机电传动实验

合集下载

机电传动控制实验报告

机电传动控制实验报告

机电传动控制实验报告
本次实验主要学习了机电传动控制的基础知识和控制方法,通过实际的硬件实验,进一步加深了对于机电传动控制的了解。

实验一:单向行程控制系统
通过本次实验,我们学习了单向行程控制系统的构成和工作原理。

通过按下按钮控制气缸的伸缩,实现了单向行程的控制。

实验二:双向行程控制系统
通过本次实验,我们学习了双向行程控制系统的构成和工作原理。

通过按下按钮控制气缸的伸缩,实现了双向行程的控制。

实验三:速度控制系统
通过本次实验,我们学习了速度控制系统的构成和工作原理。

通过按下按钮控制电机的正反转,结合调节电位器实现了电机的速度控制。

实验四:位置控制系统
通过本次实验,我们学习了位置控制系统的构成和工作原理。

通过按下按钮控制步进电机的转动步数,实现了位置控制。

实验五:机械机构控制系统
通过本次实验,我们学习了机械机构控制系统的构成和工作原
理。

通过按下按钮控制三个气缸的伸缩和机械瓣的运动,实现了机械机构的控制。

实验总结:
通过本次实验,我们掌握了机电传动控制的基础知识和控制方法,了解了不同类型控制系统的工作原理和实现方式,同时也加深了对于控制硬件的认识。

在实验过程中,我们不仅解决了各种控制问题,还加强了团队协作和沟通能力,为我们未来的研究和实践打下了坚实的基础。

机电传动控制实验

机电传动控制实验


实验四 PLC综合控制实验
控制要求之二:机械手动作的控制。 有一个将工件由A处传送到B处的机械手,上升/ 下降和左移/右移的执行用双线圈二位电磁阀推动 气缸完成。当某个电磁阀线圈通电,就一直保持 现有的机械动作,例如一旦下降的电磁阀线圈通 电,机械手下降,即使线圈再断电,仍保持现有 的下降动作状态,直到相反方向的线圈通电为止。 另外,夹紧/放松由单线圈二位电磁阀推动气缸完 成,线圈通电执行夹紧动作,线圈断电时执行放 松动作。
实验二 电动机联锁自动控制实验

实验装置
机电综合实验装置:D61电器控制实验挂箱(一) D62电器控制实验挂箱(二) D63电器控制实验挂箱(三) 鼠笼式异步电动机二台

实验方法与步骤
1、复习教材中有关内容; 2、设计控制线路(主电路、控制电路); 3、实际连线并检查线路; 4、接上电源,运行系统观察结果。
5).在线、程序下载: 点击 “在线工作”命令,梯形图变为绿色表明PC机与PLC已连上 点击 “传送到PLC”命令,就可将程序下载到PLC中, 在弹出的对话框中,将扩展函数前“√”去掉。
PLC编程软件CX-Programmer使用方法
6).运行程序: 点击”运行模式” 命令,使PLC处于运行的状态。 一般下载完毕后PLC会自动运行程序。 7).停止运行程序: 点击 “编程模式”命令使PLC进入编程模式, 停止程序运行。 8).再修改、编译程序: 进入编程模式(停止运行程序) 离线(再次点击 修改、编译。 9).再运行已修改的程序: 在线 下载 运行。 10).保存程序: 以工程文件“ *.CXP ”保存。

PLC编程软件CX-Programmer使用方法
3).编辑梯形图: 点击 “编程模式”命令进入编程模式,一般新建一个工程 文件后即进入编程模式。PLC的当前工作模式在窗口上方 有显示。在编程模式下直接放置元器件,左右母序”命令进行程序编译。左下方有编译结果信息, 选择一个错误,可使梯形图相关部分高亮。 反复编译、修改直至无语法错误为止。

(机电传动实验报告)

(机电传动实验报告)

机电传动与控制实验报告实验题目三相异步电动机点动控制、连续运行控制班级2008033202 学号200803320219 姓名刘绪庞一、实验目的1.熟练掌握继电器,接触器等电器在实际电路中的正确使用。

