线路阶段式距离保护

合集下载

距离保护的基本原理及应用举例

距离保护的基本原理及应用举例



主要元件为距离继电器,可根据其端子上所加的电压和电 流测知保护安装处至故障点间的阻抗值。距离保护保护范 围通常用整定阻抗 的大小来实现。 Z set
故障时,首先判断故障的方向 :
若故障位于保护区的正方向上,则设法测出故障点到保护 安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset, 说明故障发生在保护范围之内,这时保护应立即动作,跳开 对应的断路器;若Lk大于Lset,说明故障发生在保护范围之 外,保护不应动作,对应的断路器不会跳开。
方向阻抗继电器特性圆
jX
Z set
1 Z set 2
Z m 1 Z set 2
o
R
1 1 Z m Z set Z set 2 2
全阻抗继电器
特性:全阻抗继电器的动作特性是以保护安
装点为圆心、以整定阻抗Zset为半径所作的一 个圆。圆内为动作区,圆外为非动作区,圆 周是动作边界。 特点: 动作无方向性; 动作阻抗与整定阻抗相等。
的测量阻抗减小,保护范围延长, 可能造成保护无选择动作。 解决:在整定计算中解决,计算 动作电流时引入最小分支系数。
灵敏度校验:
K sen
Z 1.25 Z 12
II ( x) 2
II set
动作时间:t t
t
3、距离III段
整定原则:躲过本线路最小负荷阻抗
III set
5、整定计算举例
【例 3-1】 在图所示110kV网络中,各线路均装有距离保护,已知Z sA.max=20Ω、 Z sA.min=15Ω、Z sB.max=25Ω、Z sB.min=20Ω,线路AB的最大负荷电流 I L.max=600A,功率因数为0.85,各线路每公里阻抗Z 1=0.4Ω/km,线路阻抗角 =70º ,电动机的自起动系数K ast=1.5,保护5三段动作时间=2s,正常时母线最低 工作电压U L,min取等于0.9U N (U N=110kV)。试对其中保护1的相间保护短路Ⅰ、Ⅱ、 Ⅲ段进行整定计算。(各段均采用相间接线的方向阻抗继电器)

线路保护与整定计算

线路保护与整定计算
电流Ⅰ段动作电流整定原则
躲开下条线路出口(始端)短路时流过本保护的最大短路电流 (以保证选择性)
线路的三段式电流保护 电流I段保护
电流Ⅰ段灵敏性校验
该保护不能保护本线路全长,故用保护范围来衡量灵敏性
校验保护范围:(λmin / L)·100% 15% ~ 20%)
最小保护范围计算式:
线路的三段式电流保护 电流II段保护
KIzh;且 Icd > Idz.0
(IC:线路实测电容电流),且;Idz.0>0.1Ie 动作时限:t b=50ms
感谢您的聆听!
2019年12月31日
线路的纵联保护
双端测量,可实现全线速动,用于220kV及以上线路作为主保护
纵联差动基本原理
线路的纵联保护
光纤差动保护原理及整定
利用纵联差动原理,光纤通道传送两端电流的全信息(大小及相位,或瞬时 值),通过比较两端电流全信息来确定保护的动作行为。一般采用分相电流纵差。
分相电流纵差基本原理:将线路两端的A相、B相、C相、零序4组电流分别进 行纵差动比较。
两端皆装设光纤差动,当某侧差动保护整定为“退出”时,该侧保护虽不再动 作,但仍然向对侧发送数据,若对侧保护整定为“投入”,则对侧保护仍可动作。 若某侧停止发送数据,则两侧差动保护皆退出。
线路的纵联保护
光纤差动保护原理及整定
(1)差动电流与制动电流
(2)动作特性(以相量差动为例) 制动特性系数K一般取0.6~1(例如取0.75)
线路的阶段式距离保护
距离保护基本原理 距离保护:反应映故障点至保护安装处之间的距离,并根据距离的远近而确 定动作时间的一种保护装置。
线路的阶段式距离保护
三段式距离保护基本配置原则

