N -=-∈∈.即当以为奇(偶)数时是奇(偶)函数. 2.21(0)0m U +=,2(0)(1)m m U =-,(1)1n U n =+,(1)(1)(1)n n U n -=-+,m N ∈.3.函数列{}()n U x 的生成函数为4.()1,,1n U x n x R x ≤+∈≤.5.函数列{}()n U x 满足2阶递推关系两类切比雪夫多项式的关系定理1设()n T x 和()n U x 分别为第一类和第二类切比雪夫多项式,0n ≥为整数,则证明 由两类切比雪夫多项式的定义得而则比较式在子两边n t 项的系数,即有4切比雪夫多项式的应用4.1切比雪夫多项式插值切比雪夫多项式在逼近理论中有重要的应用.这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值.相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近. 切比雪夫多项式插值法:定理:设01,,x x …,n x 为区间[],a b 上1n +个互不相同的点,[]1(),n f x C a b +∈,则对任何[],x a b ∈,存在[]01,,,x n x x x ξ∈,使得拉格朗日插值余()()()n R x f x L x =-,满足其中插值多项式的余项极小化:要使拉格朗日插值多项式()n L x 尽量逼近()f x ,就要使余项()n R x 尽量小.在 ()n R x 中,()f x 是固定的,而 x ξ又是未知数,所以要减小()n R x ,只有恰当选择节点集,使得在插值区间内余项的最大值为极小值.为了应用切比雪夫多项式,首先应将插值区间[],a b ,通过简单变换归一化到区间[−1,1],做变换()12k k z b a x b a =-++⎡⎤⎣⎦ 所以插值节点应取为()121cos 222k k z b a b a n π+⎡⎤=-++⎢⎥+⎣⎦. 其中0,1,2,,1k n =-,所以下面我们只需要讨论区间[−1,1]上的函数的切比雪夫插值法: 当取定第一类切比雪夫点21cos ,0,1,2,,22k k x k n n π+==+后,令()1111max n n x M f x ++-≤≤=,则有()()11max 1max (1)!2(1)!n n n n x R x M M n n ++=≤++∏,故切比雪夫插值法可以使得余项的最大值极小化,得到较佳逼近多项式.。
Chebyshev定理在求最佳一致逼近多项式中的应用

把满 足上式 的那些 的值统 称 为偏差 点 , 且依 △ ( ) 的
符号 的 正 、 负不 同成为 正偏 差点或 负偏 差点 .
2 最佳 一 致逼近 多项 式 的充分 必 要条件
设 ) E , b 】 , P ( ) 为一个次数不超过 凡的最佳
一
m 积 : ) 一 尺 ( ) [ = m a x ) 一 ( ( ) + Q ( ) ) l
c c , ( ) =
2
m a x
删
( ) . _ ( ) ,
解 由题意, 所求最佳逼近多项式P , ) 应满足 ma x
‘
一
( ) l = - _ m I — a x J ( ) l = ,
1 《 《 1
且点 = c 0 s 叮 r ( k = 0 , l , …, n ) 是 ( ) 的切E 匕 雪夫交错
2
+1 5 6 8 x- 2 52 x +1 3 x.
切比雪 夫定理是 否可 推广 到求任意次数 的最佳一致逼 近多项 式?为 了回答这个问题 , 我们首先看以下例题.
证 明 由 于
,
例 1 求
次 逼 近 多项 式 .