2.掌握异步电动机的点动控制、连续控制的实现。

3. 初步掌握电气控制线路接线的方法及技巧。

二、实验器材带有刀开关、熔断器、热继电器、交流继电器的继电器-接触器控制实验板;三相异步电动机;电笔;剥线钳;连接导线若干;螺丝刀三、实验原理、电气原理图四、实验出现的问题和处理方法熔断器被烧坏?电流过载,重新接控制电路。

电动机不转?用电笔测三相是否有电。

没电,可能接触不良。

U V W实验题目三相异步电动机正反转控制班级2008033202 学号200803320219 姓名刘绪庞一、实验目的1.熟练掌握继电器,接触器等电器在实际电路中的正确使用。

2.掌握掌握互锁触点在电路中的作用。

3. 初步掌握三相异步电动机正反转控制原理。

4.学会看懂电路图并按图接线的方法,培养分析、检查和排除电气故障的能力。

二、实验器材带有刀开关、熔断器、热继电器、交流继电器的继电器-接触器控制实验板;三相异步电动机;电笔;剥线钳;连接导线若干;螺丝刀三、实验原理、电气原理图四、实验出现的问题和处理方法按下红色按钮,电动机起动,按下绿色按钮,电动机起动停?将接在红色按钮线改接到绿色按钮,将接在绿色按钮线改接到红色按钮按下起动sb2开关,电动机正转,放开就停?没有自锁,在起动sb2开关,并联常开KM1电动机正转,电动机反转,但不能直接正-反转控制?可能没接互锁开关,在起动sb2开关串加常闭sb3,在起动sb3开关串加常闭sb2。

实验题目三相异步电动机延时自动控制班级2008033202 学号200803320219 姓名刘绪庞一、实验目的1.熟练掌握继电器,接触器等电器在实际电路中的正确使用。

2.掌握由时间继电器实现的三相异步电动机自动控制。

机电传动控制实验指导书(最新)

机电传动控制实验指导书(最新)

机电传动控制实验指导书实验一、继电—接触器控制三相异步电动机一、实验目的1.熟悉继电—接触器断续控制系统的电路原理图、元件布局图和接线图的读图方式;2.掌握三相异步电动机主回路和控制回路的接线方法;3.了解继电—接触器断续控制电路的组成二、实验使用仪器、设备1.DB电工实验台;2.三相异步电动机二台;3.万用表一台;4.专用连接线一套。

三、实验要求实现三相异步电动机的正、反转、点动、互锁、连锁控制。

满足以下具体要求:(1) M1可以正、反向点动调整控制;(2) M1正向起动之后,才能起动M2;(3) 停车时,M2停止后,才能停M1;(4) 具有短路和过载保护;(5) 画出主电路和控制电路。

四、实验参考电路五、实验步骤1.按布局图要求将各元器件定位;2.按接线图要求,以正确的规格电线连接各器件;3.按接线图要求,连接电动机的定子线圈;4.自查并互查连接线;5.合上电源,调试电路;6.观察电动机的运行情况。

六、实验注意事项1.操作前切断总电源;2.接线完毕,必须检查接线情况,并做好记录;3.在指导老师认可后,方能接通电源。

七、思考题1.熔断器与热继电器可否省去其中任何一个?为什么?2.熔断器与热继电器的规格可否随意选择?为什么?3.连接电线的规格可否随意选择?为什么?4.交流接触器可否带直流负载?为什么?实验二、PLC控制三相异步电动机一、实验目的1.了解PLC——AC电动机断续控制系统的电路原理图、元件布局图和接线图的读图方式;2.掌握继电—接触器逻辑电路与PLC梯形图的转换方式;3.熟悉PLC控制系统的接线方法;3.了解PLC断续控制电路的组成。

二、实验使用仪器、设备1.PLC模拟实验台;2.三相异步电动机二台;3.万用表一台;4.专用连接线一套。

三、实验要求实现PLC对三相异步电动机的正、反转、点动、互锁、连锁控制。

满足以下具体要求:(1) M1可以正、反向点动调整控制;(2) M1正向起动之后,延时5分钟再可起动M2;(3) 停车时,M2停止后,延时2分钟再可停M1;(4) 主电路同实验一。