线路距离保护原理与调试方法

线路距离保护原理与调试方法

(二)距离保护的基本原理
3、距离保护的基本原理
EA
A
K3
1
Ik K1
K2
Zk1
Zset
Zk2
Z set
Zk1
A k
Zk3
L
B EB
2
ZL R
(二)距离保护的基本原理
4、距离保护的特点
1)它是反应输电线路一端电气量变化的保护; 2)保护范围内金属性短路时,距离保护Ⅰ段的保护 范围比较稳定,完全不受运行方式的影响,同时,还 具备判别短路点方向的功能; 3)距离保护第Ⅱ、Ⅲ段其保护范围伸到相邻线路上, 在相邻线路上发生短路时,由于在短路点和保护安装 处之间可能存在分支电流,所以它们在一定程度上将 受运行方式变化的影响; 4)短路点越近,保护动作速度越快;反之,越慢。
(三)保护安装处电压计算一般公式及阻抗 继电器接线方式
2、阻抗继电器接线方式
接地阻抗继电器

U

•:
I K 3 I0

UA


IA K 3 I0


UB
UC
,•
•, •

IB K 3 I0 IC K 3 I0
相间阻抗继电器

U
•:
I

(一)概述
灵敏性
继电保护灵敏性是指继电保护对设计要求动作 的故障及异常状态能够可靠动作的能力。故障 时通入装置的故障量与给定装置启动值之比, 称为继电保护的灵敏系数。
(一)概述
2、电流保护的基本回顾
• 线路电流保护在继电保护四性方面表现如何?
• 电流保护是一种结构较简单的保护,但在实现继电保护功能 上已考虑的较为周到。

实验三距离保护

实验三距离保护

实验三、距离保护及方向距离保护整定实验一、实验目的1.熟悉阶段式距离保护及方向距离保护的工作原理和基本特性。

2.掌握时限配合、保护动作阻抗(距离)和对DKB、YB的实际整定调试方法。

二、预习与思考1.什么是距离保护?距离保护的特点是什么?2.什么是距离保护的时限特性?3.什么是方向距离保护?方向距离保护的特点是什么?4.方向距离保护的Ⅰ段和Ⅱ段为什么在单电源或多电源任何形状的电网中都能够保证有选择性地切除故障线路?5.阶段式距离保护中各段保护是如何进行相关性配合的?6.在整定距离保护动作阻抗时,是否要考虑返回系数。

三、原理说明1.距离保护的作用和原理电力系统的迅速发展,使系统的运行方式变化增大,长距离重负荷线路增多,网络结构复杂化。

在这些情况下,电流、电压保护的灵敏度、快速性、选择性往往不能满足要求。

电流、电压保护是依据保护安装处测量电流、电压的大小及相应的动作时间来判断故障是否发生以及是否属于内部故障,因而受系统的运行方式及电网的接线形式影响较大。

针对被保护的输电线路或元件,在其一端装设的继电保护装置,如能测量出故障点至保护安装处的距离并与保护范围对应的距离比较,即可判断出故障点的位置从而决定其行为。

这种方式显然不受运行方式和接线的影响。

这样构成的保护就是距离保护。

以上设想,表示在图5-1中。

图中线路A侧装设着距离保护,由故障点到保护安装处间的距离为l,按该保护的保护范围整定的距离为l zd,如上所述,距离保护的动作原理可用方程表示:l≤l zd。

满足此方程时表示故障点在保护范围内,保护动作;反之,则不应动作。

图5-1 距离保护原理说明Z—表示距离保护装置距离比较的方程两端同乘以一个不为零且大于零的z1(输电线每千米的正序阻抗值)得到:Z d = z1l ≤ z1l zd ( 5-1 )式(5-1)称为动作方程或动作条件判别式。

表明距离保护是反应故障点到保护安装处间的距离(或阻抗)并与规定的保护范围(距离或阻抗)进行比较,从而决定是否动作的一种保护装置。

继电保护技术培训(距离保护)

继电保护技术培训(距离保护)