) = 2 x 帆‘ + 一 1在 [ 一 1 , 1 ]  ̄¥ J / l t t  ̄ 2
6
4
2
( 戈 ) = 5 1 2 x一 1 2 8 0 x+ 1 1 2 0 x+ 1 7 6 x+ 5 0 x一 1 ,
1 1 9 7 5 3
7 = , ( ) = = 1 0 2 4 x一 2 8 1 6 x + 2 8 1 6 x 一 7 8 4 x + 1 0 8 x 一 1 I x ,
最佳一致逼近多项式

§3最佳一致逼近多项式2-1 最佳一致逼近多项式的存在性切比雪夫从另一观点研究一致逼近问题,他不让多项式次数n 趋于无穷,而是固定n ,记次数小于等于n 的多项式集合为n H ,显然],[b a C H n ⊂。
记{1,,,}n n H span x x =L , n x x ,,,1L 是],[b a 上一组线性无关的函数组,是n H 中的一组基。
n H 中的元素)(x P n 可表示为01()n n n P x a a x a x =+++L ,其中n a a a ,,,10L 为任意实数。
要在n H 中求)(*x P n 逼近],[)(b a C x f ∈,使其误差)()(max min )()(max *x P x f x P x f n bx a H P n b x a n n −=−≤≤∈≤≤ 这就是通常所谓最佳一致逼近或切比雪夫逼近问题。
为了说明这一概念,先给出以下定义。
定义1 ],[)(,)(b a C x f H x P n n ∈∈,称)()(max ),(x P x f P f P f n bx a nn −=−=∆≤≤∞ 为)(x f 与)(x P n 在],[b a 上的偏差。
显然),(,0),(n n P f P f ∆≥∆的全体组成一个集合,记为)},({n P f ∆,它有下界0。
若记集合的下确界为,)()(max inf )},({inf x P x f P f E n b x a H P n H P n n n n n −=∆=≤≤∈∈ 则称之为)(x f 在],[b a 上最小偏差。
定义2 假定],[)(b a C x f ∈,若存在n n H x P ∈)(*,n n E P f =∆),(*, 则称)(*x P n 是)(x f 在],[b a 上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。
注意,定义并未说明最佳逼近多项式是否存在,但可证明下面的存在定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tn(x) cos(narccosx), n 0,1,2, … 称为切比雪夫多项式。 由三角表达式定 (2.10)
义的多项式
切比雪夫多项式的表达式
若令x cosθ,则 Tn(x) cos(nθ), 0 θ π.
切比雪夫多项式的前几项:
cos[(2k
1)π] 2
0 (k
1,2, … , n)
图为T11(x)的零点,一共有11个
x11 x10 x 9 x 8
cosπ
cos 15π 22
x7
cos 13π 22
x6
cos π 2
x5
cos 9π 22
x4 x3 x2 x1
co s 7 π co s 5 π cos 3π cos π
2
2
针对g(t)应用定理7。计算Tn1的0点,t0 , t1,..., tn ; 则
xk
a b 2
b
2
a
tk , k
0,1,...,n
即为Ln的插值节点。
Home
利用切比雪夫多项式的0点 构造最佳逼近多项式的例子
20
当m=n≠0
π cos(mθ)cos(nθ)dθ 1 π [cos(2nθ) 1]dθ π
0
20
2
当m=n=0
π cos(mθ)cos (nθ)dθ π 0
(3)奇偶性
Tn(x)当n为奇数时为奇函数,且只含x的奇次幂; 当n为偶数时为偶函数,且只含x的偶次幂.
利用数学归纳法证明: 1)当n 0和n 1时,T0(x) 1x0, T1(x) x,结论成立。
En
inf
pn Hn
{Δ
(f,
pn
)}
对所有的 Pn(x)ϵHn
inf max
pn Hn a x b
|
f(x) pn(x)
|
(3.2)
称为f(x)在[a, b]上的最小偏差。
定义8 设f(x) C[a, b], 若存在pn* (x) Hn , 使得
Δ(f, pn* ) En (最小偏差), (3.3) 则称pn* (x)是f(x)在[a, b]上的n次最佳一致逼 近多项式,简称最佳逼近多项式。
(4)切比雪夫多项式的零点
Tn(x)在[1,1]上有n个不同的零点
xk
cos (2k 1)π , 2n
(k
1,2, … , n)
证:将xk
cos (2k 1)π , (k 2n
1,2,… , n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccos(cos (2k 1)π)] 2n
C[a, b]
目的:求一个能够按照绝对值逼近f(x)的最佳 n次多项式
偏差的定义
确定的
定义7 设f(x) C[a, b], pn(x) Hn , 称 Pn(x)
Δ(f, pn )
||
f
pn
||
max
a x b
|
f(x) pn(x)
| (3.1)
是f(x)与pn(x)在[a, b]上的偏差。
Tn1(x)
||
1 2n(n 1)!
||
f (n 1)(x)
||
已知 |Tn(x)|<=1
总结:设f(x) Cn1[1,1], 欲求f(x)在 [1,1]上的最佳一致逼近多项式Ln(x), 只需将Ln(x)的插值节点x0 , x1,..., xn取为 切比雪夫多项式Tn1的0点即可。
对任意区间[a, b],不能直接使用定理7。
x, Tn1(x).
(2.11)
Tn(x)的最高次幂x n的系数为2 n1, (n 1).
