方波发生器电路
占空比可调的方波振荡电路工作原理及案例分析

占空比可调的方波振荡电路工作原理及案例分析参考电路图5.12所示,测试电路,计算波形出差频率。
电容图5.12 方波发生电路(multisim)通过上述电路调试,发现为方波发生器。
一、电路组成如图5.13,运算放大器按照滞回比较器电路进行链接,其输出只有两种可能的状态:高电平或低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动的产生相互变换,所以电路中必须引入反馈;因为输出状态应按一定的时间,间隔交替变化,即产生周期性的变化,所以电路中要有延迟环节来确定每种状态维持的时间。
电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。
RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。
电压传输特性如图6.8所示:U 0U NU P U zU cR 3R 2R 1R图5.13方波发生电路二、工作原理从图5.13可知,设某一时刻输出电压U O =+U Z ,则同相输入端电位U P =+U T 。
U O 通过R 对电容C 正向充电。
反相输入端电位U N 随时间t 增长而逐渐升高,当t 趋近于无穷时,U N 趋于+U z ;当U N =+U T ,再稍增大,U O 就从+U Z 越变为-U Z ,与此同时U p 从+U T 越变为-U T 。
随后,U O 又通过R 对电容C 放电。
反相输入端电位U N 随时间t 增长而逐渐降低,当t 趋近于无穷时,U N 趋于-U Z ;当U N =-U T ,稍减小,U O 就从-U Z ,于此同时,U p 从-U T 跃变为+U T ,电容又开始正向充电。
上述过程周而复始,电路产生了自激振荡。
三、波形分析及主要参数由于矩形波发生电路中电容正向充电与反向充电的时间常数均等于R3C,而且充电的总幅值也相等因而在一个周期内U O =+U Z 的时间与U O =-U Z 的时间相等,U O 对称的方波,所以也称该电路为对称方波发生电路。
频率可调的方波信号发生器设计及电路

用单片机产生频率可调的方波信号。
输出方波的频率范围为1Hz-200Hz,频率误差比小于0.5%。
要求用“增加”、“减小”2个按钮改变方波给定频率,按钮每按下一次,给定频率改变的步进步长为1Hz,当按钮持续按下的时间超过2秒后,给定频率以10次/秒的速度连续增加(减少),输出方波的频率要求在数码管上显示。
用输出方波控制一个发光二极管的显示,用示波器观察方波波形。
开机默认输出频率为5Hz。
3.5.1模块1:系统设计(1)分析任务要求,写出系统整体设计思路任务分析:方波信号的产生实质上就是在定时器溢出中断次数达到规定次数时,将输出I/O管脚的状态取反。
由于频率范围最高为200Hz,即每个周期为5ms(占空比1:1,即高电平2.5ms,低电平2.5 ms),因此,定时器可以工作在8位自动装载的工作模式。
涉及以下几个方面的问题:按键的扫描、功能键的处理、计时功能以及数码管动态扫描显示等。
问题的难点在按键连续按下超过2S的计时问题,如何实现计时功能。
系统的整体思路:主程序在初始化变量和寄存器之后,扫描按键,根据按键的情况执行相应的功能,然后在数码显示频率的值,显示完成后再回到按键扫描,如此反复执行。
中断程序负责方波的产生、按键连续按下超过2S后频率值以10Hz/s递增(递减)。
(2)选择单片机型号和所需外围器件型号,设计单片机硬件电路原理图采用MCS51系列单片机At89S51作为主控制器,外围电路器件包括数码管驱动、独立式键盘、方波脉冲输出以及发光二极管的显示等。
数码管驱动采用2个四联共阴极数码管显示,由于单片机驱动能力有限,采用74HC244作为数码管的驱动。
在74HC244的7段码输出线上串联100欧姆电阻起限流作用。
独立式按键使用上提拉电路与电源连接,在没有键按下时,输出高电平。
发光二极管串联500欧姆电阻再接到电源上,当输入为低电平时,发光二极管导通发光。
图3-14 方波信号发生器的硬件电路原理图(3)分析软件任务要求,写出程序设计思路,分配单片机内部资源,画出程序流程图软件任务要求包括按键扫描、定时器的控制、按键连续按下的判断和计时、数码管的动态显示。
方波三角波发生电路的设计及仿真