距离保护整定计算
二、相间距离保护的整定计算公式
2.3 距离Ⅲ段:
III Z set .1
Z ld . min Ⅲ K rel K re K ss
Z ld . min
0.9U e. x I fh. max
可靠系数Krel取1.2~1.3;返回系数Kre取1.15~1.25;自启动系数Kss取1.1~1.7。
A、助增分支(保护安装处至故障点sN Kb Z sN
四川能投集团继保培训
距离保护整定计算
二、相间距离保护的整定计算公式 分支系数的计算:
B、汲出分支(保护安装处至故障点有负荷引出,保护测量阻抗将减小)
汲出系数是小于1的数值
Kb
1 Z dz Z fhmin K h K zq cos( d fh ) Kk U fhmin I fhmax 0.9 110 3 I fhmax 0.9 110 3 0.35 163.5
带方向闭锁的距离保护
Z fh. min
系数取值: 1.2, K h Kk
II II I Z op .1 K rel Z AB K rel Kb. min Z op.2
Z A 1 I f .m n 2 M 3 k0 m 1 / E1 1 3k 5 V N
6 k0 m
6 k0 m
0.5s t8
6
7 10
8
9
t1 0.5s V A0
总分支系数
Kb.min Kb助Kb汲 2.52 0.575 1.35
四川能投集团继保培训
距离保护整定计算
二、相间距离保护的整定计算公式
2.2 距离Ⅱ段:
② 与相邻元件的速动保护配合:

线路阶段式距离保护

线路阶段式距离保护

线路阶段式距离保护一、继电保护基本知识:对电力系统中发生的故障或异常情况进行检测,从而发出报警信号,或直接将故障部分隔离、切除的一种重要措施。

基本任务:(1)当电力系统发生故障时,自动、迅速、有选择地将故障设备从电力系统中切除,保证系统其余部分迅速恢复正常运行,防止故障进一步扩大。

(2)当发生不正常工作情况时,能自动、及时地选择信号上传给运行人员进行处理,或者切除那些继续运行会引起故障的电气设备。

二、继电保护的基本要求:1、可靠性:保护范围内发生故障,保护装置可靠动作,而在任何不应动作的情况下,保护装置不应误动;2、快速性:保护装置应尽快将故障设备从系统中切除,目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围;3、选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽可能缩小,以保证系统中无故障部分继续运行;4、灵敏性:保护装置在其保护范围内发生故障或不正常运行时的反应能力。