证明:记θ arccosx, 则
Tn1 (x) cos[(n 1)θ] cos[(nθ θ)] cos(nθ)cosθ sin(nθ)sinθ
cos(n 1)θ cos(nθ)cos θ sin(nθ)sin θ
最佳一致逼近多项式
§3 最佳一致逼近多项式
一、基本概念及其理论
不超过n次的实系 数多项式的全体
本节讨论f(x) C[a, b], 求多项式pn* (x) Hn , 使得误差
||
f(x)
pn* (x)
||
min
pn Hn
||
f(x)
pn(x)
||
此即所谓最佳一致逼近 或切比雪夫逼近问题 。
Hn
0 cos(mθ)cos(nθ)dcosθ
π
1 cos2θ
π cos(mθ)cos(nθ)dθ 0
根据积化和差公式:
cos(mθ)cos(nθ)
1 [cos(m 2
n)θ
cos(m
n)θ]
当m≠n:
π cos(mθ)cos (nθ)dθ 0
1 π [cos(m n)θ cos(m n)θ]dθ 0
T0(x) cos(0) 1 T1(x) cos(arccosx) x T2(x) cos(2arccosx) 2x2 1 T3(x) cos(3arccosx) 4x3 3x
课堂练习:推出T4(x)
切比雪夫多项式的性质
(1)基本递推关系
TT0n(x1()x)
1, T1(x) 2xTn(x)
-1
1
T3(x) T4(x)
-1
T3(x)有3个0值点,4个极值点
总结: Tn(x)具有很好的性质。
y
x
Tn(x)是n阶多项式,具有n个0点,n+1个极值点;有 界[-1, 1]; T1(x), T3(x),…只含x的奇次项,是奇函数,
T2(x), T4(x),…只含x的偶次项,是偶函数。 Home
f(x)
p(x)
|
可以证明存在唯一的(a*0 , a1* , … , an* ), 使得
(a*0 , a1* , … , an* )
min{max
pHn a x b
|
f(x)
p(x)
|}.
Home
切比雪夫多项式在函数逼 近中的应用
三、切比雪夫多项式在函数逼近中的应用
已知Tn(x)的最高次幂x n的系数为2 n1, (n 1).
T~n(x)
1 2n1
Tn(x)
与零的偏差最小,且其偏差为
1 2n1
,
即
1 2n1
max
1 x 1
|
T~n(x)
0
|
max | p(x) 0 |,
1 x 1
p(x) Hn(x).
这个定理的
结论非常重要
证明比较复杂,省略。
怎样才能使得拉格朗日插值多项式成为最佳逼近?
问题:设f(x) Cn1[1,1], 函数f(x)在[1,1]上的
希望构造最高次幂xn 系数为1 的多项式:
设
T~n(x)
1 2n1
Tn(x), 则
1) T~n(x)是最高次幂项xn系数为1的n次多项式, 2) T~n(x)在
x k
cos kπ (k n
0,1,2,… , n)
依次达到它在[1,1]上的极值
1 2n1
.
三、切比雪夫多项式在函数逼近中的应用
定理6 在[1,1]上首项系数为1的一切n次多项式Hn(x)中,
Tn1 (x) 2cos(nθ)co sθ cos(n 1)θ 2xTn (x) - Tn1 (x)
(2)正交性
0, m n,
1
1
1
1
x2
Tm(x,
m n 0.
(2.12)
证:令x cosθ,则
1
1
1
1
x2
Tm(x)Tn(x)dx
0,1,2,… , n)
轮流取得最大值1和最小值 1,{xk }称为交错点组。
- 1 x4
x 3
x2 0
x 1
x0 1
证: 将xk
cos
kπ n
,
(k
1,2,… , n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccos(cos
kπ )] n
cos[kπ]
(1)k
1
T2(x) T1(x)
| f(x) p(x) | ε, 对于一切a x b成立
证明:伯恩斯坦的构造性证明:Bernstein多项式
Bn(f, x)
k
n 0
f
k n
Pk
(x)
(1.3)
其中Pk (x)
n k
xk
(1
a. 定理1具有重要
x)nk , 使得 的理论意义;
b. Bernstan多项式
lim
n
Bn(f,
x)
n 1个互异节点x0 , x1, … , xn上的拉格朗日插值
多项式的插值余项为
Rn(x)
f(x) Ln(x)
f(n1)(ξ) (n 1)!
n j0
(x
xj)
ξ
[1,1]
偏差估计
若Mn1
max |
1 x 1
f(n1)(x) |, 则
|
Rn(x)
|
Mn1 (n 1)!
|
(x
x0 )(x
x1) (x
一、函数逼近与函数空间
实际应用需要使用简单函数逼近已知复杂函数。
函数逼近问题:对于函数类A中给定的函数
f(x), 要求在另一类较简单的便于计算的函
数类
BA
B
A
中找一个函数p(x), 使p(x)与f(x)的误差在某
种度量意义下达到最小.
定理 1(Weierstrass)若 f(x) C[a, b], 则ε 0, 多项式p(x), 使得