遥感图像颜色增强处理(彩色变换)
遥感图像增强实验报告

遥感图像增强实验报告1. 实验目的和内容实验目的:(1)遥感图像的空间域增强:通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像,是图像增强技术的基本组成部分,包括点运算和邻域运算。
(2)遥感图像的频率域增强:通过对频率域的调整对遥感图像进行平滑和锐化,平滑主要是保留图像的低频部分抑制高频部分,锐化则保留图像的高频部分而削弱低频部分。
(3)遥感图像的彩色增强:将黑白图像转换成彩色图像,使地物的差别易于分辨,突出图像的有用信息,从而提高对图像的解译和分析能力。
实验内容:(1)遥感图像的空间域增强:点运算—直方图均衡化、灰度拉伸、任意拉伸,邻域运算—图像平滑、图像锐化。
(2)遥感图像的频率域增强:定义FFT,反向FFT,再进行对比。
(3)遥感图像的彩色增强:多波段影像—彩色合成、单波段影像—伪彩色增强、色彩空间变换、遥感数据融合。
2. 图像处理方法和流程A.遥感图像的空间域增强1.直方图均衡化(1)在主窗口中打开can_tmr.img文件。
(2)以gray形式显示一个波段。
(3)Display窗口>enhance>equalization2.灰度拉伸(1)Display窗口>enhance>interactive stretching(2)弹出的对话框>stretch_type>linear(3)在STRETCH对应的两个文本框中输入需要拉伸的范围,然后单击对话框上的APPLY按钮,图像显示为线性拉伸后的效果。
3.任意拉伸(1)弹出的对话框>stretch_type>Arbitary,在output histogram中单击绘制直方图,右键结束(2)点击apply,结果如图所示4.图像平滑(1)均值平滑,在主窗口中打开can_tmr.img文件。
主窗口>enhance>filter>smooth[3*3]。
结果如图所示(2)中值平滑,在主窗口中打开can_tmr.img文件。
第五章 遥感图像处理—图像增强

特征;其余三个分量与地物特征没有明确的对应关系。
七、多元信息复合
遥感图像信息融合(Fusion)是将多源遥感数据在统一的 地理坐标系中,采用一定的算法生成一组新的信息或合
其中:
k ( g 'max g 'min ) /( gmax gmin ) 255/ 52 4.9
b g 'ij kgij 0 49 49
2、非线性拉伸
(1)指数变换
xb be
(2)对数变换
axa
c
xb b度进行分层,每一层所包含的亮度值范围可以不
同。
图像密度分割原理可以按如下步骤进行:
(1)求图像的极大值dmax和极小值dmin; (2)求图像的密度区间ΔD = dmax-dmin + 1; (3)求分割层的密度差Δd =ΔD/n ,其中 n为需分割的层数;
(4)求各层的密度区间;
(5)定出各密度层灰度值或颜色。
减法运算可以增加不同地物间光谱反射率以及在 两个波段上变化趋势相反时的反差。不同时相同 一波段图像相减时,可以提取波段间的变化信息。
T M 4 影 像
T M 3 影 像
TM4-TM3影像
87 年 影 像
92 年 影 像 变化监测结果影像
(二)加法运算
B= i /m
i=1 m
加法运算可以加宽波段,如绿色波段和红色波 段图像相加可以得到近似全色图像;而绿色波 段,红色波段和红外波段图像相加可以得到全 色红外图像。
-1 -2 -1 0 0 0 1 2 1 1 2 0 -2 1 0 -1
图像颜色增强处理——彩色变换实验报告

图像颜色增强处理(彩色变换)实验专题讲座课程:遥感科学与图像处理实验:图像颜色增强处理(彩色变换)姓名:学号:指导老师:一、实验名称图像颜色增强处理(彩色变换)二、实验目的对图像进行彩色变换;观察图像在不同色彩空间之间相互转换的结果异同,理解影像光谱增强中彩色变换的原理及其增强效果,将图象转换成一种更适合于人或机器进行分析处理的形式,提高图像的使用价值。
三、实验原理光谱增强是基于多光谱数据对波段进行变换达到图像增强处理,采用一系列技术去改善图象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。
有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。
在使用单波段图像时,由于成像系统动态范围的限制,地物显示的亮度值差异较小。
又由于人眼对黑白图像亮度级的分辨能力仅有10~20级左右,而对色彩和强度的分辨力可达100多种,因此将黑白图像转换成彩色图像可使地物的差别易于分辨[1,2]。
1. 彩色合成(color composite)在通过滤光片、衍射光栅等分光系统而获得的多波段图像中选出三个波段,分别赋予三原色进行合成。
根据各波段的赋色不同,可以得到不同的彩色合成图像。
1)图像主成分变换融合主成分变换融合[2]是建立在图像统计基础上的多维线性变换,具有方差信息浓缩、数据量压缩的作用, 可以更准确地揭示多波段数据结构内部的遥感信息, 常常是以高空间分辨率数据代替多波段数据变换以后的第一主成分来达到融合的目的。
具体过程是: a. 对多波段遥感数据进行主成分变换( K- L 变换) ; b. 以高空间分辨率遥感数据替代变换以后的第一主成分; c. 进行主成分逆变换,生成具有高空间分辨率的多波段融合图像。
2) 真彩色合成在通过蓝、绿、红三原色的滤光片而拍摄的同一地物的三张图像上,若使用同样的三原色进行合成,可得到接近天然色的颜色,此方法称为真彩色合成。
3) 假彩色合成由于多波段摄影中,一副图像多不是三原色的波长范围内获得的,如采用人眼看不见的红外波段等,因此由这些图像所进行的彩色合成称假彩色合成。
遥感——彩色增强