大连交通大学机电传动控制课程实验报告

大连交通大学机电传动控制课程实验报告

大连交通大学机电传动控制课程实验报告1.实验目的.本次实验的主要目的是让学生了解机电传动控制的基本原理和方法,掌握使用PLC编程软件进行编程的方法,并通过实验验证所学知识的正确性和实用性。

2.实验器材.本次实验使用的器材包括:PLC控制器、电机驱动器、编码器、传感器等。

同时还需要使用电脑连接PLC控制器进行编程。

3.实验步骤.编写程序:首先需要根据实验要求编写相应的程序,包括初始化程序、输入输出程序、运动控制程序等。

在编写程序时需要注意变量的使用、逻辑关系以及程序的可读性。

连接硬件:将编写好的程序下载到PLC控制器中,并将PLC控制器与电机驱动器、编码器、传感器等硬件设备连接起来。

调试程序:在连接好硬件设备后,需要对程序进行调试。

调试过程中需要注意各个硬件设备的反馈信号是否正确,程序是否能够正常运行等问题。

测试实验结果:完成调试后,可以进行实验测试。

测试过程中需要注意安全问题,避免发生意外事故。

4.实验结果分析.通过本次实验,我们成功地实现了对机电传动系统的控制。

具体来说,我们使用了PLC编程软件来编写程序,通过PLC控制器与电机驱动器、编码器、传感器等硬件设备进行连接,实现了对电机的运动控制。

在实验过程中,我们发现一些问题并进行了解决,例如硬件设备的连接问题、程序中的逻辑错误等。

这些问题的解决使得我们的实验更加顺利和成功。

5.总结与展望.本次实验让我们深入了解了机电传动控制的基本原理和方法,掌握了使用PLC编程软件进行编程的方法。

通过实验,我们不仅提高了自己的实践能力,还加深了对理论知识的理解和掌握。

在未来的学习中,我们将继续深入学习机电传动控制的知识,并将其应用到实际工作中去。

机电传动 实验报告

机电传动 实验报告

机电传动控制实验报告实验报告实验一三相异步电动机点动控制和自锁控制实验二三相异步电机联锁正反转控制实验三变频器报警与保护功能实验四多段速度选择变频调速实验五外部端子点动控制实验六外部模拟量(电压/电流)变频调速实验七时间继电器控制回路第 1 页共12 页实验一三相异步电动机点动控制和自锁控制一、实验目的1. 通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。

2.通过实验进一步加深理解点动控制和自锁控制的特点二、实验原理1. 继电─接触控制在各类生产机械中获得广泛地应用,凡是需要进行前后、左右、进退等运动的生产机械,均采用传统的典型的正、反转继电─接触控制。

交流电动机继电─接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环。

(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类。

(3) 消弧系统─在切断大电流的触头上装有灭弧罩,以迅速切断电弧。

(4) 接线端子,反作用弹簧等。

2. 在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。

要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。

使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。

为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。

3. 控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执行部件的起、停或正、反转控制。

按钮是专供人工操作使用。

对于复合按钮,其触点的动作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动断触头后合。

机电传动实验

机电传动实验

实验一三相异步电机Y-△换接起动控制一、实验目的1.了解时间继电器的使用方法及在控制系统中的应用。

2.熟悉异步电动机Y-△降压起动控制的运行情况和操作方法。

二、原理说明1.按时间原则控制电路的特点是各个动作之间有一定的时间间隔,使用的元件主要是时间继电器。

时间继电器是一种延时动作的继电器,它从接受信号(如线圈带电)到执行动作(如触点动作)具有一定的时间间隔。

此时间间隔可按需要预先整定,以协调和控制生产机械的各种动作。

时间继电器的种类通常有电磁式、电动式、空气式和电子式等。

其基本功能可分为两类,即通电延时式和断电延时式,有的还带有瞬时动作式的触头。

2.按时间原则控制鼠笼式电动机Y-△降压自动换接起动的控制线路如下图所示。

从主回路看,当接触器KM1、KM2主触头闭合,KM3主触头断开时,电动机三相定子绕组作Y 连接;而当接触器KM1和KM3主触头闭合,KM2主触头断开时,电动机三相定子绕组作△连接。