长春理工大学国家级电工电子实验教学示范中心学生实验报告■一一_______ 学年第___________ 学期实验课程_________________________ 实验地点_________________________ 学院______________________ 专业______________________ 学号______________________姓名______________________r 学习用集成运算放大器构成的方波和三角波发生电路的设计方法。
2、学习方波和三角波发生电路主要性能指标的测试方法。
二、 实验原理1. 方波和三角波发生电路型式的选择由集成运放构成的方波和三角波发生器的电路型式较多,但通常它们均由滞回比较器和积分电 路组成。
按积分电路的不同,又可分为两种类型:一类是由普通RC 积分电路和滞回比较器所组成, 另一类由恒流充放电的积分电路和滞回比较器所组成。
简单的方波和三角波发生电路如图34所示。
其特点是线路简单,但性能较差,尤英是三角波 的线性度很差.负载能力不强匚该电路主要用作方波发生器,当对三角波要求不髙时.也可选用这 种电路。
更常用的三角波和方波发生电路是由集成运放组成的积分器与滞回比较辭组成,如图3・2所示。
由于采用了由集成运放组成的积分器,电容C 始终处在恒流充、放电状态,使三角波和方波的性能 大为改善,不仅能得到线性度较理想的三角波,而且也便于调右振荡频率和幅度。
R4 1 2 500R14 8 10KR2 8 120KR3 9 1100DZ1 1 10 DMOD DZ2 0 10 DMODVCC 5 0 DC 12VEE 6 0 DC -12XI 0 2 5 6 4 UA741X2 8 0 5 6 9 UA741Cl 2 4 1U.MODEL DMOD D IS=2E-14 RS=3 BV=4.85 IBV=1UA.LIB EVAL.UB*V4 4 0 1*.DC V4 -5 5 0.01*.DC V4 5 -5 0.01.TRA5US 12MS.PROBE.END运行.TRAN语句,可获得:Tire图3-3 输出方波电压波形图3・4 输出三角波电压波形输出三角波电压波形参考的输入网单文件如下:A drvieR4 1 2 500R14 8 10KR2 8 120KR3 9 1100DZ1 1 10 DMODDZ2 0 10 DMODVCC 5 0 DC 12VEE 6 0 DC -12XI 0 2 5 6 4 LM324X2 8 0 5 6 9 LM324C1 2 4 1U.MODEL DMOD D IS=2E-14 RS=3 BV二 4.85 IBV=1UA.LIB EVAL.UB*V4 4 0 1*.DC V4 •5 5 0.01*.DC V4 5 -5 0.01.TRAN 5US 12MS.PROBE.END因为LM324具有电源电压范围宽的特点,所以T变小了•减小了频率的调右范【悅2、R3的作用是什么?增大其值是否可以?R3是稳压管的限流电阻,R3的阻值是由稳压管Dz来确定的.所以可以根据Dz的情况来增大。
方波发生器电路

课程设计任务书专业自动化班级二班姓名设计起止日期2013.6.24——2012.6.28设计题目:方波发生器电路设计任务(主要技术参数):设计一个方波发生电路主要技术参数1)频率:100——1000Hz连续可调2)幅度:≥2V指导教师评语:成绩:签字:年月日图(1)方波发生电路原理框图沈阳大学课程设计说明书N O.3图(2)方波发生电路图2.3 工作原理设某一时刻输出电压uO=+UZ,则同相输入端电位沈阳大学课程设计说明书N O.4通过正反馈,使输出很快变为高电平或低电平。
图(4) 输出电压Uo波形而方波发生电路中电容正向充电与反向充电的时间常数均为RC,而且充电的总课程设计说明书N O.5图(5)仿真原理图沈阳大学图(6)仿真波形由图可知方波的幅度>2V,波形无明显失真满足课设的幅值条件。
沈阳沈 阳 大 学图(7) 频率调节仿真图由公式:)21ln(2213R R C R T +=则振荡频率:由于频率的范围是100Hz≤f≤1000Hz当f=100Hz 时,代入公式的R≈3kΩ,KeyA=100%,对比频率仿真结果知f=122.792Hz,接近100Hz 。
当f=1000Hz 时,代入公式的 R≈300Ω,KeyA=5%,对比频率仿真结果知f=815.68Hz,接近1000Hz 。
由仿真结果知方波形连续可调频率范围基本符合在100Hz 至1000Hz 之间满足课设的要求。
3.误差分析:理论参数与Multisim 11仿真分析及应用电路测试结果略有不同,主要是由于电路中二极管的动态电阻以及稳压二极管的正向导通电压引起的误差,所以使频率达不到1000HZ 。
)21ln(21132R R RC Tf +==。
三角波方波正弦波发生电路