实验二彩色增强一、实验内容1、对一幅灰阶影像进行伪彩色增强。
2、利用三个波段的遥感影像进行假彩色增强。
3、利用TM1,2,3,波段的遥感影像进行真彩色合成。
4、理解伪彩色增强、假彩色增强、真彩色合成的原理、办法及三种方法之间的区别和联系。
5、掌握三大典型地物在假彩色合成影像呈现不同色彩的原因。
6、会利用相关系数、灰度阈值方法进行最佳假彩色合成分量的选择。
二、实验所用的仪器设备,包括所用到的数据电脑一台,遥感影像处理软件(ENVI),遥感影像文件bhtmref.img三、实验原理1、伪彩色增强伪彩色增强是把黑白图像的各个不同灰度级按照线性或非线性的映射函数变换成不同的彩色,得到一幅彩色图像的技术。
伪彩色增强的方法主要有密度分割法、灰度级一彩色变换法和频率域伪彩色增强法三种。
本实验中用到的是密度分割。
密度分割是一种用于影像密度分层显示的彩色增强技术。
原理是将具有连续色调的单色影像按一定密度范围分割成若干等级,经分层设色显示出一种新彩色影像。
2、假彩色增强将一副自然彩色图像或者是同一景物的多光谱图像通过映射函数变换成新的三基色分量进行彩色合成,使增强图像中呈现出与原图像中不同的彩色的技术称为假彩色增强技术。
3、真彩色合成真彩色合成是指从多波段图像中选择其中三幅影像在显示屏上合成一幅图像,该三幅影像的波段范围与自然界中的红绿蓝光的波长范围大致一致。
TM卫星影像中1、2、3波段的波谱范围大致与自然界中的蓝、绿、红相仿,所以将TM1TM2、TM3按照蓝、绿、红的顺序进行合成可以得到一幅真彩色图像。
4、伪彩色变换伪彩色变换是指由输入的单波段影像,通过3个独立的数学变换,产生R、G、B三个分量影像,然后合成为伪彩色影像的过程。
彩色的含量由变换函数的形状决定。
5、最佳假彩色合成变量选择最佳假彩色合成变量选择方法依赖于对遥感图像信息特征的分析和研究目的,有信息分析法(选择信息量最大的波段,但不一定得到研究所需要的信息)、影像灰度阈值分析法(对影像灰度阈值进行分析,选择灰度阈值最大的波段)和波段间的相关系数分析法(对各波段的相关系数分析,选择相关系数小的波段)。
遥感图像增强处理