因此,所设计的控制线路若能先使KM1和KM2得电闭合,后经一定时间的延时,使KM2失电断开,而后使KM3得电闭合,则电动机就能实现降压起动后自动转换到正常工作运转。

该线路具有以下特点:(1) 接触器KM3与KM2通过动断触头KM3(5-7)与KM2(5-11)实现电气互锁,保证KM3与KM2不会同时得电,以防止三相电源的短路事故发生。

(2) 依靠时间继电器KT延时动合触头(11-13)的延时闭合作用,保证在按下SB1后,使KM2先得电,并依靠KT(7-9)先断,KT(11-13)后合的动作次序,保证KM2先断,而后再自动接通KM3,也避免了换接时电源可能发生的短路事故。

(3) 本线路正常运行(△接)时,接触器KM2及时间继电器KT均处断电状态。

三、实验设备四、实验内容1.手动控制Y-△降压起动控制线路。

按右图线路接线。

(1)开关Q2合向上方、使电动机为△接法。

(2) 按控制屏启动按钮,接通三相交流电源,观察电动机的转速。

《机电传动控制》实验报告

《机电传动控制》实验报告

《机电传动控制》实验报告本次实验是关于机电传动控制的,实验主要通过使用PLC编程,控制步进电机和气缸来实现控制目标。

本次实验中,我们学习了PLC编程的基本原理,学习了步进电机的工作原理,并使用PLC编程实现了步进电机的控制。

同时,我们还学习了气缸的工作原理,并使用PLC编程实现了气缸的控制。

实验一:步进电机控制实验本实验的目的是学习步进电机的工作原理,并实现步进电机的控制。

步进电机是一种能将电脉冲信号转换为机械角度运动的电动机。

步进电机的优点是,能够实现准确的位置控制和精细的运动控制。

在本实验中,我们使用连接在PLC输出模块上的步进电机来进行控制。

实验步骤1.将PLC程序下载进PLC控制器中,并将输出模块连接到步进电机。

2.在PLC编程软件中进行编程,设置电机的工作方式和实现的目标。

3.在PLC编程软件中进行调试,检查程序是否正确。

4.进行实验,观察步进电机的运动,并检查控制效果是否达到预期。

实验结果我们实现了通过PLC编程控制步进电机的目标,步进电机实现了预期的运动轨迹,并在程序执行的过程中能够准确地控制步进电机的转动速度和方向。

本实验的目的是学习气缸的工作原理,并实现气缸的控制。

气缸是一种利用压缩空气作为动力源的机械装置,通过压缩空气产生的动力驱动气缸的运动。

气缸广泛应用于自动化生产线上,能够实现快速、高效的控制目标。

总结本次实验学习了PLC编程的基本原理,并应用PLC编程实现了对步进电机和气缸的控制。

在实验过程中,我们遇到了一些问题和挑战,但通过团队合作和认真地解决问题,最终成功地完成了实验任务。

通过本次实验的学习,我们加深了对机电传动控制的理解和掌握,为今后的学习和研究打下了坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三双闭环晶闸管不可逆直流调速系统实验一、实验目的(1)了解双闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。

(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。

(3)研究调节器参数对系统动态性能的影响。

二、实验所需挂件及附件三、实验线路及原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。

为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。

双闭环直流调速系统是由电流和转速两个调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。

实验系统的原理框图组成如下:图3-1 双闭环直流调速系统原理框图启动时,加入给定电压U g,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即U g=U fn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。