波形发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器;指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V 1方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号;2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波;3、把方波信号通过一个积分器;转换成三角波;方案二:1、由滞回比较器和积分器构成方波三角波产生电路;2、然后通过低通滤波把三角波转换成正弦波信号;方案三:1、由比较器和积分器构成方波三角波产生电路;2、用折线法把三角波转换成正弦波;2方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路;当R1=R2、时,F=1/3、Au=3;然而,起振条件为Au略大于3;实际操作时,如果要C1=C2;即f=f满足振荡条件R4/R3=2时,起振很慢;如果R4/R3大于2时,正弦波信号顶部失真;调试困难;RC串、并联选频电路的幅频特性不对称,且选择性较差;因此放弃方案一; 方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器;比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器;通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用;然而,指标要求输出频率分别为102H Z、103H Z和104Hz;因此不满足使用低通滤波的条件;放弃方案二;方案三:方波、三角波发生器原理如同方案二;比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大;因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形;而且折线法不受频率范围的限制;综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计;3工作原理:1、方波、三角波发生电路原理该电路由滞回比较器和积分器组成;图中滞回比较器的输出电压u01=Uz ±,它的输入电压就是积分电路的输出电压u02;则U1A 的同相输入端的电位:101202up=1212R u R u R R R R +++,令up=un=0,则阀值电压:1022R Ut u Uz R ±==±;积分电路的输入电压是滞回比较器的输出电压u01,而且不是+Uz,就是-Uz,所以输出电压的表达式为:01(10)0202(0)82u t t u u t R C -=-+;设初态时u01正好从-Uz 跃变到+Uz,则:(10)0282Uz t t u Ut R C -=-+,积分电路反向积分,u02随时间的增长线性下降,一旦u02=-Ut,在稍减小,u01将从+Uz 跃变为-Uz,使式变为:(21)0282Uz t t u Ut R C -=-,积分电路正向积分,u02随时间增长线性增大,一旦u02=+Ut,再稍微增大,uo1将从-Uz 跃变为+Uz,回到初态;电路重复上述过程,因而产生自激振荡;由上分析,u01是方波,且占空比为50%,幅值为Uz ±;u02是三角波,幅值为Ut ±;取正向积分过程,正向积分的起始值-Ut,终了值+Ut,积分时间为T/2,代入(21)0282Uz t t u Ut R C -=-,得282Uz T Ut Ut R C +=-,式中12R Ut Uz R =,整理可得:24812R f R R C =; 2、正弦波发生电路原理折线法是用多段直线逼近正弦波的一种方法;其基本思路是将三角波分成若干段,分别按不同比例衰减,所获得的波形就近似为正弦波;下图画出了波形的1/4周期,用四段折线逼近正弦波的情况;图中UImax为输入三角波电压幅值;根据上述思路,可以采用增益自动调节的运算电路实现;利用二极管开关和电阻构成反馈通路,随着输入电压的数值不同而改变电路的增益;在ωt=0°~25°段,输出的“正弦波”用此段三角波近似二者重合,因此,此段放大电路的电压增益为1;由于ωt=25°时,标准正弦波的值为sin25°≈,这里uO=uI=25/90UImax≈,所以,在ωt=90°时,输出的“正弦波”的值应为uO=≈;在ωt=50°时,输入三角波的值为uI=50/90UImax≈,要求输出电压uO=×sin50°≈,可得在25°~50°段,电路的增益应为ΔuO /ΔuI=−/−=;在ωt=70°时,输入三角波的值为uI=70/90UImax≈,要求输出电压uO=×sin70°≈,可得在50°~70°段,电路的增益应为ΔuO /ΔuI=0617−/−=;在ωt=90°时,输入三角波的值为uI=UImax ,要求输出电压uO≈,可得在70°~90°段,电路的增益应为ΔuO /ΔuI=−/1−=;下页图所示是实现上述思路的反相放大电路;图中二极管D3~D5及相应的电阻用于调节输出电压u03>0时的增益,二极管D6~D8及相应的电阻用于调节输出电压u03<0时的增益;电路的工作原理分析如下;当输入电压 uI <时,增益为1,要求图中所有二极管均不导通,所以反馈电阻Rf=R11;据此可以选定Rf=R11=R6的阻值均为1k Ω; 当ωt=25°~50°时,电压增益为,要求D1导通,则应满足:13//110.8096R R R =,解出R13=Ω;由于在ωt=25°这一点,D1开始导通,所以,此时二极管D1正极电位应等于二极管的阈值电压Vth ;由图可得:03141314u VEE Vth VEE R R R --=+,式中u03是ωt=25°时输出电压的值,即为;取UImax=10V ,Uth=,则有100.278(15)14(15)0.74.23614R R ⨯--+-=+解出R14=Ω;电阻取标准值,则R13=Ω,R14=Ω;其余分析如上;需要说明,为使各二极管能够工作在开关状态,对输入三角波的幅度有一定的要求,如果输入三角波的幅度过小,输出电压的值不足以使各二极管依次导通,电路将无法正常工作,所以上述电路采用比列可调节的比例运算电路U3A 模块将输出的三角波的幅值调至10V ±;4元件选择:①选择集成运算放大器由于方波前后沿与用作开关的器件U1A 的转换速率SR 有关,因此当输出方波的重复频率较高时,集成运算放大器A1 应选用高速运算放大器;集成运算放大器U2B 的选择:积分运算电路的积分误差除了与积分电容的质量有关外,主要事集成放大器参数非理想所致;因此为了减小积分误差,应选用输入失调参数VI0、Ii0、△Vi0/△T、△Ii0/△T小,开环增益高、输入电阻高,开环带较宽的运算放大器;反相比例运算放大器要求放大不失真;因此选择信噪比低,转换速率SR 高的运算放大器;经过芯片资料的查询,TL082 双运算放大转换速率SR=14V/us;符合各项指标要求;②选择稳压二极管稳压二极管Dz 的作用是限制和确定方波的幅度,因此要根据设计所要求的方波幅度来选稳压管电压Dz;为了得到对称的方波输出,通常应选用高精度的双向稳压管③电阻为1/4W的金属薄膜电阻,电位器为精密电位器;④电容为普通瓷片电容与电解电容;5仿真与调试按如下电路图连接连接完成后仿真,仿真组图如下仿真完成后开始焊接电路,焊接完成后开始调试,调试组图如下:;5总结该设计完全满足指标要求;第一:下限频率较高:70hz;原因分析:电位器最大阻值和相关电阻阻值的参数不精确;改进:用阻值精密电位器和电阻;第二:正弦波在10000HZ时,波形已变坏;原因分析:折线法中各电阻阻值不精准,TL082CD不满足参数要求;改进:采用精准电阻,用NE5532代替TL082CD;.6心得体会“失败乃成功之母”;从始时的调试到最后完成课程设计经历了多次失败;不能半途而废,永不放弃的精神在自己选择的道路上坚持走下去在这次设计过程中,体现出自己单独设计的能力以及综合运用知识的能力,体会了学以致用;并且从设计中发现自己平时学习的不足和薄弱环节,从而加以弥补;时,这次模拟电子课程设计也让我认识到以前所学知识的不深入,基础不够扎实,以致于这次在设计电路图的时候,需要重复翻阅课本的知识;我深深知道了知识连贯运用的重要性;7参考书目:1、童诗白、华成英,模拟电子技术基础2、吴慎山,电子技术基础实验3、周誉昌、蒋力立,电工电子技术实验4、广东工业大学实验教学部,Multisim电路与电子技术仿真实验8元件清单。
1k方波发生器电路

1k方波发生器电路
1k方波发生器电路主要由一个施密特触发器反相器(例如TTL74LS14)构成。
这个反相器逻辑门通过一定的方式连接到地线,并在其输入端和地之间连接一个电容器。
这个电容器和反相器的组合形成了一个RC电路,该电路通过施密特触发器的阈值进行开关动作。
在RC电路中,当电容器上的电压低于施密特触发器的下阈值时,触发器的输出状态为逻辑0,此时电源通过电阻向电容器充电。
当电容器上的电压达到施密特触发器的阈值时,触发器的输出状态翻转为逻辑1,此时电容器通过反相器的输出放电。
这个过程反复进行,从而产生方波输出。