三、距离保护的原理:距离保护是反应故障点至保护安装处之间的距离(或阻抗),并根据距离的远近而确定动作时间的一种保护装置。

实际上是测量保护安装处至故障点之间的阻抗大小,故有时又称阻抗保护。

实质是用整定阻抗Zdz 与测量阻抗 Zcl比较。

当短路点在保护范围以内时,即 Zcl < Zdz 时,保护动作;反之保护不动作。

因此,距离保护又称低阻抗保护。

1、距离保护的时限特性:距离保护的动作时间与保护安装处至故障点之间距离的关系,称为距离保护的时限特性。

为了保证选择性,广泛应用的是阶梯形时限特性,这种时限特性与三段式电流保护的时限特性相同,一般也做成三阶梯式,即有与三个动作范围相对应的三个动作时限。

( 1)距离保护第Ⅰ段(距离Ⅰ段)为无延时的速动段,其动作时限仅为保护装置的固有动作时间。

Ⅰ段的保护范围不能延伸到下一线路中去,而为本线路全长的 80%~85%,动作阻抗整定为 80%~ 85%线路全长的阻抗。

( 2)距离保护第Ⅱ段(距离Ⅱ段)为带延时的速动段,为了有选择性地动作,距离 II 段的动作时限和启动值要与相邻下一条线路保护的 I 段和 II 段相配合。

距离保护第7讲:距离保护的整定及基本构成

距离保护第7讲:距离保护的整定及基本构成
3.5 距离保护的整定计算与对距离保护的评价
3.5.1 距离保护的延时特性
➢距离保护一般采用阶段式配合的思想,配合关系类似于 三段式电流保护
3.5.2 距离保护的整定计算
➢ 距离保护需要配置相间距离 和接地距离
➢ 距离Ⅰ段、距离Ⅱ段一般采 用具有方向性的动作特性
➢ 距离Ⅲ段通常采用带有偏移 特性的动作特性
与本保护相配合的下游相邻元件保护段 (x 为Ⅰ 段或Ⅱ 段)的 最大动作延时
3.5.2 距离保护的整定计算 距离Ⅲ段整定
作用 本线路的近后备或下级线路的远后备
整定原则 CASE1:相邻线路配合段为距离Ⅱ段或距离Ⅲ段时
CASE2:相邻元件配置电流、电压保护时的配合
为相邻线电流、电压保护的最小保护范围对应的阻抗 值
如何保证Ⅱ段在任何运行方 式下选择性?
3.5.2 距离保护的整定计算
距离Ⅱ段整定
整定处理思想 距离Ⅱ段整定时应考虑灵敏系数最大的情况,即保护范围最 大时其动作范围不超过相邻线配合段保护范围。该种运行方 式对应于分支系数最小的情况。
3.5.2 距离保护的整定计算
距离Ⅱ段整定
整定方法 •CASE1:相邻元件为输电线路
在发电机和变压器保护中作为后备保护
3.12 距离保护的基本构成与工作流程
3.12.1 距离保护的构成
(一)微机保护的硬件构成
距离保护模拟量输入:三相电流加零序电流、 三相电压加零序电压、 断路 器另一侧单相电压共9路电量
3.12.1 距离保护的构成
(二)软件构成
1. 故障启动元件 2. 距离测量元件 3. 故障选相元件 4. 振荡闭锁元件 5. 故障处理逻辑 6. PT断线闭锁元件 7. 整组复归逻辑
•CASE2:相邻元件为变压器

距离保护的整定计算

距离保护的整定计算

距离保护的整定计算一、距离保护第一段 1.动作阻抗(1)对输电线路,按躲过本线路末端短路来整定,即取AB K dzZ k Z '='⋅12.动作时限0≈'t 秒。

二、距离保护第二段1.动作阻抗(1)与下一线路的第一段保护范围配合,并用分支系数考虑助增及外汲电流对测量阻抗的影响,即()BC k fz AB k dzZ K K Z K Z '+''=''⋅1式中fz K 为分支系数min ⎪⎪⎭⎫ ⎝⎛=ABBCfz II K(2)与相邻变压器的快速保护相配合()B fz AB k dzZ K Z K Z +''=''⋅1取(1)、(2)计算结果中的小者作为1⋅''dzZ 。

2. 动作时限保护第Ⅱ段的动作时限,应比下一线路保护第Ⅰ段的动作时限大一个时限阶段,即12CABA '图3-50 电力系统接线图AZ 'BABZ BCZ Z 'Z ''Z '''00.5tZ 'Z ''Z '''00.5t3AZ 12CABA '图3-50 电力系统接线图AZ 'BABZ BCZ Z 'Z ''Z '''00.5tZ 'Z ''Z '''00.5t3AZt t t t ∆≈∆+'=''213.灵敏度校验5.1≥''=ABdzlm Z Z K如灵敏度不能满足要求,可按照与下一线路保护第Ⅱ段相配合的原则选择动作阻抗,即()2.dz fz AB k dzZ K Z K Z ''+''=''这时,第Ⅱ段的动作时限应比下一线路第Ⅱ段的动作时限大一个时限阶段,即t t t ∆+''=''21三、 距离保护的第三段1.动作阻抗按躲开最小负荷阻抗来选择,若第Ⅲ段采用全阻抗继电器,其动作阻抗为min.1.1fh zqh k dzZ K K K Z '''='''式中2.动作时限保护第Ⅲ段的动作时限较相邻与之配合的元件保护的动作时限大一个时限阶段,即t t t ∆+'''='''23.灵敏度校验作近后备保护时5.11.≥'''=⋅ABdzlm Z Z K 近作远后备保护时2.1≥+'''=⋅BCfz ABdzlm Z K Z Z K 远式中,K fz 为分支系数,取最大可能值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线路阶段式距离保护
一、继电保护基本知识:
对电力系统中发生的故障或异常情况进行检测,从而发出报警信号,或直接将故障部分隔离、切除的一种重要措施。