系统工作时,要先给电动机加励磁,改变给定电压U g的大小即可方便地改变电动机的转速。

“电流调节器”、“速度调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。

“电流调节器”的输出作为“触发电路”的控制电压U ct,利用“电流调节器”的输出限幅可达到限制αmax的目的。

四、实验内容(1)各控制单元调试。

(2)测定电流反馈系数β、转速反馈系数α。

(3)测定开环机械特性及高、低转速时系统闭环静态特性n=f(I d)。

(4)闭环控制特性n=f(U g)的测定。

(5)观察、记录系统动态波形。

五、预习要求(1)阅读电力拖动自动控制系统教材中有关双闭环直流调速系统的内容,掌握双闭环直流调速系统的工作原理。

(2)理解PI(比例积分)调节器在双闭环直流调速系统中的作用,掌握调节器参数的选择方法。

(3)了解调节器参数、反馈系数、滤波环节参数的变化对系统动、静态特性的影响。

六、思考题(1)为什么双闭环直流调速系统中使用的调节器均为PI调节器?(2)转速负反馈的极性如果接反会产生什么现象?(3)双闭环直流调速系统中哪些参数的变化会引起电动机转速的改变?哪些参数的变化会引起电动机最大电流的变化?七、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK04上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=120°。

⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦将DJK02-1面板上的U端接地,用20芯的扁平电缆,将DJK02-1的“正桥触lf发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。

(2)双闭环调速系统调试原则①先单元、后系统,即先将单元的参数调好,然后才能组成系统。

②先开环、后闭环,即先使系统运行在开环状态,然后在确定电流和转速均为负反馈后,才可组成闭环系统。

③先内环,后外环,即先调试电流内环,然后调试转速外环。

④先调整稳态精度,后调整动态指标。

(3)控制单元调试①移相控制电压U ct调节范围的确定直接将DJK04给定电压U g接入DJK02-1移相控制电压U ct的输入端,“正桥三相全控整流”输出接电阻负载R,负载电阻放在最大值,输出给定调到零(对DZSZ-1,将输出电压调至最小位置,当启动后,再将输出线电压调到200V)。

按下启动按钮,给定电压U g由零调大,U d将随给定电压的增大而增大,当U g 超过某一数值U g'时,U d的波形会出现缺相的现象,这时U d反而随U g的增大而减少。

一般可确定移相控制电压的最大允许值U ctmax=0.9U g',即U g的允许调节范围为0~U ctmax。

如果我们把输出限幅定为U ctmax的话则“三相全控整流”输出范围,就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。

记录U g'于下表中:将给定退到零,再按停止按钮切断电源,结束步骤。

②调节器的调零将DJK04中“速度调节器”所有输入端接地,再将DJK08中的可调电阻120K 接到“速度调节器”的“4”、“5”两端,用导线将“5”、“6”短接,使“电流调节器”成为P (比例)调节器。

调节面板上的调零电位器RP3,用万用表的毫伏档测量电流调节器“7”端的输出,使调节器的输出电压尽可能接近于零。

将DJK04中“电流调节器”所有输入端接地,再将DJK08中的可调电阻13K接到“速度调节器”的“8”、“9”两端,用导线将“9”、“10”短接,使“电流调节器”成为P(比例)调节器。

调节面板上的调零电位器RP3,用万用表的毫伏档测量电流调节器的“11”端,使调节器的输出电压尽可能接近于零。

③调节器正、负限幅值的调整把“速度调节器”的“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF 接入“5”、“6”两端,使调节器成为PI (比例积分)调节器,然后将DJK04的给定输出端接到转速调节器的“3”端,当加一定的正给定时,调整负限幅电位器RP2,使之输出电压为-6V,当调节器输入端加负给定时,调整正限幅电位器RP1,使之输出电压为最小值即可。

把“电流调节器”的“8”、“9”短接线去掉,将DJK08中的可调电容0.47uF 接入“8”、“9”两端,使调节器成为PI(比例积分)调节器,然后将DJK04的给定输出端接到电流调节器的“4”端,当加正给定时,调整负限幅电位器RP2,使之输出电压为最小值即可,当调节器输入端加负给定时,调整正限幅电位器。

