高中数学易错知识点汇总.
高中数学最易失分点汇总

高中数学最易失分点汇总01.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要专门注意当参数在某个范畴内取值时所给的集合可能是空集这种情形。
02.忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的阻碍最大,专门是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
03.混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判定,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
04.充分条件、必要条件颠倒致误关于两个条件A,B,假如A?B成立,则A是B的充分条件,B是A 的必要条件;假如B?A成立,则A是B的必要条件,B是A的充分条件;假如A?B,则A,B互为充分必要条件。
解题时最容易出错的确实是颠倒了充分性与必要性,因此在解决这类问题时一定要依照充分条件和必要条件的概念作出准确的判定。
05.“或”“且”“非”明白得不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);绨p真?p假,绨p假?p真(概括为一真一假)。
求参数取值范畴的题目,也能够把“或”“且”“非”与集合的“并”“交”“补”对应起来进行明白得,通过集合的运算求解。
06.函数的单调区间明白得不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、查找解决问题的方法。
关于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
07.判定函数奇偶性忽略定义域致误判定函数的奇偶性,第一要考虑函数的定义域,一个函数具备奇偶性的必要条件是那个函数的定义域关于原点对称,假如不具备那个条件,函数一定是非奇非偶函数。
08.函数零点定理使用不当致误假如函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,同时有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。
高中数学50个易错点汇总,高中生都避开这些坑!

高中数学50个易错点汇总,高中生都避开这些坑!一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
10.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围恒成立问题。
这几种基本应用你掌握了吗?11.解对数函数问题时,你注意到真数与底数的限制条件了吗?真数大于零,底数大于零且不等于1字母底数还需讨论二、不等式12.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
13.解分式不等式应注意什么问题?用“根轴法”解整式分式不等式的注意事项是什么?14.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。
15.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
三、数列16.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?17.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。
18.数列单调性问题能否等同于对应函数的单调性问题?数列是特殊函数,但其定义域中的值不是连续的。
19.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
高三数学易错知识点大全

高三数学易错知识点大全一、函数与方程1. 定义域与值域的概念在函数的定义中,定义域是指使得函数有意义的输入值的集合,而值域则是函数所有可能的输出值的集合。
易错点在于混淆定义域和值域的概念,导致对函数的理解不准确。
2. 复合函数的求解复合函数是指由两个或多个函数组合而成的新函数。
在求解复合函数时,经常出现的错误是忘记正确地套用函数的定义,或者在计算中出现代数错误,导致最终结果错误。
3. 一元二次方程的解法一元二次方程是高中数学中的重点内容,容易在解题过程中出现错误。
常见的错误包括忘记正确的二次方程求解公式,代数计算错误以及在求解过程中舍去多余解或遗漏解。