这个电路通过施密特触发器的阈值翻转动作,将连续的电源电压转换为方波信号。
这个方波信号的频率取决于RC电路的时间常数,即电阻和电容的大小。
这是一个基本的方波发生器电路,如果需要更复杂或更高精度的方波信号,可能需要使用更复杂的电路或数字信号处理器等设备。
方波信号发生器电路原理

方波信号发生器电路原理
方波信号发生器电路是一种电子设备,用于产生方波信号。
方波信号是一种特
殊的周期信号,其波形为矩形,具有快速的上升和下降时间。
在电子学和通信领域,方波信号广泛应用于数字电路、计时、调制解调、信号传输等方面。
方波信号是由一系列脉冲信号组成的,脉冲宽度相等,但电平有两种:高电平
和低电平。
方波信号的频率由脉冲频率决定,而占空比则是描述高电平与总周期之比。
一个简单的方波信号发生器电路可以通过集成电路555定时器来实现。
555定
时器是一种非常常用且功能强大的集成电路,可以用于产生各种类型的周期信号。
在方波信号发生器电路中,一般采用555定时器的单稳态多谐振荡模式。
通过
外部电路将555定时器配置为单稳态多谐振荡模式,可以实现方波信号的产生。
这个电路的基本原理是利用555定时器的两个比较器和一个RS触发器,通过精确的
电路设计和电路元件的选择,将周期和占空比调整到所需的数值。
电路中使用的电阻、电容和电源电压等参数将直接影响方波信号的频率和占空比。
通过合理选择这些参数,可以调整方波信号的频率和占空比来满足不同的应用需求。
总结起来,方波信号发生器电路的原理是利用555定时器以及精确的电路设计
和元件选择,实现产生方波信号的功能。
由于其简单可靠且功能强大,方波信号发生器电路在电子学和通信领域得到了广泛应用。
占空比可调的方波发生器电路设计(0~100%可调)

华中师范大学武汉传媒学院课程设计课程名称__________________题目__________________专业__________________ 班级__________________ 学号__________________ 姓名__________________ 成绩__________________ 指导教师_________________________年_______ 月_______日实现占空比可调发生器1.目标(1)占空比可调范围0<D<100%(2)输出方波电压值:Vo=2v(3)振荡频率:f=1kHz(4)波形稳定2.思路根据555定时器改变阀值电压的值使之输出高电平或低电平的原理,就可以产生方波,通过电位器改变电阻的阻值来控制高低电平的时间就可以调节占空比了;通过调节输入的电压值,再通过万用表测量输出的电压值就可以保证输出幅度为某一定值;根据振荡频率公式,已知电阻值和输出振荡频率就可以算出需要电容值,以保证振荡频率为某一定值;为保证波形稳定,采用差分电路形式,用555定时器组成的多谐振荡器的振荡频率受电源电压和温度变化的影响很小;而为了简化电路及运算,采用两个二极管的单向导电特性,使电容器的充放电回路分开,回路不再重复,计算更加简便。
3.电路图(1)输入模块二极管D1,D2的单向导电性,使电容器C的充放电回路分开,调节电位器,就可以调节多谐振荡器的占空比。
(2)处理模块:555定时器各引脚功能如下:1脚:外接电源负极或接地(GND)。
2脚:TR触发输入。
3脚:输出端(OUT或Vo)。
4脚:RD复位端,移步清零且低电平有效,当接低电平时,不管TR、TH输入什么,电路总是输出“0”。
要想使电路正常工作,则4脚应与电源相连。
5脚:控制电压端CO(或VC)。
若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书
阳大学
2 课程设计方案论证
2.1 整体电路设计
由集成运放构成的方波发生器,包括迟滞比较电路和RC积分电路两大部分。
电路原理图如图(1)所示。
图(1)方波发生电路原理框图
因为方波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间,即RC 积分电路。
2.1 整体电路原理
因为方波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来切丁每种状态维持的时间。
矩形波发生电路,它由反相输入的滞回比较器和RC电路组成。
RC回路既作为延迟环节,又作为反馈网络,通过RC 充放电实现输出状态的自动转换。
方波发生电路图如图(2)所示,它由反相输入的滞回比较器和RC积分电路组成。
其中RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换,而输出端引入的限流电阻Ro和两个背靠背的双向稳压管起到了双向限幅的