第八章(4) 遥感图像增强处理一、彩色增强处理彩色合成变换:加色法密度分割:单波段的彩色:密度分割IHS 变换(一)彩色合成多波段彩色合成:利用计算机将同一地区三个波段的影像,分别赋予红、绿、蓝三原色,进行单基色变换(色阶),然后使各影像准确套合叠置显示,依照彩色合成原理,构成彩色合成影像。
分类:假彩色合成、真彩色合成真彩色合成:当三幅影像的工作波段分别为红、绿、蓝时,同时分别对应赋予红色、绿色、蓝色,合成后的影像十分接近自然界的色彩,称为真彩色合成。
假彩色合成:(重点看)各工作波段被赋予的颜色,与波段所代表的真实颜色不同,合成色不是地物真实的颜色,因此这种合成叫做假彩色合成标准假彩色合成:1、近红外波段赋予红色、红光波段赋予绿色,绿光波段赋予蓝色。
2、针对TM 影像的7个波段:第2波段是绿色波段、第3波段是红色波段、第4波段是近红外波段当4、3、2波段分别赋予红、绿、蓝色时,这一合成方案称为标准假彩色合成(二)假彩色密度分割单波段的假彩色密度分割:将单波段影像的像元值从小到大按照某种标准划分等级,每一级别赋予一种颜色,最终影像表现为彩色,这些色彩是人为加上的,与地物的天然色彩不一定相同,称为假彩色密度分割。
等密度分割:对像元数值从小到大划分为n 级,各级内含有的像元数大致相等时,称为等密度分割。
(三)IHS 变换HSI 代表色调、饱和度和明度(hue ,saturation,intensity )。
色彩模式可以用近似的颜色立体来定量化。
定义:IHS 变换是RGB 颜色系统与HIS 颜色系统之间的变换。
具体方法 :令IRIGIB ,下标max 为R ,G ,B 中最大值,下标min 为R ,G ,B 中最小值, IRIGIB 和S均为0-1的实数,H为0-360的实数。
则有明度: 2/)(min max I I I +=饱和度:5.0≤I )/()(min max min max S S S S S +-=5.0>I )11/()(min max min max S S S S S -+--=色调:min max H H H -=∆如果max H H R =,则]/)[(60H H H H B G ∆-=,位于黄和品红之间如果max H H G =,则]/)(2[60H H H H R B ∆-+=,位于青和黄之间如果max H H B =,则 ]/)(4[60H H H H G R ∆-+=,位于品红和蓝之间二 、光谱增强处理(一)反差增强线性变换,非线性变换,直方图增强⏹ 通过修改各种像元值来改善影像对比度,从而改变影像质量的处理方法。
遥感实验报告彩色增强2

实验名称:彩色增强一、实验内容1.对一幅灰阶影像进行伪彩色增强2.利用三个波段的遥感影像进行假彩色增强3.利用TM1,2,3,波段的遥感影像进行真彩色合成二、实验所用的仪器设备,包括所用到的数据电脑一台、遥感影像处理软件(ENVI)、多波段影像bhtmref.img三、实验原理(1)真彩色合成是指从多波段遥感影像中选择其中三幅影像在显示屏上合成一幅图像(三合一),该三幅影像的波段范围与自然界中的红绿蓝光的波长范围大致相同,从而得到与实际地物颜色大致相同的合成影像的合成方法。
(2)假彩色合成1.定义:是将一幅自然彩色图像或者是同一景物的多光谱图像通过线性假彩色映射函数变换为新的三基色分量进行彩色合成,使增强图像中各目标呈现出与原图像不同的彩色的技术。
2.目的:使感兴趣的目标更加注目,以提高对目标的分辨率(3)伪彩色变换是指由输入的单波段影像,通过3个独立的数学变换,产生R、G、B,3个分量影像,然后合成为伪彩色影像。
彩色的含量由变换函数的形状决定。
四、实验步骤及其结果分析实验步骤:(1)真彩色合成打开多波段影像bhtmref.img,选择RGB Color,然后将TM3,TM2,TM1一次导入到标签为“R”、“G”、“B”的文本框,点击“Load RGB”,结果如图1所示(2)假彩色合成1. 打开多波段影像bhtmref.img,选择RGB Color, 然后将TM4,TM3,TM2一次导入到标签为“R”、“G”、“B”的文本框,点击“Load RGB”,结果如图2所示2. 将TM5,TM4,TM3一次导入到标签为“R”、“G”、“B”的文本框,点击NewDisplay,在点击“Load RGB”,结果如图3所示(3)伪彩色变换1.利用直方图统计,查开单(TM2)波段影像的直方图结果如图图4所示,确定伪彩色增强的分段。
2.利用“Tools—Color Mapping—Density slics”,选择TM2波段进行分段,结果如图图5所示。
第四章3遥感图像处理图像增强

5.遥感图像多光谱变换(Ⅰ)——主成分分析(K—L变换)
② 就变换后的新波段主分量而言,K—L变换后的 新波段主分量包括的信息量不同,呈逐渐减少趋 势。其中,第一主分量集中了最大的信息量,常 常占80%以上,第二、第三主分量的信息量依次 快速递减,到第n分量信息几乎为0。由于K—L变 换对不相关的噪声没有影响,所以信息减少时, 便突出了噪声,最后的分量几乎全是噪声。所以 这种变换又可分离出噪声。
基于上述特点,在遥感数据处理时,常常用K— L变换作数据分析前的预处理(数据压缩和图像增
强)。举例P125
6.遥感图像多光谱变换(Ⅱ)——缨帽变换(K—T变换)
(1)K—T变换是Kauth—Thomas变换的简称,这种变换也是 一种线性组合变换,其变换公式为:Y=BX 这里X为变换前的多光谱空间的像元矢量,y为变换后的 新坐标空间的像元矢量,B为变换矩阵。这也是一种坐标 空间发生旋转的线性变换,但旋转后的坐标轴不是指向主 成分方向,而是指向了与地面景物有密切关系的方向。 1984年,Crist和Cicone提出TM数据在K—T变换时的B值: P126 在此,矩阵为6X6,主要针对TM的1至5和第7波段,低分 辨率的热红外(第6波段)波段不予考虑。
1.遥感图像增强(工)——对比度变化1
非线性变换
直方图均衡化(histogram equalization):把原图像的直方 图变换为灰度值频率固定的直方图,使变换后的亮度级 分布均匀,图像中等亮度区的对比度得到扩展,相应原 图像中两端亮度区的对比度相对压缩。
1.遥感图像增强(工)——对比度变化1
MN
r(i, j) (m, n)t(m, n) m1 n1
将计算结果放在窗口中心的像元位置,成为新像元的灰度 值。然后活动窗口向右移动一个像元,再做同样的运算。 P117说明
6遥感图像的HIS彩色空间变换