二、几何与三角学1. 相似三角形的判定条件相似三角形地判定条件是重要的几何概念,错误的理解或使用条件会导致相似三角形的判定错误。
常见的错误包括忘记三个对应角相等的条件,或者错误地使用比例关系。
2. 平面几何图形的计算在计算平面几何图形的面积或周长时,容易忽略或误用相应公式,导致结果错误。
常见的错误包括计算三角形面积时使用错误的公式,或者计算多边形周长时未正确累加所有边长。
3. 三角函数的基本关系与计算三角函数是数学中的重要概念,涉及到角度与边长之间的关系。
易错点包括混淆正弦、余弦和正切的定义,以及在计算中使用错误的单位或角度制。
三、概率与统计1. 随机变量的概念与特性随机变量是概率与统计中的核心概念,容易混淆随机变量与事件的概念,导致对随机变量的理解不准确。
另外,容易忘记随机变量的均值和方差的计算公式,从而在计算中出现错误。
2. 概率的加法与乘法规则概率的加法规则适用于两个或多个互斥事件的计算,而乘法规则适用于两个或多个独立事件的计算。
易错点在于错误地使用加法或乘法规则,或者忘记考虑条件概率的影响。
3. 统计图表的正确读取与分析统计图表是展示数据分布和趋势的重要工具,容易在读取和分析图表时出现错误。
常见的错误包括读取图表时出现偏差,或者未能正确地解读图表中的趋势和关联。
高中数学易错点盘点

高中数学易错点盘点考试临近,对于考点知识都清楚了?结合练习整理一下自己解题时的易错点以便考试时能做到尽可能少错。
以下是我整理的易错点供同学们参考,重要的是找出自身的易错点。
1. 集合中元素的特征认识不明元素具有确定性,无序性,互异性三种性质。
要看清楚集合的描述对象,到底是数集,还是点集,是求x范围呢,还是求y的范围。
2. 遗忘空集A包含于B时求集合A,容易遗漏A可以为空集的情况。
比如A 为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真子集个数时容易漏掉空集。
3. 忽视集合中元素的互异性一般检验的时候要检查元素是否互异。
4. 充分必要条件颠倒致误必要不充分和充分不必要的区别——:比如p可以推出q,而q 推不出p,就是充分不必要条件,p不可以推出q,而q却可以推出p,就是必要不充分。
还容易错的是语序错误,例如,“p的充分条件是q”等价于“q 是p的充分条件”,q推出p,很多学生一看到充分条件就“前推后”,导致错误,要注意题目的措辞。
5. 对含有量词的命题否定不当比如说“至少有一个”的否定是“一个都没有”,“至少有两个”的否定是“至多有一个”,“至多有三个”的否定是“至少有四个”。
诸如此类。
6. 求函数定义域忽视细节致误根号内≥0,真数大于零,分母不为零,比较容易出错的是忽视分母。
7. 函数单调性的判断错误这个就得注意函数的符号,比如f(-x)的单调性与原函数相反。
8. 函数奇偶性判定中常见的两种错误判定主要注意:1,定义域必须关于原点对称,2,注意奇偶函数的判断,化简要小心负号。
9. 求解函数值域时忽视自变量的取值范围总之有关函数的题,不管是要你求什么,第一步先看定义域,这个是关键。
如果用了换元法求函数值域,一定要先求出“新元”的范围。
10. 抽象函数中推理不严谨致误注意赋值法的运用,一般赋0,±1,-x,1/x等。
11. 函数,方程和不等式的转换不熟练二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么△=b的平方-4ac大于等于小于0种种。
高中数学易错知识点总结 直线与方程

高中数学易错知识点总结直线与方程易错点1:忽略90°倾斜角的特殊情形例1:求经过点A(m,3)和B(1,2)的直线的斜率,并指出倾斜角α的取值范围。
错误解法】根据斜率公式,直线AB的斜率k为:k = (3-2)/(m-1)①当m>1时,k>0,因此直线的倾斜角α的取值范围是0°<α<90°;②当m<1时,k<0,因此直线的倾斜角α的取值范围是90°<α<180°。
错误原因分析】当问题所给的对象不能进行统一研究时,就需要对研究对象进行分类讨论,然后对每一类分别研究,得出每一类结果,最终解决整个问题。
本题的讨论分两个层次:第一个层次是讨论斜率是否存在;第二个层次是讨论斜率的正、负。
也可以分为m=1,m>1,m<1三种情况进行讨论。
参考答案】详见试题解析。
易错点2:忽略斜率不存在的特殊情形例2:已知直线l1经过点A(3,a)和B(a-2,3-a),直线l2经过点C(2,3)和D(-1,a-5),若l1⊥l2,求a的值。
错误解法】由l1⊥l2⇔k1·k2=-1,所以a=0.k2 = (3-a-3)/(a-2+1) = (a-6)/(a-1),k1不存在。