基本任务:
(1)当电力系统发生故障时,自动、迅速、有选择地将故障设备从电力系统中切除,保证系统其余部分迅速恢复正常运行,防止故障进一步扩大。

(2)当发生不正常工作情况时,能自动、及时地选择信号上传给运行人员进行处理,或者切除那些继续运行会引起故障的电气设备。

二、继电保护的基本要求:
1、可靠性:保护范围内发生故障,保护装置可靠动作,而在任何不应动作的情况下,保护装置不应误动;
2、快速性:保护装置应尽快将故障设备从系统中切除,目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围;
3、选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽可能缩小,以保证系统中无故障部分继续运行;
4、灵敏性:保护装置在其保护范围内发生故障或不正常运行时的反应能力。

三、距离保护的原理:
距离保护是反应故障点至保护安装处之间的距离(或阻抗),并根据距离的远近而确定动作时间的一种保护装置。

实际上是测量保护安装处至故障点之间的阻抗大小,故有时又称阻抗保护。

实质是用整定阻抗 Zdz与测量阻抗 Zcl比较。

当短路点在保护范围以内时,即Zcl < Zdz 时,保护动作;反之保护不动作。

因此,距离保护又称低阻抗保护。

1、距离保护的时限特性:
距离保护的动作时间与保护安装处至故障点之间距离的关系,称为距离保护的时限特性。

为了保证选择性,广泛应用的是阶梯形时限特性,这种时限特性与三段式电流保护的时限特性相同,一般也做成三阶梯式,即有与三个动作范围相对应的三个动作时限。

(1)距离保护第Ⅰ段(距离Ⅰ段)
为无延时的速动段,其动作时限仅为保护装置的固有动作时间。

Ⅰ段的保护范围不能延伸到下一线路中去,而为本线路全长的80%~85%,动作阻抗整定为80%~85%线路全长的阻抗。

(2)距离保护第Ⅱ段(距离Ⅱ段)
为带延时的速动段,为了有选择性地动作,距离II 段的动作时限和启动值要与相邻下一条线路保护的I 段和II 段相配合。

(3)距离保护第Ⅲ段(距离Ⅲ段)
距离 III 段为本线路和相邻线路(元件)的后备保护,其动作时限的整定原则与过电流保护相同,即大于下一条变电站母线出口保护的最大动作时限一个Δt ,其动作阻抗应按躲过正常运行时的最小负荷阻抗来整定。

2、距离保护的主要组成元件:
由起动元件、测量元件(核心部分)、延时元件组成。

(1)起动元件
发生故障时,瞬间启动保护装置,以判断线路是否发生了故障,并兼有后备保护的作用。

通常启动元件采用过电流继电器或阻抗继电器。

为了提高元件的灵敏度,也可采用反应负序电流或零序电流分量的复合滤过器来作为启动元件。

(2)测量元件
测量元件用来测量保护安装处至故障点之间的距离,并判别短路故障的方向。

通常采用带方向性的阻抗继电器作测量元件。

如果阻抗继电器是不带方向性的,则需增加功率方向元件来判别故障的方向。

(3)延时元件
用来提供距离保护Ⅱ段、Ⅲ段的动作时限,以获得其所需要的动作延时。

通常采用时间继电器或延时电路作为时间元件。

四、影响距离保护正确动作的因素及防止方法:
阻抗继电器的测量阻抗时受很多因素影响的。

主要有:
1、短路点的过渡电阻;
2、电力系统振荡;
3、保护安装处与故障点之间有分支电路;
4、电流互感器、电压互感器的误差;
5、电压互感器二次回路断线;
6、串连补偿电容。

备注:具体动作原因及防治方法详见《继电保护原理第三章-距离保护》PPT教材(可以再百度文库里下载)。

相关文档
最新文档