RP1,使电流调节器的输出正限幅为Uctmax④电流反馈系数的整定直接将“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,整流桥输出接电阻负载R,负载电阻放在最大值,输出给定调到零。

按下启动按钮,从零增加给定,使输出电压升高,当U d=220V时,减小负载的阻值,调节“电流反馈与过流保护”上的电流反馈电位器RP1,使得负载电流I d=l.3A时,“2”端I f的的电流反馈电压U fi=6V,这时的电流反馈系数β= U fi/I d=4.615V/A。

⑤转速反馈系数的整定直接将“给定”电压U g接DJK02-1上的移相控制电压U ct的输入端,“三相全控整流”电路接直流电动机负载,L d用DJK02上的200mH,输出给定调到零。

按下启动按钮,接通励磁电源,从零逐渐增加给定,使电机提速到 n =150Orpm时,调节“速度变换”上转速反馈电位器RP1,使得该转速时反馈电压U fn=-6V,这时的转速反馈系数α =U fn/n =0.004V/(rpm)。

(4)开环外特性的测定①DJK02-1控制电压U ct由DJK04上的给定输出U g直接接入,“三相全控整流”电路接电动机,L d用DJK02上的200mH,直流发电机接负载电阻R,负载电阻放在最大值,输出给定调到零。

②按下启动按钮,先接通励磁电源,然后从零开始逐渐增加“给定”电压U g,使电机启动升速,调节U g和R使电动机电流I d=I ed,转速到达1200rpm。

③增大负载电阻R阻值(即减小负载),可测出该系统的开环外特性n =f(I d),记录于下表中:将给定退到零,断开励磁电源,按下停止按钮,结束实验。

(5)系统静特性测试①按图3-1接线, DJK04的给定电压U g输出为正给定,转速反馈电压为负电压,直流发电机接负载电阻R,L d用DJK02上的200mH,负载电阻放在最大值,给定的输出调到零。

将速度调节器,电流调节器都接成P(比例)调节器后,接入系统,形成双闭环不可逆系统,按下启动按钮,接通励磁电源,增加给定,观察系统能否正常运行,确认整个系统的接线正确无误后,将“速度调节器”,“电流调节器”均恢复成PI(比例积分)调节器,构成实验系统。

②机械特性n =f(I d)的测定A、发电机先空载,从零开始逐渐调大给定电压U g,使电动机转速接近n=l200rpm,然后接入发电机负载电阻R,逐渐改变负载电阻,直至I d=I ed,即可测出系统静态特性曲线n =f(I d),并记录于下表中:B、降低U g,再测试n=800rpm时的静态特性曲线,并记录于下表中:C、闭环控制系统n=f(U g)的测定调节U g及R,使I d=I ed、n= l200rpm,逐渐降低U g,记录U g和n,即可测出闭环控制特性n = f(U g)。

(6)系统动态特性的观察用慢扫描示波器观察动态波形。

在不同的系统参数下(“速度调节器”的增益和积分电容、“电流调节器”的增益和积分电容、“速度变换”的滤波电容),用示波器观察、记录下列动态波形:①突加给定U g,电动机启动时的电枢电流I d(“电流反馈与过流保护”的“2”端)波形和转速n(“速度变换”的“3”端)波形。

②突加额定负载(20%I ed⇒100%I ed)时电动机电枢电流波形和转速波形。

③突降负载(100%I ed⇒20%I ed)时电动机的电枢电流波形和转速波形。

八、实验报告(1)根据实验数据,画出闭环控制特性曲线n =f(U g)。

(2)根据实验数据,画出两种转速时的闭环机械特性n =f(I d)。

(3)根据实验数据,画出系统开环机械特性n =f(I d),计算静差率,并与闭环机械特性进行比较。

(4)分析系统动态波形,讨论系统参数的变化对系统动、静态性能的影响。

九、注意事项(1) 参见本教材实验二十五的注意事项。

(2)在记录动态波形时,可先用双踪慢扫描示波器观察波形,以便找出系统动态特性较为理想的调节器参数,再用数字存储示波器或记忆示波器记录动态波形。

相关文档
最新文档