错误原因分析】只有在两条直线斜率都存在的情况下,才有l1⊥l2⇔k1·k2=-1,还有一条直线斜率为0,另一条直线斜率不存在的情况也要考虑。
试题解析】由题意知l2的斜率一定存在,则l2的斜率可能为0,下面对a进行讨论。
当k2=0时,a=5,此时k1不存在;当k2≠0时,由k1·k2=-1可得a=4或a=-2.因此,a的取值为4、-2或5.2.由两条直线平行或垂直求参数的值:在解这类问题时,需要先考虑斜率不存在的可能性,是否需要分情况讨论;解题后,需要检验答案的正确性,看是否出现增解或漏解。
3.两条直线的位置关系可以通过斜截式或一般式来表示。
2024年历年高考数学易错知识点总结

2024年历年高考数学易错知识点总结2024年的高考数学考试易错知识点总结如下:
1. 函数与方程:易错点包括函数的定义域与值域、函数的奇偶性、解方程时的取值范围、解不等式时的符号变化等。
2. 三角函数与三角恒等式:易错点包括三角函数的定义、基本的三角恒等式的熟练掌握、解三角方程时的值域判断等。
3. 平面几何与立体几何:易错点包括平面图形的面积计算、立体图形的体积计算、立方体、正方体、圆锥体等几何体的计算等。
4. 概率与统计:易错点包括概率计算中的排列组合、事件的独立性与互斥性、统计数据的分析与解读等。
5. 导数与微分:易错点包括导数的定义与性质、函数的最值与最值点的求解、曲线的切线与法线方程的求解等。
6. 数列与数列极限:易错点包括数列的通项公式的求解、等差数列与等比数列的性质及求和公式、数列极限的判断与计算等。
7. 矩阵与行列式:易错点包括矩阵的加减乘除、对角矩阵、单位矩阵与逆矩阵的求解、行列式的性质与计算等。
8. 模型与实际问题:易错点包括问题的分析与建模、转化为数学问题的能力、解答实际问题时的合理性判断等。
以上是2024年高考数学考试易错知识点的总结,考生可以针对这些知识点进行有针对性的复习和备考,提高解题的准确性和效率。
高三数学最容易出错的知识点

高三数学最容易出错的知识点高三数学是所有高中生必须面对的一门课程,无论对于理科还是文科生来说,都具有重要的意义。
然而,由于难度较大,很多学生在学习过程中经常容易出现错误。
下面就来探讨高三数学最容易出错的知识点。
一、函数方程求解在高三数学中,函数方程求解是一个难点,也是容易出错的地方。
在这个部分中,学生经常会遇到的问题是没有正确地理解什么是函数和方程。
函数是一种映射关系,而方程是函数等式的表达形式。
因此,学生要明确整个解题过程的目标是找到使方程成立的变量的值。
例如,对于一个一次函数方程y=ax+b,有的学生会错误地理解成求解y的取值范围,而不是求解x的值。
这样的错误会导致学生在解题过程中迷失方向,最终得出错误的答案。
二、导数与极值导数是高三数学中的重要概念,与函数的变化趋势密切相关。
在求导过程中,学生容易疏忽导数的定义和求解规则,从而产生错误的结果。
常见的错误包括对函数求导时未进行连续求导、未正确运用导数的运算性质和规则等。
另外,极值也是一个容易出错的知识点。
在求极值的过程中,学生往往存在以下问题:未注意判断驻点的一阶和二阶导数变化的关系、未对极大值和极小值的定义和判断准则有清晰的认识等。
这些小细节的疏忽会导致最终答案的错误。
三、概率统计概率统计是高三数学中的另一个易错知识点。
学生在计算概率时容易忽略事件间的关系、未理解概率的加法和乘法定理、使用错排列组合等。
此外,在解答概率问题时,学生还容易将条件概率与联合概率混淆,导致最终结果的不准确。
在统计部分,学生常常未能正确理解总体和样本的概念,以及如何通过样本推断总体。
此外,学生在进行数据分析时,也容易将平均值、方差和标准差等相关概念混淆,导致数据处理结果的错误。
四、向量与坐标系向量和坐标系是高三数学中的基础知识,学生在这方面容易出错。
在解题过程中,学生经常会将向量的顺序弄错,导致向量的计算结果错误。
此外,学生在进行向量的分解和合成时,容易忽略向量共线的判断条件,从而导致错误的计算结果。
高中数学常见易错点提醒