实验六遥感图像的HIS彩色空间变换一、HIS彩色空间变换的原理及方法HIS是在彩色空间中用色调、亮度和饱和度(Hue,I ntensity和Saturation)来表示的色彩模式,又称HLS,(hue, lightness, saturation)。
HIS变换是将其他色彩模式到HIS模式的变换及反变换方法。
在自动处理彩色是,通常采用彩色显示器显示系统进行,彩色显示器显示的彩色是由R(红)G(绿)B(蓝)信号的亮度来确定的,由于RGB表色系统不是线性的,所以通过这种操作调整显示色的色调比较困难。
在这种情况下,可采用将RGB信号暂时变换为假设的表色系统HIS, 调整明度和饱和度后,再返回到RGB信号上进行彩色合成。
把这种RGB空间和HIS空间之间的关系模型及所进行的相互变换的处理过程称HIS变换。
HIS变换也称彩色变换或蒙塞尔(Munsell)变换。
在图像处理中通常应用的有两种彩色坐标系(或彩色空间):一是由RGB三原色构成的彩色空间(RGB坐标系或RGB空间);另一种是由色调(Hue)、饱和度(Satuation)及亮度(Intensity)三个变量构成的彩色空间(IHS 坐标系或IHS空间)。
也就是说一种颜色既可以用RGB空间内的R、G、B来描述,也可以用IHS 空间的I、H、S来描述,前者是从物理学角度出发描述颜色,后者则是从人眼的主观感觉出发描述颜色。
IHS变换就是RGB空间与IHS空间之间的变换。
由于HIS变换是一种图像显示、增强和信息综合的方法,具有灵活实用的优点,因此产生了多种HIS变换式。
彩色空间模型是多种多样的,其中,应用最为普遍的是RGB(红、绿、蓝)模型。
它是面向硬件的,几乎大部分的监视器都采用这种彩色模型。
RGB相对应于监视器或扫描器的三个刺激值,它们组成三维正交坐标系统如图(右边)所示,在此系统中计算的任何颜色都落在RGB彩色立方体内。
它的优点是:(1)简单;(2)其它表色系统必须最后转化成RGB系统才能在彩色显示器上显示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波 段 3-2-1
合 成
二.假彩色合成
由于多波段摄影中,一副图像多不是三原 色的波长范围内获得的,如采用人眼看不见的 红外波段等,因此由这些图像所进行的彩色合 成称假彩色合成。 假彩色增强目的: 使感兴趣的目标呈现奇异的彩色或置于奇特 的彩色环境中,从而更受人注目;
使景物呈现出与人眼色觉相匹配的颜色,以 提高对目标的分辨力。
标准假彩色合成(4-3-2)
4-5-3波段合成的假彩色图像
三.密度分割和伪彩色增强
将一幅图像的整个亮度值变量,按照某 一定量分割为若干等量间隔,每一间隔赋予 一种颜色,以此控制成像系统的彩色显示, 就可得到一幅假彩色密度分割图像。
四.色彩模型变换
图像融合
Transform——ImagSharpening——HSV
1)RGB to HSV
2)HSV to RGB
3)RGB to HLS
4)RGB to HSV(USGS)
谢谢大家!
图像颜色增强处理 (彩色变换)
彩色变换目的 :通过对图像色彩空间的变换,
突出图像的有用信息,扩大不同影像特征之间差别,
提高对图像的解译和分析能力。
彩色变换分类:
ቤተ መጻሕፍቲ ባይዱ
真彩色合成
假彩色合成
密度分割和伪彩色增强
色彩模型变换
一.真彩色合成
所谓真彩色合成就是在通过红、绿、 蓝三原色的滤光片而拍摄的同一地物的三 张图像上,若使用同样的三原色进行合成, 可得到接近天然色的颜色。