阳大学
课程设计说明书N O.3
阳大学
作用。
图(2)方波发生电路图图(3)滞回比较曲线
2.3 工作原理
设某一时刻输出电压uO=+UZ,则同相输入端电位uc=+UT。
uO通过R对电容C正向充电。
反相输入端电位uc随时间t增长而逐渐升高,当t趋近于无穷时,uc趋于+UZ;一旦uc=+UT,再稍增大,uO就从+UZ跃变为-UZ,与此同时uc从+UT跃变为-UT。
随后,uO又通过R对电容C放电。
反相输入端电位uc随时间t增长而逐渐降低,当t趋近于无穷时,uc趋于-UZ;一旦uc=-UT,再稍减小,uO就从-UZ跃变为+UZ,与此同时,uc从-UT跃变为+UT,电容又开始反向充电。
而上述过程周而复始,电路产生了输出状态的自动转换,便输出方波。
2.4 波形分析及主要参数
由于电路电筒正向充电和反向充电的时间常数均为RC,而且充电的总幅值也相等,因而在一个周期内Uo=+Uz的时间与Uo=-Uz的时间相等,Uo为对称的方波,所以也称为该电路为方波发生电路。
电容上电压Uc(即集成运放反相输入端电位Un)和电路输出电压Uo波形如图(4)所示。
课程设计说明书 N O.4
阳 大 学
根据电容上电压波形可知,在1/2周期内,电容充电的起始值俄日-Ut ,终了值为+Ut ,时间常数为R3C ;时间t 趋于无穷时,Uc 趋于+Uz ,利用一阶RC 电路的三要
素法可列出方程上述电路输出状态发生跳变的临界条件为:U- = U+ 其中:
当输出U0为高电平时: 当输出U0为低电平时:
刚开始振荡建立时,由于电路中的电扰动,并 通过正反馈,使输出很快变为高电平或低电平。
振荡周期为: 图(4) 输出电压Uo 波形 而方波发生电路中电容正向充电与反向充电的时间常数均为RC ,而且充电的总
幅值也相等,因而在一个周期内uO=+UZ 的时间与uO=-UZ 的时间相等,即方波T1 = T2。
对T1由暂态过程公式:
对充电过程,t = ∞时: t = 0时: 即: 得:
则振荡频率:
可知,调整电压比较器的电路参数R1、R2和UZ 可以改变方波发生电路的振荡幅
值,调整电阻R1、R2、R3和电容C 的数值可以改变电路的振荡频率。
τ
t
C C C C e U U U t u -
-∞-∞=)]0()([)()(O O FU U R R R U =+=+3
22
H
O H O FU U R R R U =+=+322
L O L O FU U R R R U -=+-
=+322
2
1T
T T +=Z oH C U U U ==∞)(Z OL C FU FU U -=-=+)
(0τ
t
Z Z Z C e
U FU U t u -
--+=][)()
21ln(211ln
223
21R R
RC F F T T +=-+==τ)21ln(2113
2
R R RC T
f +
=
=
课程设计说明书N O.5
表(1)直流稳压电源元件表
元件标注元件名称数量型号参数说明
R1 电阻 1 2kΩ
R2 电阻 1 2kΩ
R3 电阻 1 1kΩ
R 滑动变阻器电阻 1 2kΩ调节自激振荡电压频率
C1 可变电容 1 1uF
A 理想运放 1 OP07AH 放大
D1,D2 稳压管 2 ZDP3.0 稳幅
2.5 仿真分析方案选择
在输出端利用示波器观察波形,频率计测量频率。
仿真分析电路如图(5)所示。
图(5)仿真原理图
阳大学
3 设计结果与分析
3.1 仿真波形结果如下图(6)所示
图(6)仿真波形
由图可知方波的幅度>2V,波形无明显失真满足课设的幅值条件。
3.2 频率调节仿真如图(7)所示
阳大学
阳 大 学
图(7) 频率调节仿真图
由公式:
)21ln(22
1
3R R C R T += 则振荡频率:
由于频率的范围是100Hz ≤f ≤1000Hz
当f=100Hz 时,代入公式的R ≈3k Ω,KeyA=100%,对比频率仿真结果知f=122.792Hz,
接近100Hz 。
当f=1000Hz 时,代入公式的 R ≈300Ω,KeyA=5%,对比频率仿真结果知f=815.68Hz,
接近1000Hz 。
由仿真结果知方波形连续可调频率范围基本符合在100Hz 至1000Hz 之间满足课设的
要求。
3.误差分析:
理论参数与Multisim 11仿真分析及应用电路测试结果略有不同,主要是由于电路中二极管的动态电阻以及稳压二极管的正向导通电压引起的误差,所以使频率达不到1000HZ 。
)21ln(21
13
2
R R RC T
f +
=
=。