高中数学常见易错点提醒易错点 充要条件判断不准1.“x 2=x +2”是“x x +2=x 2”的________条件.错解1 由x 2=x +2⇒x =x +2⇒x 2=x x +2得出“x 2=x +2”是“x x +2=x 2”的充分条件.错解2 由x x +2=x 2⇒x +2=x ⇒x +2=x 2得出“x 2=x +2”是“x x +2=x 2”的必要条件.找准失分点 错解1中,事实上x 2=x +2不能⇒x =x +2;错解2中,x x +2=x 2也不能⇒x +2=x .正解 方程x 2=x +2的解集为{-1,2},x x +2=x 2的解集为{0,2},所以“x 2=x +2”是“x x +2=x 2”的既不充分也不必要条件.答案 既不充分也不必要易错点 函数概念不清致误2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是 . 错解 由f (1-x 2)>f (2x )得1-x 2>2x ,即-1-2<x <-1+2.找准失分点 在解决分段函数的问题时,先要判断其在各个定义域内的单调性,其次要看所求参数或取值范围是否满足相对应的定义域,此题容易无视1-x 2>0.正解 画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象知:若f (1-x 2)>f (2x ),则⎩⎨⎧1-x 2>01-x 2>2x , 即-1<x <-1+2.易错点 混淆“切点”致误3.求过曲线y =x 3-2x 上的点(1,-1)的切线方程.错解 ∵y ′=3x 2-2,∴k =y ′|x =1=3×12-2=1,∴切线方程为y +1=x -1,即x -y -2=0.找准失分点 错把(1,-1)当切点.正解 设P (x 0,y 0)为切点,则切线的斜率为y ′|x =x 0=3x 20-2.∴切线方程为y -y 0=(3x 20-2)(x -x 0), 即y -(x 30-2x 0)=(3x 20-2)(x -x 0).又知切线过点(1,-1),把它代入上述方程,得-1-(x 30-2x 0)=(3x 20-2)(1-x 0),整理,得(x 0-1)2(2x 0+1)=0,解得x 0=1,或x 0=-12. 故所求切线方程为y -(1-2)=(3-2)(x -1), 或y -(-18+1)=(34-2)(x +12),即x -y -2=0,或5x +4y -1=0. 易错点 图象变换方向或变换量把握不准致误4.要得到y =sin(-3x )的图象,需将y =22(cos 3x -sin 3x )的图象向______平移______个单位(写出其中的一种特例即可).错解 右 π4或右 π12找准失分点 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12. 题目要求是由y =sin ⎝⎛⎭⎫-3x +π4→y =sin(-3x ). 右移π4平移方向和平移量都错了;右移π12平移方向错了. 正解 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12, 要由y =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12得到y =sin(-3x )只需对x 加上π12即可,因而是对y =22(cos 3x -sin 3x )向左平移π12个单位. 答案 左 π12易错点 错误理解向量的平移就是点的平移致误5.已知点A (3,7),B (5,2),向量AB →按a =(1,2)平移后所得向量是 .错解 (3,-3)正解 向量AB →平移后所得向量还是向量AB →=(2,-5).易错点 应用a n =S n -S n -1 (n ≥2)时,无视n ≥2从而导致错误6.已知数列{a n }的前n 项和S n =2n +1,求数列的通项a n .错解 a n =S n -S n -1=2n -1.正解 n =1时,a 1=S 1=21+1=3,n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -1,∴a n =⎩⎪⎨⎪⎧3,n =1,2n -1,n ≥2易错点 在等比数列求和时无视对公比是否为1的讨论7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=S 9,则数列的公比q 是________. 错解 -1 找准失分点 当q =1时,符合要求.很多考生在做此题时都想当然地认为q ≠1.正解 ①当q =1时,S 3+S 6=9a 1,S 9=9a 1,∴S 3+S 6=S 9成立.②当q ≠1时,由S 3+S 6=S 9 得a 1(1-q 3)1-q +a 1(1-q 6)1-q =a 1(1-q 9)1-q∴q 9-q 6-q 3+1=0,即(q 3-1)(q 6-1)=0.∵q ≠1,∴q 3-1≠0,∴q 6=1,∴q =-1.答案 1或-1易错点 无视等比数列中的隐含条件致误8.各项均为实数的等比数列{a n }的前n 项和为S n ,若S 10=10,S 30=70,则S 40=________.错解 150或-200找准失分点 数列S 10,S 20-S 10,S 30-S 20,S 40-S 30的公比q 10>0.忽略了此隐含条件,就产生了增解-200.正解 记b 1=S 10,b 2=S 20-S 10,b 3=S 30-S 20,b 4=S 40-S 30,b 1,b 2,b 3,b 4是以公比为r =q 10>0的等比数列.∴b 1+b 2+b 3=10+10r +10r 2=S 30=70,∴r 2+r -6=0,∴r =2或r =-3(舍去),∴S 40=b 1+b 2+b 3+b 4=101-241-2=150. 答案 150易错点 直线倾斜角与斜率关系不清致误9.已知直线x sin α+y =0,则该直线的倾斜角的变化范围是__________.错解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,直线的倾斜角的变化范围是⎣⎡⎦⎤π4,34π.找准失分点 直线斜率k =tan β(β为直线的倾斜角)在[0,π)上是不单调的且不连续. 正解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,当-1≤k <0时,倾斜角的变化范围是⎣⎡⎭⎫34π,π;当0≤k ≤1时,倾斜角的变化范围是⎣⎡⎦⎤0,π4. 故直线的倾斜角的变化范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π. 答案 ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π 易错点 无视斜率不存有情形致误10.已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.错解 直线l 1的斜率k 1=-t +21-t, 直线l 2的斜率k 2=-t -12t +3, ∵l 1⊥l 2,∴k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1,解得t =-1. 答案 -1 找准失分点 (1)盲目认为两直线的斜率存有,无视对参数的讨论.(2)无视两直线有一条直线斜率为0,另一条直线斜率不存有时,两直线垂直这个情形.正解 方法一 (1)当l 1,l 2的斜率都存有时,由k 1·k 2=-1得,t =-1.(2)若l 1的斜率不存有,此时t =1,l 1的方程为x =13,l 2的方程为y =-25, 显然l 1⊥l 2,符合条件;若l 2的斜率不存有,此时t =-32, 易知l 1与l 2不垂直,综上t =-1或t =1.方法二 l 1⊥l 2⇔(t +2)(t -1)+(1-t )(2t +3)=0⇔t =1或t =-1.答案 -1或1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学易错知识点汇总
为了帮助同学们复习,减少不必要的丢分,台州智慧家教网特意总结了这一高中数学易错知识点。
总结了高中数学常见的错误,供同学们参考。
1.在应用条件A∪B=B,A∩B=A 时,易忽略A是空集Φ的情况。
2.求解与函数有关的问题易忽略定义域优先的原则,尤其是在与实际生活相联系的应用题中,判断两个函数是否是同一函数也要判断函数的定义域,求三角函数的周期时也应考虑定义域。
3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称,优先考虑定义域对称。
4.解对数不等式时,易忽略真数大于0、底数大于0且不等于1这一条件。
5.用判别式法求最值(或值域)时,需要就二次项系数是否为零进行讨论,易忽略其使用的条件,应验证最值。
6.用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0。
尤其是直线与圆锥曲线相交时更易忽略。
7.用均值定理求最值(或值域)时,易忽略验证“一正(几个数或代数式均是正数)二定(几个数或代数式的和或者积是定值)三等(几个数或代数式相等)”这一条件。
8.用换元法解题时,易忽略换元前后的等价性。
9.求反函数时,易忽略求反函数的定义域。
10.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示,而应用逗号连接多个区间。
11.用等比数列求和公式求和时,易忽略公比q=1的情况。
12.已知Sn求a
n
时, 易忽略n=1的情况。
13.用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。
14.求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y 轴平行的情况。
15.用到角公式时,易将直线L
1、L
2
的斜率k
1
、k
2
的顺序弄颠倒;使用到
角公式或者夹角公式时,分母为零不代表无解,而是两直线垂直。
16.在做应用题时, 运算后的单位要弄准,不要忘了“答”及变量的取值范围;在填写填空题中的应用题的答案时, 不要忘了单位。
应用题往往对答案的数值有特殊要求,如许多时候答案必须是正整数。
17.在分类讨论时,分类要做到“不重不漏、层次分明,进行总结”。
18.在解答题中,如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明,如使用函数y=x+1x 的单调性求某一区间的最值时,应先证明函数y=x+1x 的单调性。
19.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
20.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即A >B >0,0<1a <1b。
21.分组问题要注意区分是平均分组还是非平均分组,平均分成n 组问题易忘除以n !。
同时还要注意区分是定向分组还是非定向分组;分配问题也注意区分是平均分配还是非平均分配,同时还要注意区分是定向分配还是非定向分配。
22.已知△ABC 中的两个角A 、B 的正余弦值,求第三个角C 的正余弦值,易忘第三个角C 有解的充要条件是cosA+cosB>0,这是由三角形内角和为180°决定的。
23。
如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点。
此时两个方程联立,消元后为一次方程。
即直线与双曲线或者抛物线只有一个交点时,包括相切和上述情况。
24.求直线与圆、圆锥曲线相交弦问题用韦达定理时,求出字母系数后,应代入判别式中检验。
25.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
26.二项式(A +B)n 展开式的通项公式中A 与B 的顺序不变。
27.使用正弦定理时易忘比值还等于2R,即sin a A =sin b B =sin c C =2R 28.恒成立问题不要忘了主参换位以及验证等号是否成立。
29.概率问题要注意变量是否服从二项分布。
从而使用二项分布的期望和方差公式求期望和方差。
30.面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大,正确的判定方法是:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
31.函数的图象的平移、方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数y =2x+4的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x +2)+4-3。
即y=2x+5。
(2)方程表示的图形的平移为“左+右-,上-下+”; 如直线2x -y+4=0左移
2个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0。
即y=2x+5。
(3)点的平移公式:点P(x,y)按向量 =(h,k)平移到点P’(x’,y’),则x’=x+ h,
y’=y+ k。
32.椭圆、双曲线A、B、c之间的关系易记混。
对于椭圆应是A2-B2=c2,对于双曲线应是A2+B2=c2。
33.“属于关系”与“包含关系”的符号易用混,元素与集合的关系用a∈A,集合与集合的关系用A⊂B。
34.“点A在直线A上”与“直线A在平面α上”的符号易用混,如:A∈A,A⊂α.
35.椭圆和双曲线的焦点在x轴上与焦点在y轴上的焦半径公式易记混;椭圆和双曲线的焦半径公式易记混。
它们都可以用其第二定义推导,建议不要死记硬背,用的时候再根据定义推导。
36.两个向量平行与与两条直线平行易混, 两个向量平行(也称向量共线)包含两个向量重合, 两条直线平行不包含两条直线重合。
37.各种角的范围:
两条异面直线所成的角 0°<α≤90°
直线与平面所成的角 0°≤α≤90°
斜线与平面所成的角 0°<α< 90°
二面角 0°≤α≤180°
两条相交直线所成的角(夹角) 0°<α≤90°
l1到l2的角 0°<α< 180°
倾斜角 0°≤α< 180°
两个向量的夹角 0°≤α≤180°
锐角 0°<α< 90°。